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ABSTRACT
The global healthcare system is being overburdened by an increasing number of
COVID-19 patients. Physicians are having difficulty allocating resources and
focusing their attention on high-risk patients, partly due to the difficulty in
identifying high-risk patients early. COVID-19 hospitalizations require specialized
treatment capabilities and can cause a burden on healthcare resources. Estimating
future hospitalization of COVID-19 patients is, therefore, crucial to saving lives. In
this paper, an interpretable deep learning model is developed to predict intensive
care unit (ICU) admission and mortality of COVID-19 patients. The study
comprised of patients from the Stony Brook University Hospital, with patient
information such as demographics, comorbidities, symptoms, vital signs, and
laboratory tests recorded. The top three predictors of ICU admission were ferritin,
diarrhoea, and alamine aminotransferase, and the top predictors for mortality were
COPD, ferritin, and myalgia. The proposed model predicted ICU admission with an
AUC score of 88.3% and predicted mortality with an AUC score of 96.3%. The
proposed model was evaluated against existing model in the literature which
achieved an AUC of 72.8% in predicting ICU admission and achieved an AUC of
84.4% in predicting mortality. It can clearly be seen that the model proposed in this
paper shows superiority over existing models. The proposed model has the potential
to provide tools to frontline doctors to help classify patients in time-bound and
resource-limited scenarios.

Subjects Bioinformatics, Data Mining and Machine Learning, Data Science
Keywords Interpretable deep learning, Prediction of ICU admission, Prediction of mortality,
COVID-19

INTRODUCTION
Coronavirus is a virus family that causes respiratory tract illnesses and diseases that can be
lethal in some situations, such as SARS and COVID-19. Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) is a new type of coronavirus which began spreading in late
2019 in the Chinese province of Hubei, claiming multiple human lives (Li et al., 2020a).
The novel coronavirus outbreak was declared a Public Health Emergency of International
Concern by the World Health Organization (WHO) in January 2020. The infectious
disease caused by the novel coronavirus was given the official title, COVID-19
(Coronavirus Disease 2019) by the WHO in February 2020, and a COVID-19 pandemic
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was announced in March 2020 by the (World Health Organization; WHO Director
General) (Bogoch et al., 2020). Since then, there have been over 170 million cases with
many of them being hospitalized. A staggering 3.8 million people died from the disease
with the numbers increasing as this paper is being written. Every patient has a different
reaction to the virus, with many of them being asymptomatic and a small percentage
getting worse rapidly with their organs failing (Leung et al., 2020). The ongoing surge in
COVID-19 patients has put a burden on healthcare systems unlike ever before. According
to a recent study by Pourhomayoun & Shakibi (2021), once the coronavirus outbreak
begins, the healthcare system will be overwhelmed in less than 4 weeks. When a hospitals
capacity is exceeded, the death rate rises. The repercussions of an extended stay and
increased demand for hospital resources as a result of COVID-19 have been disastrous for
health systems around the world, necessitating quick clinical judgments, especially when
limited resources are available (Moreira, 2020). COVID-19 infection has been linked to a
wide variety of clinical, laboratory, and demographic variables, as described by Rodriguez-
Morales et al. (2020) with some of these variables related to an increased risk of critical
illness which necessitates admission to an ICU, which may even lead to death. The purpose
of this study is to create an interpretable deep-learning algorithm to determine the top
predictors of ICU admission and mortality in COVID-19 patients from a vast set of clinical
variables collected upon admission. This information will then be used to predict the ICU
admission likelihood and mortality of the patients.

RELATED WORK
COVID-19 has been around since late 2019. A lot of studies have gone into different areas
to try and find new, useful information about this disease, but just a handful of studies have
been done in the hospitalization sector specifically to solve the ICU admission and
mortality rate aspect. In this section, we include a detailed account of recent research
studies to identify patients more likely to get worse and require ICU care at an early stage.
Some well-known prediction approaches can be used for this particular task, and those
methods can be divided into two categories: statistical methods, and machine learning
methods. Machine learning models have been shown to outperform traditional clinical
scoring systems or regression approaches in some situations. Decision tree algorithms or
neural networks can detect non-linear relationships between variables which could explain
the improved performance. Some of the machine and deep learning approaches used
include tree-based algorithms, neural network algorithms, support vector machines,
regression algorithms, and the likes.

Manca, Caldiroli & Storti (2020) used a simplified logistic and Gompertz models
approach to predict ICU beds and mortality rate for hospital emergency planning in the
COVID-19 pandemic for both short term and long term. Their models had two distinct
roles to play. They monitored real data and allowed discrimination between models to
find the most accurate model, as well as understanding if any unexpected trends emerge.
They analyzed their data in two locations, Italy and Lombardy. For the ICU beds dynamic,
all the models performed similarly. The Gompertz model performed the best for predicting
fatalities in terms of precision and reliability for the whole data, which captures data
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from the genesis of the pandemic to the 69th day (i.e., April 30, 2020) after the pandemic
was announced.

Goic et al. (2021) created a model to forecast ICU beds in Chile in the short term within
a 14-day time horizon during times of crisis. They combined autoregressive neural
networks, artificial neural networks, and a compartment model to provide a short-term
forecast of ICU utilization at the regional level, resulting in the best ICU utilization
estimate. Their predictions achieved average forecasting errors of 4%, and 9% for one-
and 2-week horizons, respectively, outperforming several other competing forecasting
models. Their algorithm captures the epidemiological dynamics of the disease with a
compartmental model and is complemented by time-series models that capture short-term
changes in the clinical parameters.

Pourhomayoun & Shakibi (2021) used Support Vector Machine (SVM), Artificial
Neural Networks (ANN), Random Forest, Decision Tree, Logistic Regression, and
K-Nearest Neighbors (KNN) to predict the mortality rate in COVID-19 patients. Their
results demonstrated an 89.98% overall accuracy in predicting the mortality rate. The most
concerning signs and symptoms for mortality were also determined and described in
their work using correlation heat maps. They used a separate data set of COVID-19
patients to assess the accuracy of their proposed model and used a confusion matrix to
perform an in-depth analysis of the classifiers and measured the models sensitivity and
specificity.

Fernandes et al. (2021) used multipurpose algorithms to predict the likelihood of
COVID-19 patients developing critical conditions. Their data set captured data from
March to June of the year 2020, consisting of 1,040 patients who had a positive RT-PCR
diagnosis for COVID-19 from a large hospital in Sao Paulo, Brazil. From the 1,040
patients, 288 (28%) had a serious prognosis. They trained five machine learning
algorithms, namely, artificial neural networks, extra trees, random forests, cat boost, and
extreme gradient boosting, using regularly collected laboratory, clinical, and demographic
data. They trained the algorithms on a random sample of 70% of patients, leaving 30%
for performance evaluation, simulating fresh, unseen data. The algorithms performed
extremely well in terms of prediction (average AUROC of 0.92, sensitivity of 0.92, and
specificity of 0.82).

Yu et al. (2021) built machine learning algorithms that can predict the need for intensive
care and mechanical ventilation. The Random Forest classifier performed the best among
the algorithms evaluated, with AUC = 0.80 for predicting ICU needs, and AUC = 0.82
for predicting the need for mechanical ventilation. The data they used consisted of
socio-demographic, clinical, and blood panel profiles of patients. They determined the
relative importance of blood panel profile data and discovered that when this data was
removed from the equation, the AUC decreased by 0.12 units. It provided useful
information in predicting the severity of the disease.

Ikemura et al. (2021) aimed to train various machine learning algorithms using
automated machine learning (autoML). They chose the model that best estimated how
long patients would survive a SARS-CoV-2 infection. They used data that comprised of
patients who tested positive for COVID-19 between March 1 and July 3 of the year 2020
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with 48 features. The stacked ensemble model (AUPRC = 0.807) was the best model
generated using autoML. The gradient boost machine and extreme gradient boost models
were the two best independent models, with AUPRCs of 0.803 and 0.793, respectively.
The deep learning model (AUPRC = 0.73) performed significantly worse than the other
models.

Li et al. (2020b) used the clinical variables of COVID-19 patients to develop a deep
learning model and a risk score system to predict ICU admission and mortality of patients
in the hospital. The data consisted of 5,766 patients, with comorbidities, vital signs,
symptoms, and laboratory tests, between 7th February, 2020 and 4th May, 2020. AUC
score was used to evaluate their models. The deep learning model achieved an AUC of 78%
for ICU admission and 84% for mortality with the risk score for ICU admission being
72.8% and 84.8% for mortality. Their model was accurate enough to provide doctors with
the tools to stratify patients in limited-resource and time-bound scenarios.

Table 1 summarizes the current work being done in this field, the datasets used, the time
period carried out in the research and their objectives.

Existing models used in the literature perform very well for their respective purposes,
however, they have a downside in that they are difficult to interpret. The model lacks
interpretability on which patient attributes it uses when making a decision (ICU admission
and mortality). Existing models use various approaches, but the majority of them use
neural network models, which are excellent at achieving good results, but their predictions
are not traceable. Tracing a prediction back to which features are significant is difficult,
and there is no comprehension of how the output is generated. Therefore, this paper
proposes the use of an interpretable neural network approach to predict ICU admission
likelihood and mortality rate in COVID-19 patients. It employs a deep learning algorithm
that can interpret how the model makes decisions and which features the model selects in
making the decision. The model has outstanding and comparable results to other

Table 1 Summary of existing works.

Current work Data sets Test period Objective (Covid-19 patients in the hospital)

Manca, Caldiroli &
Storti, 2020

Lombardy, Italy ICU hospital admission 21 February 2020–27 June
2020

Predict ICU beds and mortality rate

Goic et al. (2021) Chile official COVID-19 data May 20th 2020–July 28th
2020

Forecast in the short-term, ICU beds
availability

Pourhomayoun &
Shakibi (2021)

Worldwide COVID data from 146
countries

December 1, 2019–February
5th, 2020

Predict the mortality risk in patients

Fernandes et al. (2021) São Paulo COVID-19 hospital admission March 1 2020–28 June 2020 Predict the risk of developing critical
conditions

Yu et al. (2021) Michigan COVID 19 hospital data 1 February 2020–4 May 2020 Predict the need for mechanical ventilation
and mortality.

Ikemura et al. (2021) Montefiore Medical Center COVID 19
data

March 1 2020–July 3 2020 Predict patients’ chances of surviving SARS-
CoV-2 infection

Li et al. (2020b) Stony Brook University Hospital COVID
hospital data

7 February 2020–4 May 2020. Predict ICU admission and in-hospital
mortality.
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neural network models in the literature. The proposed model can be utilized to generate
better outcomes when compared to previously published models.

METHOD
This paper proposes a high-performance and interpretable deep tabular learning
architecture, TabNet, that exploits the benefits of sequential attention (following in a
logical order or sequence) to choose features at each decision step which enables
interpretability and more efficient learning as the learning capacity is used for the most
salient features from the input parameters. The degree to which a human can comprehend
the reason for a decision is known as interpretability. The higher the interpretability of
the machine or deep learning model, the easier it is for someone to understand why
particular decisions or predictions were made. Although neural network models are
known to produce excellent results, they have the drawback of being a black box, which
means that their predictions are not traceable. It is difficult to trace a prediction back to
which features are important, and there is no understanding of how the output was
obtained. The interpretabilty here denotes the ability for the model to interpret its decision
and shows the features that are the most important in predicting ICU admission and
mortality of COVID-19 patients (Ghiringhelli, 2021). This section starts by describing
how the input data has been pre-processed for the proposed learning model. Then the
different components of the proposed model, and the steps it takes to arrive at a decision to
predict ICU admission and mortality has been discussed. Finally, the evaluation metrics
used to evaluate the model is analyzed.

Data preprocessing
It is important to pre-process the data before applying it to a machine-learning algorithm.
Many pre-processing techniques were applied with each serving a specific purpose. The
various pre-processing steps have been discussed below. Various sampling methods were
experimented with which included Adaptive Synthetic (ADASYN), and SMOTE to deal
with the imbalance in the class labels.

ADASYN (He et al., 2008) is a synthetic data generation algorithm that employs a
weighted distribution for distinct minority class examples based on their learning
difficulty, with more synthetic data generated for minority class examples that are more
difficult to learn compared to minority class examples that are simpler to learn. This is
expressed by:

G ¼ ðml �msÞ � b (1)

where G in is the total number of synthetic data examples for the minority class that must
be produced,ml is the minority class,ms is the majority class, the β is used to determine the
desired balance level between 0 and 1.

SMOTE (Chawla et al., 2002) is a technique for balancing class distribution by
replicating minority class examples at random:

x0 ¼ x þ randð0; 1Þ � jx � xkj (2)
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where x′ is the new generated synthetic data, x is the original data, xk is the kth attribute of
the data, and rand represents a random number between 0 and 1.

Feature Extraction is a technique for reducing the number of features in a dataset by
generating new ones from existing ones. Principal Component Analysis (PCA), Fast
Independent Component Analysis (Fast ICA), Factor Analysis, t-Distributed Stochastic
Neighbor Embedding t-SNE (t-SNE), and UMAP are the techniques used for the current
dataset.

When PCA (Abdi & Williams, 2010) is used, the original data is taken as input and it
gives an output of a mix of input features which can better summarize the original data
distribution such that its original dimensions are reduced. By looking at pair-wise
distances, PCA can maximize variances while minimizing reconstruction error:

covðX; yÞ ¼ 1
n� 1

� �Xn
i¼1

ðXi � xÞðYi � yÞ (3)

where x is the input, and y is the output. cov(x, y) is the covariance matrix after which it is
transformed to a new subspace which is y = W’x.

FAST ICA (Hyvarinen, 1999) is a linear dimensionality reduction approach that uses
the principle of negentropy from maximization of non-gaussian technique as input data
and attempts to correctly classify each of them (deleting all the unnecessary noise):

d ¼ lg

PN
i¼1

Þyi:yTi
MSE

0
BB@

1
CCA (4)

where MSE is the mean squared error, and y is the output.
Factor analysis (Gorsuch, 2013) is a method for compressing a large number of

variables into a smaller number of factors. This method takes the highest common
variance from all variables and converts it to a single score.

t-SNE (Wattenberg, Viégas & Johnson, 2016) is a non-linear dimensionality reduction
algorithm for high-dimensional data exploration. It converts multi-dimensional data into
two or more dimensions that can be visualized by humans:

C ¼ KLðPjjQÞ
X
i

X
j

pij log
pij
qij

 !
(5)

where pij is the joint probability distribution of the features, and qij j is the t-distribution of
the features. KL is the Kullback–Leiber divergence, P and Q are the distribution in space.

UMAP (McInnes, Healy & Melville, 2018) is a general-purpose dimensionality
reduction technique that can be used to pre-process the input data for machine learning.
The theoretical foundation for UMAP is focused on Riemannian geometry and algebraic
topology:

pijj ¼ e�
dðxi; xjÞ � pi

ri
(6)
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where p represents the distance from each ith data point to the nearest jth data point.
Before feeding all this information to the TabNet to act on, the dataset needs to be

split into a training set and a testing set. The training dataset is used to train the model and
the testing dataset is used to evaluate the models performance. The Stratified K-fold (Zeng
& Martinez, 2000) cross-validation was implemented which splits the data into “k”
portions. In each of “k” iterations, one portion is used as the test set, while the remaining
portions are used for training. The fold used here was k = 5 which means that the dataset
was divided into 5 folds with each fold being utilized once as a testing set, with the
remaining k − 1 folds becoming the training set. This ensures that no value in the training
and test sets is over- or under-represented, resulting in a more accurate estimate of
performance/error.

Architecture of TabNet model
A TabNet Model (Arik & Pfister, 2019) is proposed to perform prediction of ICU
admission and mortality parameters. A schematic diagram of the proposed TabNet deep
learning model is presented in Fig. 1.

The TabNet model consists primarily of sequential multi-steps that transfer inputs from
one stage to the next. There are three key layers of this model, namely, the Feature

Figure 1 TabNet model architecture. Full-size DOI: 10.7717/peerj-cs.889/fig-1
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Transformer, the Attentive Transformer, and the Mask. The Feature Transformer is
made up of four sequential Gated Linear Unit (GLU) decision blocks, which allow the
selection of important features for predicting the next decision. The Attentive Transformer
provides sparse feature selection that uses sparse-matrix to improve interpretability and
learning. The way it does this is by giving importance to the most important features.
The mask is then used in conjunction with the Transformer to produce two decision
parameters n(d) and n(a) which are then passed on to the next step. n(d) is the output
decision that predicts the two classes, namely, ICU admission (yes/no) and Deaths
(yes/no). n(a) is the input to the next Attentive Transformer, where the next cycle starts.
From the Feature transformer, the output is sent to the Split module.

From Fig. 1, the input features are Batch Normalized (BN) and passed to the Feature
Transformer, where it goes through four layers of a Fully Connected layer (FC), a Batch
Normalization layer (BN), and a Gated Linear Unit (GLU) in that order. The Feature
Transformer produces n(d) and n(a). The Feature Transformer comprises two decision
steps.

A Fully Connected (FC) layer is a type of layer where every neuron is connected to every
other neuron. The output from the FC layer should always be Batch Normalized. Batch
normalization is used to transform the input features to a common scale. It can be
represented mathematically as:

BN ¼ x � lbffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ e

p (7)

where x represents the input features, μb denotes the mean of the features and ω2 denotes
the variance.

The fully connected layer is the combination of all the inputs with the weights, which
can be represented mathematically as:

FC ¼ WðxÞ (8)

where x denotes the input features, and W denotes the weights.
These operations are done sequentially, starting from Eq. (9), then to Eq. (10) and

finally to Eq. (11)

FC ¼ WðxÞ (9)

BN ¼ x � lbffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ e

p (10)

The Gated Linear Unit (GLU) is simply the sigmoid of x:

GLU ¼ rðxÞ (11)

The Fully Connected layer performs its operations, then its output is fed into the Batch
Normalization layer to perform its operations. Finally, the output from the Batch
Normalization is fed into the Gated Linear Unit, all in a sequential manner.

The decision output from the Feature Transformers n(d) is also aggregated and
embedded in this form, and a linear mapping is applied to get the final decision. As a result,

Nazir and Ampadu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.889 8/46

http://dx.doi.org/10.7717/peerj-cs.889
https://peerj.com/computer-science/


they are made up of two shared decision steps and two independent decision steps. A
residual connection connects the shared steps with the independent steps and they are
summed together via the 4 operation, which is a direct summation block.

Since the same input features in the dataset are used in distinct steps, the layers are
shared between two decision steps for robust learning. By ensuring that the variation
across the network does not change significantly, normalization with a square root of
0.5 helps to stabilize learning which produces the outputs of n(d) and n(a) as mentioned
previously.

From the Feature Transformer, and after the Split layer, the Attentive Transformer is
applied to determine the various features and their values. The feature importance for
that step is combined with the other steps and is made up of four layers: FC, BN, Prior
Scales, and Sparse Max in sequential order. The split layer splits the output and obtains
p[i − 1], which is then passed through the Fully Connected (FC) layer and the Batch
Normalization (BN) layer, whose purpose is to achieve a linear combination of features
allowing higher-dimensional and abstract features to be extracted. The output from the
BN layer is multiplied using the tensor product ⊗ with the previous decision steps
Prior Scale p[i − 1]. The Prior Scale represents the employment of features in previous
decision steps. If gamma (γ) is set to 1, all features have the same importance in predicting
ICU admission and mortality. Sparse Max is then used to generate M[i]. The process of
learning a Mask (Martins & Astudillo, 2016) is then represented by:

M½i� ¼ SparsemaxðP½i� 1� � hiðp½i� 1�Þ (12)

where the hi represents the summation of the FC and the BN layer, the p[i − 1] represents
the division by the split layer in the previous step, and P[i − 1] represents the Prior Scales.
By transferring the Euclidean projection onto the probabilistic simplex, Sparse Max
encourages sparsity and makes feature selections sparser. Sparse Max implements weight
distribution for each feature of each sample and sets the sum of the weights of all features
of each sample to 1 (Yoon, Jordon & van der Schaar, 2018), allowing TabNet to employ
the most useful features for the model in each decision step. M[i] then updates p[i]:

P½i� ¼
Yi
j¼1

ðc�MjÞ (13)

If γ is set closer to 1, the model uses different features at each step; if γ is greater than 1,
the model uses the same features in multiple steps. The Sparse matrix is similar to the
softmax, except that instead of all features adding up to 1, some will be 0 and others will
add up to 1. The Sparse Max is expressed as:Z n

i¼1
sparsemaxðxÞi (14)

This makes it possible to choose features on an instance-by-instance basis with various
features being considered at various steps. These are then fed into the Mask layer,
which aids in the identification of the desired features. The Feature Transformer is applied
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again, and the resulting output is split to the Attentive Transformer. The split layer divides
the output from the feature transformer into two parts which are d[i], and a[i]:

d½i�; a½i� ¼ fiðM½i� � f Þ (15)

where d[i] is used to calculate the final output of the model, and a[i] is used to determine
the mask of the next step. ReLU activation is then applied:

f ðxÞ ¼ maxð0; d½i�Þ (16)

where f(x) returns 0 if it receives any negative input, but for any positive value x, it
returns that value back. The contribution of the ith step to obtain the final result can be
expressed as:

fb½i� ¼
Z Nd

c¼1
Reluðd½i�; c½i�Þ (17)

where ϕb[i] indicates the features that are selected at the ith step.
To map the output dimension, the outputs of all decision steps are summed and passed

through a Fully Connected layer. Combining the Masks at various stages necessitates the
use of a coefficient that can account for the relative value of each step in the decision-
making process. The importance of the features can be expressed using the equation:

Magg � b; j ¼
RNsteps
i¼1 fb½i�Mb;jRD

j¼1

R Nsteps
i¼1 fb½i�Mb;j

(18)

TabNet decision making process
Figure 2 provides an illustration of how the TabNet (Arik & Pfister, 2019) makes a decision
(individual explainability). TabNet has a feature value output called Masks, which shows
whether a feature is selected at a given decision step in the model and can be used to
calculate the feature importance. The masks for each input feature are represented by each
row, and the column represents a sample from the data set. Brighter colors show a higher
value. Consider Fig. 2, where nine features ranging from feat 0 to feat 8 are shown. For the
random sample at 3, the first feature is the one being heavily used, hence the brighter
colour, and the sample at 6, three features have brighter colours, feature 0, 1 and 8, with 8
being the brightest, signifying the feature 8’s output was heavily used for this sample.

The mask value for a given sample indicates how significant the corresponding feature
is for that sample. Brighter columns indicate the features that contribute a lot to the
decision-making process. It can be seen that the majority values for features other than 0, 1,
4, 5, and 8 are close to ‘0,’ indicating that the TabNet model correctly selects the
salient features for the output. We can then interpret which features the model selects
enhancing the interpretability of the model. With this, the features that contribute to
individuals being admitted to the ICU and dying of the COVID-19 disease can be ranked
accordingly.
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Evaluation metrics
Evaluation metrics are the metrics used to evaluate the model to determine if it is working
as well as it should be. The evaluation metrics used are:

Confusion matrix describes a classification models output on a collection of test data
for which the true values are known. The matrix compares the actual target values to the
machine learning models predictions. It includes true positives (TP) which are correctly
predicted positive values, indicating that the value of the real class and the value of the
predicted class are both yes, True negatives (TN) which correctly estimates negative values,
indicating that the real class value is zero and the predicted class value is zero as well. False
positives (FP), where the actual class is no but the predicted class is yes. False negatives
(FN), where the actual class is yes but the predicted class is no.

Accuracy is the proportion of correctly expected observations to all observations.

Accuracy ¼ TP þ TN
TP þ FP þ FN þ TN

(19)

Precision is the ratio of correctly predicted positive observations to total predicted
positive observations.

Precision ¼ TP
TP þ FP

(20)

Recall is the ratio of correctly expected positive observations to all observations in the
actual class.

Figure 2 TabNet decision making process. Full-size DOI: 10.7717/peerj-cs.889/fig-2
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Recall ¼ TP
TP þ FN

(21)

F1 Score is the weighted average of Precision and Recall.

F1Score ¼ 2� ðPrecision� RecallÞ
Recall þ Precision

(22)

The various mathematical notations used in this section are shown in Table 2.

EXPERIMENTAL RESULTS
To demonstrate the effectiveness of the method in predicting ICU admission and mortality
of patients, the different TabNet model hyperparameters, dimensionality reduction
techniques, and oversampling methods have been thoroughly examined and contrasted.
The section starts with the description of datasets followed by the statistical analysis, and it
concludes with results and discussion.

Description of data sets
There are two data sets used for this analysis, one for the ICU likelihood and the other for
the mortality rate. The ICU data set consists of 1,020 individuals with 43 features and the
mortality data set consists of 1,106 individuals with 43 features. The features consist of
vital signs, laboratory tests, symptoms, and demographics of these individuals. There are
two labels associated with the ICU dataset which are, ICU admitted (label 0), and ICU
non-admitted (label 1). Similarly, there are two labels associated with the death dataset
which are, non-death (label 0), and death (label 1). The datasets are unbalanced with
distribution ratios of 75.5:24.5, and 86.1:13.9 for the ICU and mortality datasets,
respectively. Table 3 shows the summary of the description of the datasets.

Statistical analysis
ICU admission
There were more males than females in the study population. The non-Hispanic ethnicity
forms the most individuals, and the Caucasian race has the highest number of individuals
in the population. Hypertension is the co-morbidity that most individuals in the study
population presented, with cancer being the least. The average age of individuals that
needed the ICU is higher than those that did not. Regarding the vital signs, heart rate is the
sign that showed quite a big difference on average, with the individuals needing ICU
having a higher heart rate than their fellow counterparts. Procalcitonin, Ferritin and
C-reactive protein are the laboratory findings that showed the biggest average difference,
with individuals needing ICU showing higher levels of these. Table 4 shows the
demographics, vital signs, comorbidities, and laboratory discoveries of ICU patients and
non-ICU patients.

For the symptoms, loss of smell and loss of taste were the symptoms that most
individuals that got admitted to the ICU acquired whereas fever and cough were the
symptoms that the least number of individuals acquired to be admitted to the ICU. Overall,

Nazir and Ampadu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.889 12/46

http://dx.doi.org/10.7717/peerj-cs.889
https://peerj.com/computer-science/


Table 2 Notations.

Notations Definitions

x Features

σ sigmoid

n(d) output decision from current step

n(a) input decision to the next current step

W weights

4 direct summation

otimes tensor product

γ gamma

β beta

μb meanR i
i¼1

integral blockQi
i¼1

product block

P[i-1] prior scales

p[i-1] split layer division

hi FC layer + BN layer

Mj Mask learning process

d[i] final output

a[i] determine mask of next step

f(x) function to return value of relu function

ϕ features selected at ith step

Maggb ;−j importance of features

G Total number of synthetic data examples

ml minority class

ms majority class

β Desired balance level

x′ new generated synthetic data

cov(X, y) covariance matrix

pi|j joint probability distribution of features

qij t-distribution of features

KL Kullback–Leiber divergence

TP True positive

TN True negative

FP False positive

FN False negative

Table 3 Description of datasets.

Dataset No. patients-No. features Class labels Class distribution ratio (Pos: Neg)

ICUMice-ICU 1,106-43 1 = death 0 = non-death 86.1:13.9

DEADMice-Mortality 1,020-43 1 = ICU 0 = no-ICU 75.5:24.5
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Table 4 Relationship between features and ICU admission.

Features/variables ICU (n = 271) No-ICU (n = 835)

Demographics

Age, mean 59.42 62.06

Male 67.5% (183) 54% (451)

Female 32.5% (88) 46% (384)

Ethnicity

Hispanic/Latino 28.8% (78) 26.6% (222)

Non-Hispanic/Latino 54.6% (148) 60.7% (507)

Unknown 16.6% (45) 12.7% (106)

Race

Caucasian 45.4% (123) 54.3% (453)

African American 4.79% (13) 7.3% (61)

American Indian 0.7% (2) 0.2% (2)

Asian 7.4% (20) 3.1% (26)

Native Hawaiian 0 0.1% (1)

More than one race 0 0.6% (5)

Unknown/not reported 41.7% (113) 34.4% (287)

Comorbidities

Smoking history 22.5% (61) 25.6% (214)

Diabetes 29.5% (80) 26.3% (220)

Hypertension 46.5% (126) 49.3% (412)

Asthma 8.5% (23) 5.1% (43)

COPD 6.3% (17) 9.1% (76)

Coronary artery disease 14.4% (39) 15.1% (126)

Heart failure 6.6% (18) 7.4% (62)

Cancer 5.5% (15) 10.5% (88)

Chronic kidney disease 7.4% (20) 9.7% (81)

Vital signs

Systolic blood pressure (mmHg), mean 124.8 128.99

Temperature (degree Celsius), mean 37.63 37.47

Heart rate, mean 106.1 98.2

Respiratory rate (rate/min), mean 25.28 21.77

Laboratory Findings

Alanine aminotransferase (U/L), mean 49.62 47.03

C-reactive protein (mg/dL), mean 15.4 9.49

D-dimer (ng/mL), mean 1,101.92 1,210.51

Ferritin (ng/mL), mean 1,469.67 1,005.43

Lactase dehydrogenase (U/L), mean 481.7 377.85

Lymphocytes (*1,000/ml) 12.43 14.85

Procalcitonin (ng/mL), mean 2.66 0.97

Troponin (ng/mL), mean 0.038 0.03
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over 70% of individuals acquired a symptom of disease at admission to the ICU. Table 5
shows the relationship between symptoms and ICU admission by looking at the
distribution of patients who were admitted to the ICU and whether or not they had a
symptom.

Certain symptoms had a higher correlation with ICU admission than others and Table 6
gives a summary of this. It is observed that the Shortness of Breath (SOB) feature has the
highest correlation with admission to the ICU unit.

Table 5 Relationship between symptoms and ICU admission.

Symptoms Percentage of patients with symptoms (%)

Fever 70.5

Cough 70.5

Shortness of Breath (SOB) 77.5

Fatigue 79.3

Sputum 90.77

Myalgia 77.5

Diarrhea 77.9

Nausea or vomiting 83.3

Sore throat 92.3

Runny nose or Nasal congestion 94.8

Loss of smell 95.9

Loss of Taste 95.6

Headache 89.7

Chest discomfort or chest pain 84.1

Table 6 Correlation between symptoms and ICU admission.

Symptoms Correlation (Pearson) P values

Fever 0.046 0.122

Cough 0.028 0.348

Shortness of Breath (SOB) 0.1 0.0008

Fatigue −0.03 0.248

Sputum 0.055 0.065

Myalgia −0.005 0.869

Diarrhea −0.018 0.5415

Nausea or vomiting −0.035 0.247

Sore throat 0.009 0.757

Runny nose or Nasal congestion 0.0177 0.556

Loss of smell −0.0003 0.992

Loss of Taste −0.012 0.689

Headache 0.013 0.673

Chest discomfort or chest pain −0.0007 0.98

Nazir and Ampadu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.889 15/46

http://dx.doi.org/10.7717/peerj-cs.889
https://peerj.com/computer-science/


Mortality
There were more males than females in the study population. The non-Hispanic ethnicity
forms the most individuals and the Caucasian race has the highest number of individuals
in the population. Hypertension is the co-morbidity that most individuals in the study
population presented, with Asthma being the least. The average age of individuals that died
is higher than those that did not. Regarding the vital signs, Respiratory rate is the sign that
showed quite a big difference on average, with the individuals that died having a higher
respiratory rate compared to the ones who did not die. Procalcitonin, Ferritin, D-dimer,
and C-reactive protein are the laboratory findings that showed the biggest average
differences, with individuals that died showing higher levels of these. Table 7 shows the
demographics, vital signs, comorbidities, and laboratory discoveries of patients that died
and the ones who did not die.

Loss of smell and loss of taste were the symptoms that most individuals that died
acquired, whereas fever and cough were the symptoms that the least number of individuals
that died acquired. Overall, at least 50% of individuals acquired a particular symptom
before they died. Table 8 shows the relationship between symptoms and mortality by
looking at the distribution of patients that died and whether or not they had a symptom.

Certain symptoms had a higher correlation with mortality than others and Table 9 gives
a summary of this. It is observed that the headache feature has the highest correlation
with death.

Experimental settings
Hyperparameters of TabNet
The TabNet model has a considerable number of hyperparameters which can be tuned to
improve performance. The TabNet comes with some default parameters which works well,
but for certain use cases, different values of certain hyperparameters yield better
performances. Table 10 shows the default hyperparameters of the TabNet.

Max epochs are the maximum number of epochs for training. It can be any number
equal to or higher than 10. Batch size is the number of examples per batch. The number
should preferably be a multiple of two and be greater than 16. The masking function is
used for selecting features. Higher values for the width of decision prediction layer gives
more capacity to the model with the risk of overfitting. The values typically range from
8 to 64. Patience is the number of consecutive epochs without improvement before
performing an early stoppage. If patience is set to 0, then no early stopping will be
performed. Momentum for batch normalization typically ranges from 0.01 to 0.4. n shared
is the number of shared Gated Linear Units at each step. The usual values range from 1 to
5. n independent is the number of independent Gated Linear Units layers at each step.
The usual values range from 1 to 5. Gamma is the coefficient of feature re-usage in the
masks. Its values range from 1.0 to 2.0. A value close to 1 will make mask selection less
correlated between layers. n steps is the number of steps in the architecture (usually
between 3 and 10). lambda sparse is the extra sparsity loss coefficient. The bigger the
coefficient, the sparser the model will be in terms of feature selection (Arik & Pfister, 2019).
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Table 7 Relationship between features and mortality.

Features/variables Death (n = 271) No-Death (n = 835)

Demographics

Age, mean 73 59.83

Male 65.5% (93) 55% (483)

Female 34.5% (49) 45% (395)

Ethnicity

Hispanic/Latino 16.2% (23) 28.5% (250)

Non-Hispanic/Latino 73.9% (105) 57.4% (504)

Unknown 9.9% (14) 14.1% (124)

Race

Caucasian 64.1% (91) 51.3% (450)

African American 4.2% (6) 6.9% (61)

Asian 6.3% (9) 3.% (33)

American Indian 0.7% (2) 0.23% (2)

Native Hawaiian 0 0.1% (1)

More than one race 0 0.6% (5)

Unknown/not reported 24.6% (35) 37.1% (326)

Comorbidities

Smoking history 36.6% (52) 23.2% (204)

Diabetes 33.8% (48) 26.08% (229)

Hypertension 64.8% (92) 45.8% (402)

Asthma 4.22% (6) 5.8% (51)

COPD 16.2% (23) 7.5% (66)

Coronary artery disease 27.5% (39) 13.1% (115)

Heart failure 20.4% (29) 5.4% (47)

Cancer 13.4% (19) 8.9% (78)

Immunosuppression 5.6% (8) 7.4% (65)

Chronic kidney disease 14.08% (20) 8.5% (75)

Vital signs

Systolic blood pressure (mmHg), mean 127.45 128.57

Temperature (degree Celsius), mean 37.3 37.52

Heart rate, mean 98.28 100.38

Respiratory rate (rate/min), mean 26.39 21.79

Laboratory Findings

Alanine aminotransferase (U/L), mean 42.91 48.45

C-reactive protein (mg/dL), mean 16.07 9.62

D-dimer (ng/mL), mean 2,626.27 1,016

Ferritin (ng/mL), mean 1,565 1,037.5

Lactase dehydrogenase (U/L), mean 588.28 363.14

Lymphocytes (*1,000/ml) 10.96 14.99

Procalcitonin (ng/mL), mean 5.14 0.76

Troponin (ng/mL), mean 0.07 0.0278
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Results and analysis
We present a summary of our experimental results and analysis on two categories: ICU
Admission and Mortality.

ICU admission
Results of Hyperparameter tuning using TabNet
The hyper parameters of the model have been tuned using various values of each
parameter. The final table which has the best hyper parameters in predicting ICU

Table 8 Relationship between symptoms and mortality.

Symptoms Percentage of patients with symptoms (%)

Fever 57

Cough 51.4

Shortness of Breath (SOB) 71.8

Fatigue 86.6

Sputum 93

Myalgia 89.44

Diarrhea 81

Nausea or vomiting 93

Sore throat 95.1

Runny nose or Nasal congestion 97.18

Loss of smell 98.59

Loss of Taste 98.59

Headache 95.07

Chest discomfort or chest pain 92.96

Table 9 Correlation between symptoms and mortality.

Symptoms Correlation (Pearson) P values

Fever −0.08 0.009

Cough −0.149 0.0000069

Shortness of Breath (SOB) 0.031 0.32

Fatigue −0.09 0.003

Sputum 0.006 0.84

Myalgia −0.119 0.00013

Diarrhea −0.04 0.199

Nausea or vomiting −0.128 0.00004116

Sore throat −0.037 0.233

Runny nose or Nasal congestion −0.03 0.318

Loss of smell −0.05 0.0965

Loss of Taste −0.066 0.0377

Headache 0.062 0.048

Chest discomfort or chest pain −0.1 0.002
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admission for the various metrics are shown here, the rest of the tables for the individual
hyper parameters can be seen in the appendix section. In varying the width of decision
prediction layer (nd), the value of nd was changed from a range of 2 to 64 to determine the
best output. The results were the best when nd was set to 64.

In varying number of steps in the architecture (nsteps), the value of nsteps was varied
from 3 to 12 to determine the best output. A value of 3 gave the best results. Changing the
nsteps to numbers between 8 and 12 showed a slight decrease in performance which
indicates that the performance will not be enhanced by increasing the number of steps.

In varying gamma. Changing the gamma shows a very haphazard trend in performance,
the best results are given when the gamma is 2.0. Increasing the gamma does not improve
the results. Thus, gamma was not increased any further.

In varying number of independent gates (nindependent), the number of independent
gates was varied from two to seven. All the nindependent gates obtained similar results
converging to the best result with 2. Thus, two independent gates give the best results.

In varying number of shared gates (nshared), the nshared gates was varied from two to
seven, with two gates achieving the best results. Increasing the gates did not improve the
results.

In varying values of momentum, momentum values of 0.2 and 0.3 displayed the best
results, with higher values of momentum producing poorer results.

In varying lambda sparse, the values of lambda sparse was varied from 0.001 to 0.005.
The results of the model showed a negative correlation with the value of lambda sparse.
The best result was achieved with a value of 0.001.

Two different types of masks were used, the entmax and the sparsemax. It was
concluded that the mask type of entmax gives a better result across the board in all the
performance metrics.

The number of epochs and stopping condition was also experimented to determine the
impact it has on the performance of the TabNet model. The results are generally better
when the stopping condition is defined. The best results are achieved with an epoch of 150,

Table 10 Default hyperparameters of the TabNet Model.

Training hyper parameters Default values

Max epochs 200

Batch Size 1,024

Masking Function sparsemax

Width of decision prediction layer 8

Patience 15

momentum 0.02

n shared 2

n independent 2

gamma 1.3

nsteps 3

lambda sparse 1e−3
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and patience greater than 60. The results do not change when the patience is greater
than 60.

Regarding the dimensionality reduction methods, five methods were experimented with
to check its effect on the performance of the TabNet baseline model. The results using the
Fast ICA has the best results with it falling short only on recall to PCA. The most
important parameter in the table is the AUC, in which the Fast ICA has a score of 83.6.

Both PCA method and the Fast ICA methods yielded similar scores on the impact of
different dimensionality reduction methods on the performance of the best TabNet model.
For the AUC parameter, the Fast ICA has the highest score of 86.4.

Different oversampling methods on the performance of the TabNet baseline model were
experimented with and the results using the ADASYN method has the best outcome in all
the measured performance metrics.

The impact of different oversampling methods on the performance of the TabNet Best
model was determined. The results using the ADASYN method has the best results in all
the measured performance metric.

The tables showing the various experimentations of the individual hyperparameter
explained above can be found in the appendix section.

Table 11 shows the performance of the TabNet Baseline, and TabNet Best models with
FastICA dimensionality reduction, and ADASYN oversampling method. The results of the
TabNet Best is the best amongst the other baseline models.

Figure 3 shows the trend of the various hyperparameter during the experiments and
tuning. Figure 4 further shows the feature importance masks for predicting ICU
admission. TabNet features a feature value output called Masks that may be used to
quantify feature importance and indicate if a feature is chosen at a particular decision step
in the model. Each row represents the masks for each input element and the column
represents a sample from the dataset. The brighter the color, the higher the value. In
predicting ICU admission, two of the masks are shown as an example in Fig. 4, where the
features which the respective masks are paying attention to can be seen in bright colors.
The brighter a grid, the more important that particular feature is for the particular
Mask. The number of grids lighting up corresponds to the number of features that are
being paid attention to by the particular Mask. It can be seen that Mask 0 is paying the
most attention to the earlier features, with an emphasis on the 20th feature. Mask 1 is
paying the most attention to the later features, with the most attention given to features
32 and 38. The average feature output among all the Masks is used to arrive at the final
decision.

Table 11 Performance of the most optimized TabNet model with corresponding standard deviations across all the runs.

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 72.8 55.1 72.1 76.0 43.2

TabNet Baseline+Fast ICA+ADASYN 79.77 ± 1.87 80.09 ± 2.78 82.1 ± 2.05 84.47 ± 6.57 77.01 ± 4.71

TabNet Best+ Fast ICA+ ADASYN 84.66 ± 2.46 85.73 ± 3.208 84.52 ± 3.07 92.31 ± 1.08 81.28 ± 4.87
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Figure 5 shows a graph of features against feature importance. Features are the
symptoms that contribute to an individual being admitted to the ICU. Feature importance
stands for the importance of the symptom in contributing to the patient being
admitted into the ICU, where a larger number indicates a higher contribution to an
ICU admission. All features have some importance in determining if a person would be
admitted to the ICU. The sum of all the feature importance data points is 1. The top 5
features that contribute greatly to a person needing to be admitted to the ICU were
Ferritin, ALT, ckdhx, Diarrhoea and carcinomahx.

Best final model for ICU prediction
The model was analyzed and its output compared with different TabNet configurations
based on different feature extractors. The model with the best results has been selected as
the final proposed model for ICU prediction. The proposed model is a TabNet model with
150 epochs, 128 batch size, and 60 patience with the number of steps of 2, width of
precision of layer of 64, gamma of 1.3, entmax mask type, n independent of 2, momentum
of 0.3, lambda sparse of 1e–3, and n shared of 2, using the Fast Independent Component
Analysis as the feature extractor, and ADASYN as the sampling technique to balance
the imbalanced data. Figures 6 and 7 below show the loss graph, and training and
validating accuracy graph of the TabNet in predicting ICU admission.

Figure 3 Varying hyper parameters with respect to AUC score for predicting ICU admission. Full-size DOI: 10.7717/peerj-cs.889/fig-3
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Figure 6 shows a graph of loss against number of epochs. The losses reduce as the
number of epochs increases. At the first epoch, the model has not learned from the data, so
the margin of error is big. As the model starts to learn (goes through the epochs), the error
reduces and hence the loss reduces.

Figure 7 shows a graph of accuracy against number of epochs. Accuracy tends to go
higher as the number of epochs increases. At the early stages of the training, the accuracy is
low, but as the model begins to learn the patterns of the data, the accuracy increases and
reaches a higher value at the end of the epochs (150). Difference between the training
accuracy and the testing accuracy is not high, which suggests that the model is not
overfitting on the dataset. The precision-recall curve, which demonstrates a trade-off

Figure 4 Feature importance masks for predicting ICU admission using TabNet (Individual
interpretability). Full-size DOI: 10.7717/peerj-cs.889/fig-4
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between the recall score (True Positive Rate), and the precision score (Positive Predictive
Value), is used for this analysis due to the dataset being imbalanced (there is a large
skew in the class distribution). The confusion matrix also gives a sense of the specific
number of patients that were correctly classified as needing ICU or not needing it, and the
ones that were incorrectly classified.

A large area under the curve indicates high recall and precision, with high precision
indicating a low false-positive rate and high recall indicating a low false-negative rate.
High scores for both indicate that the classifier is producing correct (high precision) results
as well as a majority of all positive outcomes (high recall). From Figure 8, it can be seen that
there is a large area under the curve, indicating that the model is functioning very well.
With an AUC of 88.75%, the model can distinguish between most of the ICU and the
No-ICU patients. It can be seen from the confusion matrix in Fig. 9 that the model
correctly predicted 61 individuals needing the ICU and 84 individuals not needing the
ICU. A total of 18 individuals were incorrectly classified as not needing the ICU when they
needed the ICU and 5 individuals as needing the ICU when they did not need the ICU.

Figure 5 Feature importance for predicting ICU admission using TabNet (Global interpretability).
Full-size DOI: 10.7717/peerj-cs.889/fig-5
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Figure 6 Model Loss for best TabNet model. Full-size DOI: 10.7717/peerj-cs.889/fig-6

Figure 7 Training and validation accuracy for best TabNet model.
Full-size DOI: 10.7717/peerj-cs.889/fig-7
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With the proposed model doing an excellent job in predicting ICU admissions, the
proposed model is compared to the models existing in the literature.

It can be seen from Table 12 that the proposed model beats the model reported by Li
et al. (2020b), in all metrics which is a clear suggestion that the proposed model is superior.

Mortality
We now present a summary of our experimental results and analysis for the Mortality
category.

Results of Hyperparameter tuning using TabNet
Similarly in predicting morality, the hyper parameters of the model have been tuned
using various values of each parameter. Figure 10 shows a graph of how varying the various
hyper parameter values affect the mortality. In varying the width of decision prediction
layer (nd), the value of nd was changed from a range of 2 to 64 to determine the best
output. The results were the best when nd was set to 8.

In varying number of steps in the architecture (nsteps), the value of nsteps was
varied from 3 to 12 to determine the best output. A value of 3 gave the best results. nsteps
of 10 to 12 did not show any improvement in results, which indicates that the performance
of the model will not be improved by increasing the number of steps.

Figure 8 Precision-Recall curve of the best TabNet model for predicting ICU admission.
Full-size DOI: 10.7717/peerj-cs.889/fig-8
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In varying gamma, the values of gamma was varied from 1.3 to 2.2. The performance of
the model shows a very haphazard trend with the changing values. A gamma of 2.0 gives
the best results.

In varying number of independent gates (nindependent), the number of independent
gates was varied from 2 to 7. The number of gates which gave the best output is 2, and
increasing the number of gates decreased the accuracy of the results.

In varying number of shared gates (nshared), the number of shared gates was varied
from 2 to 7. The number of shared gates of 2 gave the best results and increasing the
number of gates did not improve the results. Although there is a spike in results when the
number of shared gates is 5, the performance reduces when it is increased further.

The values of momentum was varied from 0.02 to 0.3, with 0.02 giving the best results.
Increasing the value of the momentum gave poorer results.

In varying lambda sparse, the values of lambda sparse was varied from 0.001 to 0.005,
with 0.001 achieving the best results. The value of the lambda sparse had a negative
correlation with the performance of the model.

Figure 9 Confusion matrix of the best TabNet model for predicting ICU admission.
Full-size DOI: 10.7717/peerj-cs.889/fig-9

Table 12 Comparison of results between proposed method and existing technique.

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 72.8 55.1 72.1 76.0 43.2

Proposed method 88.4 89.7 88.7 93.3 86.4
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The different masktypes used were sparsemax, and entmax. The output using the
sparsemax had a better result compared to the entmax.

The number of epochs and stopping condition was also experimented to determine the
impact it has on the performance of the TabNet model. The results are generally better
when the stopping condition is defined. The best results are achieved with an epoch of
150, and patience greater than 60. The results do not change when the patience is greater
than 60.

Regarding the dimensionality reduction methods, five methods were experimented with
to check its effect on the performance of the TabNet Baseline model. The results using the
Fast ICA has the best results with it falling short only on recall to PCA. The most
important parameter in the table is the AUC, in which the PCA has a score of 94.0.

Table 13 Performance of the best final TabNet model with FastICA dimensionality reduction method and ADASYN oversampling method.

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 84.4 61.6 85.3 70.6 52.2

TabNet Baseline+Fast ICA+ADASYN 89.03 ± 2.19 89.12 ± 2.40 88.92 ± 2.40 92.98 ± 2.97 85.75 ± 4.11

TabNet Best+Fast ICA+ADASYN 91.59 ± 1.63 91.74 ± 1.63 91.49 ± 1.62 96.65 ± 1.91 87.36 ± 2.24

Figure 10 Varying Hyper parameters with respect to AUC score for predicting mortality. Full-size DOI: 10.7717/peerj-cs.889/fig-10
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The Fast ICA yielded the best score on the impact of different dimensionality reduction
methods on the performance of the best TabNet model. For the AUC parameter, the Fast
ICA has the highest score of 86.4.

Different oversampling methods on the performance of the TabNet Baseline model
were experimented with and the results using the ADASYN method has the best outcome
in all the measured performance metrics.

The impact of different oversampling methods on the performance of the TabNet Best
model was determined. The results using the ADASYN method has the best results in all
the measured performance metric.

The tables showing the various experimentations of the individual hyperparameter
explained above can be found in the appendix section.

Table 13 shows the performance of the TabNet Baseline, and TabNet Best models with
FastICA dimensionality reduction, and ADASYN oversampling method. The results of the
TabNet Best is the best amongst the other baseline models.

Figure 11 also shows how the TabNet model makes decisions to predict mortality. In
predicting mortality, two of the Masks are shown as an example in Fig. 11. The color of
the grid determines the importance of the particular feature to the particular Mask.
Brightness of the colors correspond to the importance of the feature. It can be seen that
Mask 0 is paying attention to a couple of features but most of its attention is on the last
feature, and Mask 1 is paying attention to only 4 features, but the most attention is on
the 6th and 15th. Again, the average feature output among all the Masks is used to arrive at
the final decision.

Figure 12 shows a graph of features against feature importance. The features are the
symptoms that contribute to an individual dying of COVID-19. Feature importance stands
for the importance of the feature to contribute to the death of a person, where a larger
number corresponds to a higher contribution to death. All features have some importance
in determining if COVID-19 would be fatal to a person. The feature importance of all the
features add up to 1. The top 5 features which contributes greatly to a person dying of
COVID-19 were COPD, Ferritin, Myalgia, coronary artery diseases, and CRP.

Best final model for mortality prediction
The model was analyzed and its outputs compared with different TabNet configurations
based on different feature extractors. The model with the best results was selected. The
final model is the TabNet model with 150 epochs, 128 batch size and 60 patience with
the number of steps of 3, width of precision of layer of 8, gamma of 1.7, sparsemax
mask type, n independent of 2, the momentum of 0.02, lambda sparse of 1e−3 and n shared
of 2, using the Fast Independent Component Analysis as the feature extractor and
ADASYN as the sampling technique to balance the imbalanced data. Figures 13 and 14
below show the loss graph, and training and validating accuracy graph of the TabNet in
predicting Mortality.

Figure 13 shows a graph of loss against number of epochs. Losses reduce as the number
of epochs increases. At the first epoch, the model has not learned a lot from the data, so the
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margin of error is big. As the model is learning (going through the epochs), the error
reduces and hence the loss reduces.

Figure 14 shows a graph of accuracy against number of epochs. The accuracy tends to
increase as the number of epochs increases. At the early stages of the training, the accuracy
is low, but as the model begins to learn the patterns of the data, the accuracy increases
and reaches a higher value at the end of the epochs (150). The difference between the
training accuracy and testing accuracy is not high which suggests that the model does not
overfit on the dataset.

In predicting mortality also, the ROC curve which demonstrates a trade-off between
the true positive rate (TPR) and the false positive rate (FPR) is plotted due to the imbalance
of the dataset. The confusion matrix also gives a sense of the specific number of patients

Figure 11 Feature importance masks for predicting mortality (Individual interpretability).
Full-size DOI: 10.7717/peerj-cs.889/fig-11
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that were correctly classified as dying or not dying, and the ones that were incorrectly
classified.

A large area under the curve indicates high recall and precision, with high precision
indicating a low false-positive rate and high recall indicating a low false-negative rate.
High scores for both indicate that the classifier is producing correct (high precision) results
as well as a majority of all positive outcomes (high recall). From Figure 15, it can be seen
that there is a large area under the curve, indicating that the model is functioning well.
With the best performing model here also achieving an AUC of 96.30%, the model can
distinguish between most of the patients who died, and the patients that did not die. It can
be seen from the confusion matrix in Fig. 16 that the model correctly predicted
89 individuals who died from the virus and 78 individuals who did not die from the virus.
A total of 7 individuals were incorrectly classified as not dying from the virus when
they died, and 1 individual was classified as dead when the individual did not die from
the virus.

The proposed model does an excellent job in predicting mortality. Next, the proposed
model will be compared with the baseline models existing in the literature.

It can be seen from Table 14 that the proposed model beats the model reported by Li
et al. (2020b) in all metrics, which is a clear suggestion that the proposed model is superior.

Figure 12 Feature importance for predicting mortality (Global Interpretability).
Full-size DOI: 10.7717/peerj-cs.889/fig-12
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DISCUSSION
The main purpose of this study was to develop a deep learning model to predict mortality
rate and ICU admission likelihood of patients with COVID-19, and to determine which

Figure 13 Model Loss for best TabNet model. Full-size DOI: 10.7717/peerj-cs.889/fig-13

Figure 14 Training and validation accuracy for best TabNet model.
Full-size DOI: 10.7717/peerj-cs.889/fig-14
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Figure 15 Precision-Recall curve of the best TabNet model for predicting mortality.
Full-size DOI: 10.7717/peerj-cs.889/fig-15

Figure 16 Confusion matrix of the best TabNet model for predicting mortality.
Full-size DOI: 10.7717/peerj-cs.889/fig-16
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patient attributes are most important in determining the mortality, and ICU admission of
COVID patients. From the results obtained, it can be concluded that:

Finding 1 The proposed TabNet model can predict ICU admission likelihood rate with
an AUC of 88.3%, and mortality rate with AUC of 96.3% which beats the model existing in
the literature (Li et al., 2020b) by all metrics.

Finding 2 In predicting ICU admission likelihood, the TabNet model depicted that
Ferritin, ALT, and Cxdhx were the top 3 predictors of a patient needing ICU admission
after contracting COVID 19, and COPD, ferritin, andMyalgia were the top 3 predictors of
a patient dying from the COVID-19 disease.

To derive these results, a dataset was chosen. The data in itself was very unbalanced
since most individuals who had COVID actually were not rushed to the ICU and certainly
did not die. The dataset was pre-processed. The dataset was experimented with 2 sampling
techniques which were the ADASYN, and SMOTE technique. Thus, we exclude the
oversampling using SMOTE and focus on the balancing using ADASYN.

Table 15 shows the output of the model with varying width of decision prediction layer
(nd). The value of nd was changed from a range of 2 to 64 to determine the best output.
The results were the best when nd was set to 64.

Table 16 shows the output of the model with varying number of steps in the architecture
(nsteps). The value of nsteps was varied from 3 to 12 to determine the best output. A value
of 3 gives the best results. Changing the nsteps to numbers between 8 and 12 showed a
slight decrease in performance which indicates that the performance will not be enhanced
by increasing the number of steps.

Table 17 shows the output of the model with varying gamma. Changing the gamma
shows a very haphazard trend in performance. The best results are given when the gamma
is 2.0. Increasing the gamma does not improve the results. Thus, gamma was not increased
any further.

Table 14 Comparison of results between proposed method and existing technique.

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 84.4 61.6 85.3 70.6 52.2

Proposed method 96.3 95.8 96.0 99.8 91.8

Table 15 Varying width of decision prediction layer (nd).

nd AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 72.8 55.1 72.1 76.0 43.2

TabNet Baseline (default = 8) 82.9 84.9 83.3 88.7 81.4

TabNet with nd = 2 76.6 80.8 77.4 89.9 73.39

TabNet with nd = 4 74.47 80.2 75.6 93.3 70.3

TabNet with nd = 16 83.27 84.3 83.3 84.3 84.3

TabNet with nd = 32 83.9 86.6 84.5 94.4 80

TabNet with nd = 64 84.8 86.5 85.1 89.9 83.3
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Table 18 shows the output of the model with varying number of independent gates
(nindependent). The number of independent gates was varied from 2 to 7. All the
nindependent gates obtained similar results converging to the best result with 2. Thus, 2
independent gates give the best results.

Table 19 gives the output of the model with varying number of shared gates (nshared).
The nshared gates was varied from 2 to 7, with 2 gates achieving the best results. Increasing
the gates did not improve the results.

Table 16 Varying number of steps in the architecture (nsteps).

nsteps AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 72.8 55.1 72.1 76.0 43.2

TabNet Baseline (default nsteps = 3) 82.9 84.9 83.3 88.7 81.4

TabNet with nsteps = 4 76.4 79.1 76.8 83.1 75.5

TabNet with nsteps = 6 50 69.3 52.9 99.5 52.9

TabNet with nsteps = 10 80.2 83.8 81 93.3 76.1

Table 17 Varying gamma.

gamma AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 72.8 55.1 72.1 76.0 43.2

TabNet Baseline (default gamma = 1.3) 82.9 84.9 83.3 88.7 81.4

TabNet with gamma = 1.5 79.5 83.4 80.4 93.3 75.5

TabNet with gamma = 1.7 77.4 80.6 77.9 86.5 75.5

TabNet with gamma = 1.9 50 69.3 52.9 100 52.9

Table 18 Varying nindependent.

nindependent AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 72.8 55.1 72.1 76.0 43.2

TabNet Baseline (nindependent = 2) 82.9 84.9 83.3 88.7 81.4

TabNet with nindependent = 3 50 69.3 52.9 100 52.9

TabNet with nindependent = 4 82.8 83.4 82.7 82.0 84.9

TabNet with nindependent = 5 78.5 82.1 79.2 89.9 75.5

Table 19 Varying nshared.

nshared AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 72.8 55.1 72.1 76.0 43.2

TabNet Baseline (nshared = 2) 82.9 84.9 83.3 88.7 81.4

TabNet with nshared = 3 76.8 80.2 77.4 86.5 74.8

TabNet with nshared = 4 50 0 47 0 0

TabNet with nshared = 5 82.8 85.3 83.3 91.0 80.2
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Table 20 presents the output of the model with varying values of momentum.
Momentum values of 0.2, and 0.3 displayed the best results, with higher values of
momentum producing poorer results.

Table 21 gives the output of the model with varying lambda sparse. The values of
lambda sparse was varied from 0.001 to 0.005. The results of the model showed a negative
correlation with the value of lambda sparse. The best result was achieved with a value of
0.001.

Table 22 gives the output of the model with different types of masks used. It can be
concluded from the table that the mask type of entmax gives a better result across the
board in all the performance metrics.

Table 23 shows the impact that number of epochs and stopping condition has on the
performance of the TabNet architecture. The results are generally better when the stopping
condition is defined. The best results are achieved with an epoch of 150, and patience
greater than 60. The results do not change when the patience is greater than 60.

Table 24 shows the impact of different dimensionality reduction methods on the
performance of the TabNet baseline model. The results using the Fast ICA has the best
results with it falling short only on recall to PCA. The most important parameter in the
table is the AUC, in which the Fast ICA has a score of 83.6.

Table 20 Varying momentum.

momentum AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 72.8 55.1 72.1 76.0 43.2

TabNet Baseline (momentum = 0.02) 82.9 84.9 83.3 88.7 81.3

TabNet with momentum = 0.1 83.6 85.4 83.9 88.7 82.3

TabNet with momentum = 0.2 84.6 86.9 85.1 93.3 81.4

TabNet with momentum = 0.3 84.6 86.8 85.1 93.3 81.4

Table 21 Varying lambda sparse.

lambda sparse AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 72.8 55.1 72.1 76.0 43.2

TabNet Baseline with lambda sparse = 0.01 82.9 84.9 83.3 88.7 81.4

TabNet with lambda sparse = 0.01 76.6 80.8 77.4 89.9 73.4

TabNet with lambda sparse = 0.1 82.2 84.4 82.7 91.0 79.4

Table 22 Varying mask type.

mask type AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 72.8 55.1 72.1 76.0 43.2

TabNet Baseline (mask type = sparsemax) 82.9 84.9 83.3 88.7 81.4

TabNet with mask type = entmax 87.1 88.9 87.5 94.4 84.0
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The Fast ICA technique yielded the best results, achieving a 2.58% difference over the
next highest technique (PCA), in predicting ICU admissions, which can be seen in
Table 25.

Table 26 shows the impact of different oversampling methods on the performance of
the TabNet Baseline model. The results using the ADASYN method has the best outcome
in all the measured performance metrics.

Table 23 Impact of number of epochs and stopping condition on the performance of the TabNet
architecture.

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 72.8 55.1 72.1 76.0 43.2

TabNet Baseline (epoch = 100) 78.6 81.9 79.2 88.8 76.0

TabNet Baseline (epoch = 50) 55.2 71.0 57.7 97.8 55.8

TabNet Baseline (epoch = 150) 82.6 82.4 81.9 84.8 81.3

TabNet Baseline (epoch = 200) 82.9 81.4 82.9 88.8 81.3

TabNet Baseline epoch = 150, patience = 5 50 69.3 52.3 100 53.0

TabNet Baseline epoch = 150, patience = 15 50 69.3 52.3 100 53.0

TabNet Baseline epoch = 150, patience = 30 82.6 83.4 83.9 88.7 81.3

TabNet Baseline epoch = 150 patience = 60 83.6 85.4 83.9 88.8 82.3

TabNet Baseline epoch = 150, patience = 90 83.6 85.4 83.9 88.8 82.3

TabNet Baseline epoch = 150, patience = 120 83.6 85.4 83.9 88.8 82.3

Table 24 Comparison of the prediction performance of our baseline models with different variations
of dimensionality reduction methods.

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 72.8 55.1 72.1 76.0 43.2

TabNet Baseline + PCA 81.0 83.8 81.5 89.9 78.4

TabNet Baseline + Fast ICA 83.6 85.4 83.9 88.8 82.3

TabNet Baseline + Factor Analysis 72.8 75.9 73.2 79.8 72.4

TabNet Baseline + tSNE 58.2 55.9 57.7 50.6 62.5

TabNet Baseline + UMAP 54.2 42.3 53.0 32.6 60.4

Table 25 Comparison of the prediction performance of our best TabNet models with different
variations of dimensionality reduction methods.

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 72.8 55.1 72.1 76.0 76.0

TabNet Best + PCA 86.2 88.8 86.9 97.8 81.3

TabNet Best + Fast ICA 86.4 88.5 86.9 95.5 82.5

TabNet Best + Factor Analysis 82.0 85.3 82.7 94.4 77.8

TabNet Best + tSNE 60.9 64.5 61.3 66.3 62.8

TabNet Best + UMAP 58.0 61.5 58.3 62.9 60.2
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The ADASYN gave the best results, achieving a 6.48% difference over the SMOTE
technique, which can be seen in Table 27 in predicting ICU admission.

Table 28 shows the output of the model with varying width of decision prediction layer
(nd). The value of nd was changed from a range of 2 to 64 to determine the best output.
The results were the best when nd was set to 64.

Table 29 shows the output of the model with varying number of steps in the architecture
(nsteps). The value of nsteps was varied from 3 to 12 to determine the best output. A value
of 3 gives the best results. Changing the nsteps to numbers between 8 and 12 showed a

Table 26 Comparison of the performance of the TabNet Baseline model with oversampling
methods.

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 72.8 55.1 72.1 76.0 43.2

TabNet Baseline + SMOTE 79.7 80.7 79.6 85.5 76.3

TabNet Baseline + ADASYN 83.6 85.4 83.9 88.8 82.3

Table 27 Comparison of the performance of the TabNet Best model with oversampling methods.

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 72.8 55.1 72.1 76.0 43.2

TabNet Best + SMOTE 82.1 83.1 82.0 89.2 77.9

TabNet Best + ADASYN 87.6 89.5 88.1 95.5 84.2

Table 28 Varying width of decision prediction layer (nd).

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 84.4 61.6 85.3 70.6 52.2

TabNet Baseline (default = 8) 90.4 89.5 89.7 97.5 82.3

TabNet with nd = 2 81.2 78.9 81.7 75.9 82.2

TabNet with nd = 4 83.3 81.8 83.4 82.3 81.3

TabNet with nd = 16 90.3 89.4 89.7 96.2 83.5

TabNet with nd = 32 83.9 86.6 84.5 94.4 80

TabNet with nd = 64 84.8 86.5 85.1 89.9 83.3

Table 29 Varying the number of steps in the architecture (nsteps).

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 84.4 61.6 85.3 70.6 52.2

TabNet Baseline (default nsteps = 3) 90.4 89.5 89.7 97.5 82.3

TabNet with nsteps = 4 85.9 84.7 85.7 87.3 82.1

TabNet with nsteps = 6 87.8 86.6 88.0 86.1 87.2

TabNet with nsteps = 10 73.0 70.8 73.1 72.2 69.5
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slight decrease in performance which indicates that the performance will not be enhanced
by increasing the number of steps.

Table 30 gives the output of the model with varying values of gamma. The values of
gamma was varied from 1.3 to 2.2. The performance of the model shows a very haphazard
trend with the changing values. A gamma of 2.0 gives the best results, and increasing the
gamma any further did not improve the results.

Table 31 gives the output of the model with varying number of independent gates
(nindependent). The number of independent gates was varied from 2 to 7. The number of
gates which gave the best output is 2, and increasing the number of gates decreased the
accuracy of the results.

Table 32 gives the output of the model with varying number of shared gates (nshared).
The number of shared gates was varied from 2 to 7. The number of shared gates of 2
gave the best results and increasing the number of gates did not improve the results.
Although there is a spike in results when the number of shared gates is 5, the performance
reduces when it is increased further.

Table 30 Varying gamma.

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 84.4 61.6 85.3 70.6 52.2

TabNet Baseline (default gamma = 1.3) 90.4 89.5 89.7 97.5 82.3

TabNet with gamma = 1.5 87.7 86.5 88.0 84.8 88.2

TabNet with gamma = 1.7 92.6 91.8 92.0 98.7 85.7

TabNet with gamma = 1.9 90.0 89.2 89.7 93.7 85.1

Table 31 Varying the number of independent gates (nindependent).

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 84.4 61.6 85.3 70.6 52.2

TabNet Baseline (nindependent = 2) 90.4 89.5 89.7 97.5 82.3

TabNet with nindependent = 3 86.5 85.7 85.7 94.9 78.2

TabNet with nindependent = 4 82.8 83.4 82.7 82.0 84.9

TabNet with nindependent = 5 85.6 84.3 85.7 84.8 83.8

Table 32 Varying the number of shared gates (nshared).

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 84.4 61.6 85.3 70.6 52.2

TabNet Baseline (nshared = 2) 90.4 89.5 89.7 97.5 82.3

TabNet with nshared = 3 88.9 87.7 89.1 86.1 89.5

TabNet with nshared = 4 87.5 86.4 87.4 88.6 84.3

TabNet with nshared = 5 90.2 89.3 90.3 89.9 88.8
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Table 33 gives the output of the model with varying vales of momentum. The value of
momentum was varied from 0.02 to 0.3, with 0.02 giving the best results. Increasing the
value of the momentum gave poorer results.

Table 34 gives the output of the model with varying values of lambda sparse. The values
of lambda sparse was varied from 0.001 to 0.005, with 0.001 achieving the best results. The
value of the lambda sparse had a negative correlation with the performance of the model.

Table 35 gives the output of the model with different mask types. The different
masktypes used were sparsemax, and entmax. The output using the sparsemax had a better
result compared to the entmax.

Table 36 shows the impact that number of epochs and stopping condition has on the
performance of the TabNet architecture. The results are always better when a stopping
condition is defined. The best results are achieved with an epoch of 150, and patience
greater than 60. The results do not change when the patience is greater than 60.

Table 37 shows the impact of different dimensionality reduction methods on the
performance of the TabNet baseline model. The results using the PCA is the best with it

Table 33 Varying momentum.

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 84.4 61.6 85.3 70.6 52.2

T Li, Xiaoran et al. (baseline) Li et al. (2020b) 84.4 61.6 85.3 70.6 52.2

TabNet Baseline (momentum = 0.02) 90.4 89.5 89.7 97.5 82.3

TabNet with momentum = 0.1 89.9 89.0 89.1 97.5 81.9

TabNet with momentum = 0.2 87.1 86.2 86.3 94.5 78.9

TabNet with momentum = 0.3 88.8 86.0 88.0 97.5 80.2

Table 34 Varying lambda sparse.

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 84.4 61.6 85.3 70.6 52.2

TabNet Baseline (lambda sparse = 1e−3) 90.4 89.5 89.7 97.5 82.3

TabNet with lambda sparse = 1e−2 88.5 87.6 88.0 93.7 82.2

TabNet with lambda sparse = 1e−1 88.6 87.5 88.6 88.6 86.4

Table 35 Varying mask type.

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 84.4 61.6 85.3 70.6 52.2

TabNet Baseline (masktype = sparsemax) 90.4 89.5 89.7 97.5 82.3

TabNet with mask type = entmax 87.0 86.3 85.7 99.8 76.0
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falling short only on recall to Fast ICA. The most important parameter in the table is the
AUC, in which the PCA has a score of 94.0.

Table 38 shows the impact of different dimensionality reduction method on the
performance of the best TabNet model. The results are better across all the measured
performance metrics when the Fast ICA is used.

Table 36 Impact of number of epochs and stopping condition on the performance of the TabNet architecture.

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 84.4 61.6 85.3 70.6 52.2

TabNet Baseline (epoch = 100) 90.4 89.5 89.7 97.5 82.3

TabNet Baseline (epoch = 50) 85.9 85.1 85.1 93.7 77.9

TabNet Baseline (epoch = 150) 90.4 89.5 89.7 97.5 82.3

TabNet Baseline (epoch = 200) 90.4 89.5 89.7 97.5 82.3

TabNet Baseline maximum epoch = 150 with early stopping, patience = 5 85.6 84.5 85.1 89.9 78.0

TabNet Baseline maximum epoch = 150 with early stopping, patience = 15 85.5 84.7 84.6 94.5 76.5

TabNet Baseline epoch = 150 with early stopping, patience = 30 90.4 89.5 89.7 97.5 82.3

TabNet Baseline epoch = 150 with early stopping, patience = 60 91.2 90.2 90.1 97.6 84.1

TabNet Baseline epoch = 150 with early stopping, patience = 90 91.2 90.2 90.1 97.6 84.1

TabNet Baseline epoch = 150 with early stopping, patience = 120 91.2 90.2 90.1 97.6 84.1

Table 37 Comparison of the prediction performance of our baseline models with different variations
of dimensionality reduction methods.

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 84.4 61.6 85.3 70.6 52.2

TabNet Baseline + PCA 94.0 93.3 93.7 97.5 89.5

TabNet Baseline + Fast ICA 93.8 92.9 93.1 99.7 86.8

TabNet Baseline + Factor Analysis 90.4 89.5 89.7 97.5 82.3

TabNet Baseline + tSNE 72.7 73.2 71.4 86.1 63.6

TabNet Baseline + UMAP 69.2 68.6 68.6 75.9 62.5

Table 38 Comparison of the prediction performance of our best TabNet models with different
variations of dimensionality reduction methods.

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 84.4 61.6 85.3 70.6 52.2

TabNet Best + PCA 94.2 93.4 93.7 98.7 88.6

TabNet Best + Fast ICA 95.3 94.6 94.9 99.8 89.8

TabNet Best + Factor Analysis 93.1 92.3 92.3 98.7 86.7

TabNet Best + tSNE 73.7 73.6 72.6 84.8 65.0

TabNet Best + UMAP 66.7 69.0 64.6 88.6 56.9
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Table 39 shows the impact of different oversampling methods on the performance of
the TabNet Baseline model. The results using the ADASYN method has the best results in
all the metrics except for precision where the SMOTE method is better.

Table 40 shows the impact of different oversampling methods on the performance of
the TabNet Best model. The results using the ADASYN method has the best results in all
the measured performance metric.

Five different dimensionality techniques were also experimented with to improve the
results. The other dimensionality reduction techniques are excluded, and the Fast ICA
technique is concentrated upon to achieve the final results.

The various hyperparameters were also tuned, and the best results of each was
combined with the dimensionality technique and then oversampled to obtain the final
result for all metrics. Results achieved were, an AUC of 88.3%, F1 score of 89.7%, the
accuracy of 88.7%, recall of 93.3%, and precision of 86.4% for predicting ICU. In predicting
mortality, results of 96.3% AUC, 95.8% F1 score, accuracy of 96.0%, recall of 99.8%, and
precision of 91.8% were obtained. The reason why the results in predicting mortality
achieves higher performances than the one in predicting ICU admission could be
because sometimes individuals that need ICU admission, do not get the opportunity due to
lack of beds available at that time because of large volumes of individuals present at the
hospital needing the same resources. In the case of mortality, when an individual dies, the
individual dies, there is no middle ground, so it is relatively easier to distinguish mortality
than ICU admission.

A confusion matrix was constructed to show specifics, where there were more false
positives than false negatives in both determining ICU admission and mortality. The
reason for more false positives than false negatives could be because doctors have to make a
quick and instant guess as to which patient needs the ICU at that time by simply looking at
the physical conditions of the patient present. Due to the lack of time and resources, they
depend on only those physical symptoms to make a decision, so patients who can
deteriorate quickly due to underlying illnesses or other factors are often overlooked for

Table 39 Comparison of the performance of the TabNet Baseline model with oversampling
methods.

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 84.4 61.6 85.3 70.6 52.2

TabNet Baseline + SMOTE 93.2 92.3 92.1 97.2 88.7

TabNet Baseline + ADASYN 93.8 92.9 93.1 99.3 86.8

Table 40 Comparison of the performance of the TabNet Best model with oversampling methods.

Model AUC F1Score Accuracy Recall Precision

Li et al. (2020b) (baseline) 84.4 61.6 85.3 70.6 52.2

TabNet Best + SMOTE 94.3 94.6 94.3 98.8 90.6

TabNet Best + ADASYN 96.3 95.8 96.0 99.8 91.8
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admission to the ICU simply because they do not show physical deterioration at the time of
decision making.

The process by which the proposed model makes decisions to determine which
features are most important was also determined. The model uses Masks which shows the
features they were paying the most attention to in the heat map, which can be seen here in
Figs. 4 and 11. This was then used to construct the global feature importance graph,
which is easier to understand, where the longer the bar, the more importance it has in
determining if a patient with COVID-19 is likely to be sent to the ICU or if the patient is
likely to die from the disease.

The findings from our model suggesting the most important features in predicting
ICU admission and mortality, has been supported by other literature’s, these are shown
below.

Ferritin is the symptom of the patient which is the most important in determining if the
patient needs ICU or not. Ferritin represents how much iron is contained in the body,
and if a ferritin test reveals a lower-than-normal ferritin level in the blood, this may
indicate that the body’s iron stores are low. This is a high indication of iron deficiency
which can cause anaemia (Dinevari et al., 2021). Ferritin levels were found to be elevated
upon hospital admission and throughout the hospital stay in patients admitted to the
ICU by COVID-19. In comparison to individuals with less severe COVID-19, ferritin
levels in the peripheral blood of patients with severe COVID-19 were shown to be higher.
As a result, serum ferritin levels were found to be closely linked to the severity of COVID19
(Dahan et al., 2020). Early analysis of ferritin levels in patients with COVID-19
might effectively predict the disease severity (Bozkurt et al., 2021). The magnitude of
inflammation present at admission of COVID-19 patients, represented by high ferritin
levels, is predictive of in-hospital mortality (Lino et al., 2021). Studies indicate that Chronic
obstructive pulmonary disease (COPD) is the symptom that shows the most importance in
predicting mortality among COVID-19 patients. This COPD is a chronic inflammatory
lung condition in which the lungs’ airflow is impeded. Breathing difficulties, cough,
mucus (sputum) production, and wheezing are all symptoms. Since COVID-19 is a disease
that affects the respiratory system, it makes sense that a disease like COPD which also
affects the lungs could have devasting effects on a patient who contracts COVID-19
(Gerayeli et al., 2021). Patients with Chronic Obstructive Pulmonary Disease (COPD) have
a higher prevalence of coronary ischemia and other factors that put them at risk for
COVID-19-related complications. The results of this study confirm a higher incidence of
COVID-19 in COPD patients and higher rates of hospital admissions (Graziani et al.,
2020). While COPD was present in only a few percentage of patients, it was associated with
higher rates of mortality (Venkata & Kiernan, 2020). It can be observed that the top 3
highest predictors for mortality and ICU admission are different, which indicates that
there are some features which can be seen in the later and more advanced stages of COVID
(at the time of death). For example, Pardhan et al. (2021) observed that COPD is
reported more often than asthma, suggesting that physicians in Sweden considered COPD
to be a better predictor than asthma for detecting severe COVID-19 cases.
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It can also be seen that shortness of breath had a high correlation with ICU admission
but it was not among the top predictors for predicting ICU admission. This is because
correlation looks at only the linear relationship between that feature and the target without
considering other features. For example, a single feature can have a low correlation, but
when combined with other features, it can offer a high predictive power, as in the case of
the COPD.

The limitations of this study are that the sample size is small, with only about 1,000
patients included in the study. The study was restricted to patients at Stony Brook
University Hospital and conducted between 7 February, 2020 to 4 May, 2020.

CONCLUSION
This paper proposes a tabular, interpretable deep learning model to predict ICU admission
likelihood and mortality of COVID-19 patients. The proposed model achieves this by
employing a sequential attention mechanism that selects the features at each step of the
decision-making process based on a sparse selection of the most important features such as
patient demographics, vital signs, comorbidities, and laboratory discoveries.

ADASYN was used to balance the data sets, Fast ICA to extract useful features, and
all the various hyperparameters tuned to improve results. The proposed model achieves an
AUC of 88.3% for predicting ICU admission likelihood which beats the 72.8% reported
in the literature. The proposed model also achieves an AUC of 96.3% for predicting
mortality rate which beats the 84.4% reported in the literature. The most important patient
attributes for predicting ICU admission and mortality were also determined to give a
clear indication of which attributes contribute the most to a patient needing ICU and a
patient dying from COVID-19, where these claims were also backed up previous studies as
well. The information from the model can be used to assist medical personnel globally by
helping direct the limited healthcare resources in the right direction, in prioritizing
patients, and to provide tools for front-line doctors to help classify patients in time-bound
and resource-limited scenarios.

For future work, the study can be extended to include a lot more patients over a longer
time frame from several hospitals. The proposed method can be combined with other
machine learning methods for improved results. This study could be extended to include
more diseases, allowing the healthcare system to respond more quickly in the event of an
outbreak or pandemic.
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