
Zayed University Zayed University

ZU Scholars ZU Scholars

All Works

3-26-2022

Dynamic QoS/QoE-aware reliable service composition framework Dynamic QoS/QoE-aware reliable service composition framework

for edge intelligence for edge intelligence

Vahideh Hayyolalam
Koç University

Safa Otoum
Zayed University, safa.otoum@zu.ac.ae

Öznur Özkasap
Koç University

Follow this and additional works at: https://zuscholars.zu.ac.ae/works

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hayyolalam, Vahideh; Otoum, Safa; and Özkasap, Öznur, "Dynamic QoS/QoE-aware reliable service
composition framework for edge intelligence" (2022). All Works. 4977.
https://zuscholars.zu.ac.ae/works/4977

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All
Works by an authorized administrator of ZU Scholars. For more information, please contact scholars@zu.ac.ae.

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4977&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4977&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/4977?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4977&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholars@zu.ac.ae

Dynamic QoS/QoE-aware reliable service composition framework
for edge intelligence

Vahideh Hayyolalam1 · Safa Otoum2 · Öznur Özkasap1

Received: 7 May 2021 / Revised: 6 February 2022 / Accepted: 16 February 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Edge intelligence has become popular recently since it brings smartness and copes with some shortcomings of conventional

technologies such as cloud computing, Internet of Things (IoT), and centralized AI adoptions. However, although utilizing

edge intelligence contributes to providing smart systems such as automated driving systems, smart cities, and connected

healthcare systems, it is not free from limitations. There exist various challenges in integrating AI and edge computing, one

of which is addressed in this paper. Our main focus is to handle the adoption of AI methods on resource-constrained edge

devices. In this regard, we introduce the concept of Edge devices as a Service (EdaaS) and propose a quality of service

(QoS) and quality of experience (QoE)-aware dynamic and reliable framework for AI subtasks composition. The proposed

framework is evaluated utilizing three well-known meta-heuristics in terms of various metrics for a connected healthcare

application scenario. The experimental results confirm the applicability of the proposed framework. Moreover, the results

reveal that black widow optimization (BWO) can handle the issue more efficiently compared to particle swarm opti-

mization (PSO) and simulated annealing (SA). The overall efficiency of BWO over PSO is 95%, and BWO outperforms

SA with 100% efficiency. It means that BWO prevails SA and PSO in all and 95% of the experiments, respectively.

Keywords Artificial intelligence · Connected healthcare · COVID 19 · Fault prevention · Meta-heuristics ·

IoT

1 Introduction

Due to the extensive application of the Internet of Things

(IoT) and edge technology [1], an enormous number of

high-tech devices are connected to edge-assisted IoT net-

works to satisfy different requirements of today’s techno-

logical life [2]. Besides, artificial intelligence (AI) paves

the way of facilitating the use of these technologies. AI

enhances the edge-assisted IoT systems by adding

smartness and automation to them. The integration of AI

and edge computing introduces a novel concept, edge

intelligence [3, 4], which sets the scene for the novel

generation of technologies alongside highly compelling

applications such as autonomous car driving systems, smart

devices tracking, real-time critical systems, predictive and

real-time healthcare systems [5].

1.1 Motivation

In today’s technological era, IoT devices produce a vast

amount of data that are used as fuel to AI methods in

producing potential solutions for IoT applications. Thus, AI

has an important role in smart IoT applications [6]. Since

deploying AI needs apparatuses strong enough in terms of

processing and storage, most popular AI-assisted data

analysis methods are utilized on cloud infrastructures that

use central servers to process the aggregated data of users

[7]. AI features are condensed by the cloud and are pro-

vided as cloud-oriented AI services (e.g., Google Cloud

& Safa Otoum

safa.otoum@zu.ac.ae

Vahideh Hayyolalam

vhayyolalam20@ku.edu.tr

Öznur Özkasap

oozkasap@ku.edu.tr

1 Department of Computer Engineering, Koç University,

Istanbul, Turkey

2 College of Technological Innovation (CTI), Zayed

University, Abu Dhabi, United Arab Emirates

123

Cluster Computing
https://doi.org/10.1007/s10586-022-03572-9(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-0814-7328
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-022-03572-9&domain=pdf
https://doi.org/10.1007/s10586-022-03572-9

AI). The methodology of utilizing these kinds of services is

to transmit IoT data accompanied by other factors to the

cloud servers. Then, AI functionalities are performed via a

cloud server to produce the results, which will be sent back

to the IoT devices. As a matter of fact, during this type of

process, AI functionalities are abstracted as a service to IoT

devices to accomplish the smart IoT applications [6].

Although central cloud server infrastructure has numerous

merits, this type of structural design is susceptible to some

limitations such as data privacy, communication cost, long

response time, high latency, and single point of failure [7].

To cope with the mentioned limitations, edge computing

[8] is the best choice since it pushes the computation

including cloud-oriented data storage services and AI ser-

vices to the network edge on edge devices [9]. Considering

the fact that AI services can be divided into subtasks and

IoT data can be fragmented into pieces, in case of replacing

a central cloud server with edge computing, each of these

subsets of AI service or pieces of IoT data can be deployed

in a distinct edge device. Thus, an edge device abstracts

either an AI subtask of a whole AI method/service or store

a small piece of IoT data to provide and deliver a service.

Transferring services from the cloud to the edge devices

introduces a new edge-assisted services environment for

connected IoT applications in which AI and data storage

services are provided close to service consumers on IoT

end devices [6]. In this environment, edge devices play the

role of services.

1.2 Challenges

Distributing AI subtasks belonging to a single AI service

and IoT data among edge devices can bring out several

challenges some of which are discussed as follows. Firstly,

the distributed AI subtasks need to be integrated and

delivered as a single output to the AI service requester.

Thus, there should be a smart composition method to

integrate the AI subtasks. However, this composition pro-

cess is a challenging issue and with increasing the number

of involved edge devices it becomes an NP-Hard problem

and cannot be solved via deterministic methods [10]. Thus,

non-deterministic methods, such as meta-heuristic algo-

rithms are utilized for solving these kind of problems, via

which the near optimal solutions can be achieved, since

there is no guarantee for obtaining exact optimal solution

for NP-Hard problems. Mentioning a few points can

elaborate on clarifying this challenging matter. Since each

edge device can merely accommodate a single AI subtask,

for distributing an AI service the system should intelli-

gently find a set of edge devices to fulfill the requirements

of performing the corresponding AI service. Besides, there

is a possibility of abstracting the same AI subtask via

different edge devices with different quality of service

(QoS) and quality of experience (QoE) values. In other

words, various edge devices can have the same function-

ality with different non-functional features such as QoS

and QoE. Therefore, there should be a smart approach to

select a proper edge device for each AI subtask to obtain an

optimal solution among all possible solutions. Secondly,

with regards to the mobility and heterogeneity of edge

devices, availability and reliability are two vital charac-

teristics of choosing them [11]. Therefore, this paper has a

special focus on these two QoS parameters. Furthermore,

QoE of the service consumers is a crucial criterion of

evaluation, which is mostly neglected by researchers in the

scope of edge service composition. As a final challenging

point, monitoring the system for fault tolerance is critical

for real-time smart IoT applications, which is addressed in

this paper as well.

The proposed framework comprises main parts,

including IoT devices, edge devices, cloud, service com-

poser, QoS and QoE monitoring, and fault controller. The

IoT devices are responsible for collecting vital signs and

transferring them to the closest edge devices. Cloud dis-

tributes AI subtasks among edge devices (the method of

decomposing an AI service and distributing its components

is out of the scope of this paper), and offloads service

composer, QoS and QoE monitoring, and fault controller to

the edge computing apparatuses. Edge devices which are

defined as a service in this scenario, regarding their func-

tionality and QoS and QoE values can be selected for

performing a part of the whole procedure. The service

composer component manages the AI subtasks composi-

tion with respect to QoS and QoE values of selected edge

devices as the services for performing those subtasks. The

QoS and QoE monitoring module should monitor and

update the QoS and QoE values for each service (edge

device) since they can be changed in each invocation (se-

lection and usage) of the corresponding service. This

component can help the overall framework to provide a

dynamic service composition solution. The fault controller

component is in charge of handling possible faults occur-

ring during the composition process by controlling each of

the selected composition components (edge devices).

Detailed information are provided in Sect. 3. Figure 1

illustrates the overview of the proposed framework.

1.3 Contributions

To the best of our knowledge, this is the first study that

discusses the edge intelligence service composition in the

connected healthcare domain. The main objective of this

paper is to facilitate the deployment of AI on the resource

constrained edge devices.

The main contributions of this research can be listed as

follows:

Cluster Computing

123

● Proposing a reliable and dynamic framework for

service composition for edge intelligence in order to

handle the stated challenges, we propose a dynamic and

reliable framework for service composition, particularly

for AI subtasks composition in the scope of remote

healthcare systems.

● Proposing edge intelligence service composition for the

connected healthcare application with respect to the

fact that AI tasks can be decomposed into subtasks, we

propose a method for integrating the subtasks to provide

a single composite result as if there has not been any

division taken place.

● Introducing the term Edge device as a Service (EdaaS)

in the proposed framework, we consider EdaaS in the

network, each of which can host a subtask of the

system’s main AI task. Each edge device has a

particular functionality and a set of non-functional

features. Thus, AI subtasks can be deployed into edge

devices with relevant functionality. We assume that all

the involved edge devices and users (service requesters)

are settled in the same network.

● Considering QoE as a QoS parameter for each service

(edge device) we have taken QoS and QoE into account

and correlate them using a linear correlation. Then, we

utilize QoE values as a QoS parameter in our proposed

framework. Although we have adopted a real-world

QoS dataset for our model’s initialization, we have

defined a QoS and QoE monitoring module to update

the values during the composition process to model a

dynamic service composition framework.

● Adopting meta-heuristics to compose the distributed AI

subtasks for solving the service composition problem,

which is an NP-Hard problem, we adopted meta-

heuristics since they are suitable for solving these kind

of issues in a reasonable time duration.

● Delivering reliable composite services as another con-

tribution, our framework has the capability of providing

reliable composite service by preventing possible faults

in terms of QoS constraints.

The rest of the paper is organized as follows. Section 2

discusses the relevant state-of-the-art research works.

Section 3 describes the proposed framework in detail. The

experimental setup and results are provided in Sect. 5.

Finally, Sect. 6 outlines the conclusions.

2 Related work

This section briefly reviews the existing works in the scope

of this paper, which consists of three subsections. Sec-

tion 2.1 investigates the current edge service composition

works. Section 2.2 inspects the state-of-the-art works rel-

evant to fault-tolerance on service composition since our

proposed framework has a special focus on reliability and

fault tolerance. The summary and comparison is provided

in Sect. 2.3. Moreover, Table 1 demonstrates the side by

side comparison of the investigated papers.

2.1 Edge service composition

Researchers in [12] have introduced a blockchain-based

decentralized solution for service composition in the scope

of complex multimedia service delivery to cloud sub-

scribers. For authenticating and delivering the obtained

composite service, the proposed method dynamically pro-

duces user-defined services needless of any transitional

services or network provider units. This research outlines a

scalable, flexible, secure, and reliable decentralized cloud

solution that adopts software defined network (SDN),

blockchain, and fog computing paradigms to integrate the

existing services and deliver a composite and complex

service at the edge of the network. To this end, the authors

have fragmented the services into sub-services and utilized

reinforcement learning for constructing appropriate com-

position paths with respect to the network configurations to

deliver multimedia services. The proposed method

achieves a high service delivery success rate and reduces

power consumption and resource usage.

As another research, in [13] authors have proposed a

context-aware and real-time collaborative framework lied

at the network edge, including end-user devices and mobile

edge cloud (MEC), aiming to achieve a swift composite

service delivery system. In the suggested solution, they

have decomposed cloud data into a set of services and files,

then replicate them to different MEC nodes. Regularly

invoked services/files are cached onto end-users’ devices to

accelerate accessing them. All the nodes in the system,

either MEC or mobile users, push services into the col-

laborative user/edge room, from where services are deliv-

ered based on the users’ demand. Authors have utilized a

learning-based workflow-net method depending on the

former composition outcomes for forming service compo-

sition models that can be adopted in upcoming composi-

tions. The envisioned solution guarantees the delivery of

composite services to the service requester with a short

response time. Moreover, the method satisfies QoS

demands and provides reasonable load balancing amongst

the mobile and edge nodes.

In order to simplify the deployment of AI tasks in the

edge environment, authors in [6] have designed an AI task

composition framework with a focus on privacy. Their

assumption is that complicated AI tasks can be decom-

posed into smaller AI subtasks and deployed on edge

devices via task offloading and distribution techniques. The

Cluster Computing

123

proposed method adopts the Skyline optimization method

to provide an intelligent service selection mechanism.

Moreover, the proposed framework employs an entirely

homomorphic encryption-based privacy-preserving method

to provide a privacy-aware service framework for edge

computing. Besides, a Map-Reduce model has been used

for performing a privacy-preserving service composition

model on an edge environment. This research obtains short

composition time and improved privacy.

Furthermore, authors in [14] have proposed a simula-

tion-based optimization method for service composition

with the goal of providing reliability. They have considered

the whole system as two layers, including edge and cloud

layers, and discussed both sides. They have utilized a

stochastic Petri net model for formulating both layers and

designed a model aggregation technique for service com-

position issues. Aiming to enhance model solving effec-

tiveness, they have adopted a time scale decomposition

technique for handling the state explosion issue in complex

service processing and large-scale systems. Moreover, the

authors have proposed simulation schemes to optimize and

assess the performance of the system, and used an ordinary

optimization technique to diminish the search space size.

The proposed system achieves high reliability and short

response time in both edge and cloud layers.

Since most of the conventional dynamic reconfiguration

service composition methods have concentrated on service

scheduling to deliver a composite service with normal

operation, they do not have the capability of timely

responding to the dynamic environmental changes. Thus,

authors in [15] have proposed a dynamic reconfiguration

for service workflow in mobile edge e-commerce envi-

ronments to address the mentioned challenge. The service

value and cost parameters are considered for validating the

proposed model. They have defined service value as sta-

bility evaluation of the service, and the cost parameter

refers to the service invocation cost. For predicting the

services’ stability, a long short-term memory (LSTM)

neural network has been utilized. Afterwards, considering

the confined available resources, the authors have adopted

a method to compute the service invocation cost. Eventu-

ally, the system selects proper candidate services with

regards to both service cost and stability. The proposed

model obtains high stability, low energy usage, and high

accuracy in service prediction.

Authors in [16] have concentrated on security and

energy efficiency to propose a new hybrid meta-heuristic-

based method for QoS-aware edge service discovery and

selection in IoT. The proposed method adopts multi-ob-

jective Grey Wolf Optimizer and a Genetic Algorithm

(GA). The proposed hybrid method effectively improves

energy consumption, response time, and cost of service

discovery and selection in IoT.

2.2 Fault tolerance on conventional service
composition scenarios

Authors in [17] have designed a sensor-based and repair-

oriented algorithm to obtain reliability during the process,

at the component level, before a system crash happens.

Aiming to detect the faulty section on a workflow, they

have utilized a novel sensor strategy according to project

management rules. The repaired algorithm, including a

single service and multiple service configuration, has been

applied, enabling the system to search for finding a novel

adjacent solution systematically. In multi-service recon-

figuration, for swiftly recovering the faulty section with no

crashing on the system, the authors have mentioned a novel

Table 1 Related work comparison table

Ref Achievements EC FT QoS QoE

[12] High service delivery success rate, reduces power consumption and resource usage ✓ ✕ ✓ ✓

[13] Short response time, satisfies QoS demands, addressing load balancing ✓ ✕ ✓ ✕

[6] Short composition time and high privacy ✓ ✕ ✓ ✕

[14] High reliability and short response time ✓ ✕ ✓ ✕

[15] High stability, low energy usage, and high accuracy in service prediction ✓ ✕ ✕ ✕

[16] Low energy consumption, response time, and cost of service discovery and selection ✓ ✕ ✓ ✕

[17] High reliability, short response time ✕ ✓ ✓ ✕

[18] High reliability, short latency ✕ ✓ ✓ ✕

[19] High reliability, reduce the number of service rollbacks in a time-efficient manner ✕ ✓ ✓ ✕

[20] Improves success rate and overall reliability enhancement ✕ ✓ ✓ ✕

[21] Improves success rate and decrease the computational time ✕ ✓ ✓ ✕

[22] Improves reliability, decrease response time ✕ ✓ ✓ ✓

EC edge computing, FT fault tolerance

Cluster Computing

123

multi-level valued constraint satisfaction problem with the

harmony search meta-heuristic algorithm. They have used

a replacement strategy for conducting a fault tolerance

system. Their method is able to recover the faulty section

without user integration. Besides, with regards to the

decomposition, the process is done in reasonable time

duration.

Moreover, researchers in [18] have presented a self-

healing model for web service composition, enabling the

system to automatically discover and heal the composite

web service failure without user intervention and inter-

rupting the web service composition process. The proposed

model has adopted the integration of Q-learning-based

parallel GA and k-means clustering to optimize the service

composition process. In order to cope with the failure, they

have used a replacement strategy by replacing the faulty

component with another equivalent service from the set of

candidates. Aiming to facilitate finding the best possible

solution, the authors have used the k-means clustering

algorithm to reduce the web services in the search space.

Their proposed model can dynamically replace the faulty

component in an acceptable time.

The failure recovery of a composite service is indicated

as the rollbacking of particular service transactions through

the recovery process of the composition procedure. Due to

the failure of constraint verification, most of the research

works did not consider the service rollback minimization in

their failure recovery methods for composite services. In

this regard, authors in [19] have outlined a constraint-aware

failure recovery method for failure prediction within a

composite service with the aim of reducing the number of

service rollbacks for the failures causing by constraint

verification. The suggested model has adopted a planning-

based algorithm along with a new processing technique for

the constraint to predict and recover service failure. The

proposed method can reduce the number of service roll-

backs in a time-efficient manner.

Researchers in [20] have designed a reliability assess-

ment technique targeting component cloud service (CCS)

according to the failure probability through constant user-

side invocation assessments. They proposed a perturbation-

aware reliability sensitivity evaluation for service selection

to deliver a reliable composite service. Their proposed

method first examines the negative perturbations in the

historical reliability time series of the CCS. Afterward,

investigating the impact of CCS reliability perturbations on

the reliability of the whole cloud system, the proposed

method computes the reliability sensitivity of CCS. The

first-order Markov Chain rule is adopted to illustrate the

development regularity of the updated reliability time

series of CCS. This research obtains an acceptable success

rate and overall reliability enhancement in cloud service

selection.

As another research, authors in [21] have proposed a

new deadline-constrained and reliability-aware method for

mobile service composition in opportunistic network

environments, where users have the permission of com-

bining and exploiting the resources of the adjacent devices

via device-to-device communications. This research uti-

lizes a method based on the Krill-Herd algorithm for

deciding on composition schedules in a real-time manner

with the aim of maximizing reliability with a certain

deadline. Due to runtime mobility of services, the time-

changing availability has been considered rather than pre-

suming a fully available mobile services environment. The

proposed method attained a good success rate and short

computational time.

The authors in [22] have proposed a fault-tolerant

architecture for service composition in a smart cities

environment adopting fog computing technology. The

proposed method is able to handle service composition

problem via RESTful IoT technology. Besides, the

designed method effectively can enhance scalability and

reliability. The authors have adopted particle swarm opti-

mization (PSO), GA, and artificial bee colony for solving

the fault tolerant service composition strategy. The exper-

imental results show that the proposed method can solve

the problem with a short response time.

2.3 Summary and comparison

According to the investigated papers above, several

approaches have been done to solve service composition

problem in edge computing. However, some points have

not been addressed by the current works, including:

● Existing works mostly have neglected QoE evaluation.

● AI subtask composition as one of the vital issues in the

edge intelligence domain has been addressed by only a

few papers like [6].

● The application of AI subtask composition for con-

nected smart healthcare has not been performed by now.

● Although there are various cutting-edge studies dedi-

cated to fault tolerance/prevention and reliability, they

are not in the scope of edge intelligence.

● There is no prior work devoted to AI subtask compo-

sition in edge intelligence with the special focus on

reliability and QoE evaluation.

Therefore, these limitations motivated us to perform a new

research work by addressing and solving these limitations.

As Table 1 illustrates, some papers address edge computing

and neglect fault tolerance and vice versa. Also, most of the

investigated papers ignore QoE evaluation. Our proposed

work highlights both QoS and QoE and solves service

Cluster Computing

123

composition in an edge computing environment with a

special focus on fault tolerance.

3 Proposed framework

In this section, first, the basic concepts will be discussed in

Sect. 3.1. The discussion will be followed by an example

scenario. Then, the proposed service composition frame-

work for edge intelligence with the aim of composing AI

sub-tasks will be addressed in more details. The utilized

notations are stated in Table 2.

3.1 Preliminaries

With the growth of technology, service consumers’

demands are becoming more complex [23]. Thus, since a

single service cannot satisfy them, the system needs to

employ several different services to accomplish a request.

To this end, the given service request, which is defined as a

task, first should be decomposed into some subtasks. Then,

via a service discovery method, the system tries to find

relevant available services for each subtask. Afterward,

adopting a service selection technique, the system will

choose the appropriate services for performing each sub-

task. The selected services should be composed via a

proper composition approach, and the final composition

outcome will be sent to the requester as an answer to the

service demand [24, 25]. The discussed flow is illustrated

in Fig. 2. As shown in the figure, there are four compo-

nents, including user, task decomposition, service discov-

ery and selection, and service composition. The user

requests a complex service/task that cannot be fulfilled by a

single service. The decomposition module decomposes the

requested task into some subtasks each of which can be

satisfied by a single service. Then, the service discovery

module finds appropriate and accessible services for ful-

filling each subtask. Another responsibility of this module

is to select one service among all the found services for

each task. The selection must be done in a way that the

resulting composite service becomes an optimal service.

Finally, the composite service will be delivered to the user.

Generally, a service composition problem can be mod-

eled as a directed acyclic graph (DAG) in which each node

represents a subtask of a complex request and the edges

represent the relation among the nodes [26]. In order to

fulfill each subtask, several numbers of candidate services

are suggested from the services pool with the same func-

tionality and different non-functional features such as QoS

and QoE values. The objective of the service composition

method is to select one appropriate service from a set of

candidate services for accomplishing the corresponding

subtask in such a way that the total composite service is an

optimal service among all other potential solutions, which

should be able to satisfy the given complex request [27].

The evaluation and validation of the final composite ser-

vice are mostly done by evaluating the QoS and QoE

values of the composite service. The QoS values of the

composite service can be calculated according to the QoS

values of its components using aggregation functions. The

aggregation functions are selected with regard to the

adopted composition pattern. Table 3 depicts some the

well-known composition patterns and their corresponding

aggregation functions for four QoS parameters adopted in

this paper, including availability, reliability, response time,

and latency. Moreover, QoE is a metric for evaluating the

users’ satisfaction rate, which concentrates on the entire

service from the users’ perspective, while QoS involves

individual characteristics of the service. In this research,

the QoE value of a service is linearly correlated with the

QoS values of the corresponding service.

Furthermore, since the QoS parameters have different

measurement units, they should be normalized before being

used for evaluation of the composite service. All in all,

there are two types of QoS parameters, including positive

ðqþÞ and negative ðq�Þ parameters, which should be opti-

mized to become maximize and minimize respectively.

Therefore, there are two formulas for normalization as

follows. Equation 1 is for negative parameters and Eq. 2 is

for positive parameters. In these equations, Cs:qi refers to

the ith QoS parameter ðqiÞ of the selected candidate service

Table 2 Notations utilized in this paper

Notation Description

q� Minimization quality of service

qþ Maximization quality of service

qi The ith quality

Cs Candidate service

Cs:qi The ith quality of the corresponding candidate service

Si The ith service

Fi The ith functionality

rij The weight of ith quality related to jth service

qoek The kth user feedback (QoE) value among K users

qoe The mean QoE value

qi The mean value for the ith QoS parameter

sol Solution (a composite service)

wi The weight of ith quality

sol:qi The ith quality of the corresponding solution

aðsiÞ Availability value related to ith service

rðsiÞ Reliability value related to ith service

rtðsiÞ Response time value related to ith service

lðsiÞ Lateness value related to ith service

Cluster Computing

123

(Cs) that is being normalized, and minfqig and maxfqig
represent the minimum and maximum values of the cor-

responding QoS parameter in the whole dataset.

Cs:qi � minfqig
maxfqig � minfqig maxfqig 6¼ minfqig;

1 maxfqig ¼ minfqig;

8<
: ð1Þ

maxfqig � Cs:qi
maxfqig � minfqig maxfqig 6¼ minfqig;

1 maxfqig ¼ minfqig:

8<
: ð2Þ

3.2 Example scenario

We utilize edge intelligence-assisted remote infection

detection (S) application for pandemic cases such as

COVID-19 as an example scenario to clarify the proposed

framework as much as possible. This example scenario

consists of several services such as vital sign analyzer

service (S1), symptom checker service (S2), storage service

(S3), and alert sending service (S4). The vital sign analyzer

service gets the vital signs and based on the pre-defined

threshold keeps the suspicious data by omitting the unim-

portant signs. We have taken three vital signs into account,

including oxygen saturation, heartbeat rate, and body

temperature. The symptom checker service controls the

suspicious signs received from S1 by comparing them with

Table 3 Aggregation functions

for QoS parameters based on the

composition pattern

QoS parameter Sequential Parallel Optional Circular

Availability
Qn

i¼1 aðsiÞ minfaðsiÞg Qn
i¼1 p � aðsiÞ ðaðsiÞÞk

Reliability
Qn

i¼1 rðsiÞ minfrðsiÞg Qn
i¼1 p � rðsiÞ ðrðsiÞÞk

Response time
Pn

i¼1 rtðsiÞ maxfrtðsiÞg Pn
i¼1 p � rtðsiÞ k � rtðsiÞ

Latency
Pn

i¼1 lðsiÞ maxflðsiÞg Pn
i¼1 p � lðsiÞ k � lðsiÞ

Fig. 1 General service

composition flow

Cluster Computing

123

the symptoms in the database to detect whether the person

is infected or not. The database consists of various com-

binations of vital signs that define the severity level of the

patient’s condition. The storage service oversees storing

small pieces of the database. The alerting service is

responsible to send an alert to the user, caregivers, and

family members in case of infection detection/encounter

with a suspected infection case. Each service can be per-

formed via one or a set of edge devices in the proposed

edge-assisted framework. Each edge device has function-

ality and a set of QoS and QoE values. In this scenario, the

S can be considered as a complex service that can be

accomplished via four subtasks including S1, S2, S3, and

S4, each of which can be deployed in a single/a set of edge

device(s). The results of these various components should

be aggregated and delivered as a single result which can be

defined as a service composition problem since we con-

sider each edge device as an abstract service.

3.3 Framework overview

Let’s assume that there are m edge devices in the edge

computing environment. Each device has functionality and

a set of QoS values and QoE values. In the proposed

framework, we consider four QoS parameters for each edge

service (edge device), including reliability, availability,

latency, and response time. According to the example

scenario, the functionality of edge devices can be a vital

sign analyzing (F1), symptom checking (F2), data storing

(F3), or alert sending (F4). As mentioned before, a single

big AI task should be decomposed into several small AI

subtasks to be able to be deployed on the resource-con-

strained edge devices in an edge network. Each subtask can

be deployed on a single edge device or a set of edge

devices in order to be performed. Thus, for implementing

the composition process, we have considered a solution in a

form of an array that includes four sections corresponding

to each subtask. For more illustration, suppose that there

are 30 edge apparatuses in the network with different

functionalities, including F1 (10 edge devices), F2 (9 edge

devices), F3 (7 edge devices), and F4 (4 edge devices). On

the other hand, for the composition request, we need

3, 2, 2, and 1 devices with the functionalities of F1, F2, F3,

and F4 respectively. Therefore, the structure of the possible

solution can be presented as Fig. 4.

Fig. 2 The overview of the proposed example scenario

Cluster Computing

123

In this example, for performing S1 we need three edge

devices each of which should be selected from the 10

available devices with the functionality of F1, and with

different QoS and QoE values. These three are responsible

for vital sign analysis. The considered vital signs in this

scenario include oxygen saturation rate, heartbeat rate, and

body temperature. Each of the selected edge devices will

be in charge of one of these vital signs. Similarly, S2, S3,

and S4 need the pre-defined number of edge devices to

accomplish their responsibilities as mentioned before. It

should be mentioned that there is a dependency between

the main subtasks S1, S2, S3, and S4. It means that the

result of Si may be used in Sj ði\jÞ except S3 which is only
in regular communication with S2. Figure 3 depicts the

relation between subtasks clearly. In this figure, S1 refers

to subtask1 (vital sign analyzing) which needs three edge

devices with the relevant functionality (F1). The results of

this subtask will pass to S2 which refers to subtask2

(symptom checking). This subtask needs two edge devices

to check the symptoms for detecting the possible infection

or suspicious cases. In this regard, S2 continuously com-

municates with S3, which stores different combinations of

symptoms states, to understand whether the current case is

in a severe condition or not. Subtask3 (S3) includes various

symptom combination states and needs two edge devices to

be deployed, one device for storing severe states, and one

device for storing non-critical and normal states. The

severe state can be, for example, a case with the combi-

nation of symptoms such as fever higher than 39.5, oxygen

rate lower than 80%, and heartbeat rate higher than 90.

There can be different combinations of these three symp-

toms, which indicate the critical state and vice versa for

normal conditions. However, since our focus is not on

detecting a disease we are not going to detail. The focus of

this paper is to integrate the subtasks of AI and deliver a

composite solution. It should be mentioned that we

implemented the dependencies between subtasks by con-

sidering the order of subtasks in the solution structure as

shown in Fig. 4 with respect to the functionality of sub

services (edge devices).

3.4 QoS model

As stated before, in this paper four QoS metrics are con-

sidered for each edge service (device), including avail-

ability, reliability, latency, and response time. We adopted

the values of these metrics from the QWS dataset [28]

which is a popular dataset for service composition prob-

lems among researchers. It includes 2507 real services with

6 QoS metrics, 4 of which are used in this paper. The initial

values of QoS parameters are obtained from the dataset.

Then, as the process furthers, the QoS values are randomly

updated each time a service is being invoked to perform a

dynamic service composition since in real scenarios the

QoS values are not static for the real services. In order to

conduct the updating process, we consider QoS and QoE

monitoring component in the framework to manage

changing the values of QoS and QoE metrics in each

invocation of the edge service randomly. The QoS updating

process is fully random. We first generate a random num-

ber between 0 and 1. If the generated random number is

greater than a pre-defined number (e.g., 0.3) then the QoS/

QoE updating module will be invoked. This module is

responsible to update QoS values of the corresponding

service randomly. Being correlated with QoS values, the

QoE value will also be updated accordingly. Moreover,

since the QoS parameters have different units, the fol-

lowing normalization equations (Eqs. 1 and 2) are used to

normalize the parameters. There are two types of consid-

ered QoS parameters in this paper, including positive (qþi),
and negative (q�i) parameters. The positive parameters

infer to the QoS parameters such as reliability, availability

and QoE that should be maximized. On contrary, the

negative parameters refer to QoS parameters that should be

minimized, like latency and response time.

3.5 QoE model

For each service in the dataset, first, we generate K random

QoE values (K denotes the number of subjective tests. It

means that for each service K number of persons give their

feedback in a number value format). Afterward, using

Pearson equation (Eq. 3) [29], we calculate Q coefficient

values (weights) for each service corresponding to its QoS

values. In this paper, we have considered K ¼ 100, and Q

is equal to 4 since we have four QoS parameters in our

proposed model. Finally, utilizing the calculated weights

Fig. 4 The sample solution structure for AI sub-task composition

Fig. 3 Relation between the AI sub-tasks

Cluster Computing

123

(rij) and QoS values given in the dataset, we can calculate

the final QoE value for the corresponding service in the

dataset. To this end, we have used Eq. 4, which linearly

correlates QoE and QoS values, as follows:

rij ¼
�����

PK
k¼1ðqij � qiÞðqoek � qoeÞffiPK

k¼1ðqij � qiÞ2
q ffiPK

k¼1ðqoek � qoeÞ2
q

�����; ð3Þ

QoEðsjÞ ¼
XQ

i¼1

rijðsjÞ � qijðsjÞ; ð4Þ

where q ij is the current QoS value for jth service (sj), that

we intend to calculate its weight. qi is the mean value for

the ith QoS parameter considering the whole services in the

dataset, and qoek is the kth user feedback value among

KðK ¼ 100Þ users.
In each invocation of the service, the QoS and QoE

values of the corresponding service would be randomly

modified. Since the QoE value has a linear correlation with

QoS values and QoS values will be changed, the QoE value

will be updated based on the updated parameters of QoS.

The generated/calculated QoE values are added to the

dataset as another QoS value.

3.6 Evaluation function

In order to evaluate the potential solutions, the following

function (Eq. 5) is used. This function is based on the QoS

values (including the QoE value as a QoS criterion). The

problem of edge intelligence service composition is a

multi-objective problem, which includes five objectives

(four QoS parameters and one QoE value) that should be

optimized. We use the simple additive weight (SAW)

method to linearly combine the objectives and transform

the problem into a single-objective one. In Eq. 5, wiðsÞ are
weights/coefficients for each of the QoS parameters of a

composite service (solution) and they should sum up to oneP
wi ¼ 1ð Þ. These weights can be defined by the service

requester. In this paper, since the main focus is on

reliability, its coefficient is considered as wreli ¼ 0:5 and

for the rest of parameters (availability, response time,

latency, and QoE) the coefficients are considered as

wi ¼ 0:125. Aiming to have a minimization problem, we

put the positive parameters in the denominator. In this

equation, sol denotes the current solution that we are cal-

culating its fitness value.

FitnessðsolÞ ¼
X2
i¼1

wi � sol:q�i þ
X5
i¼3

wi � 1

sol:qþi
: ð5Þ

Each solution (a composite service) consists of several sub-

services, each of which has its own QoS and QoE values.

The QoS values of the composite service, which should be

used in Eq. 5, is the aggregation values of its sub-services.

There are many different aggregation functions for various

composition patterns, which are mentioned in Table 3.

3.7 Fault monitoring

In order to produce a reliable composite service, we have

developed a fault controller module that monitors the

composition process to prevent a possible fault in terms of

the selected candidate services. During the composition

process, this module takes care of the selected services and

checks their non-functional features to find out whether

they are satisfying the constraints or not. We defined the

constraints for reliability (0.85) and availability (0.70). In

case of any fault, the fault controller module will replace

the selected faulty service with another relevant candidate

service from the dataset with the same functionality. Thus,

a replacement strategy is utilized to prevent any possible

service fault in the proposed model.

4 Meta-heuristics for composing AI subtasks

This subsection discusses the adopted approaches for

solving the AI subtasks composition problem in this paper.

As discussed before, considering the fact that a complex AI

task, such as ANN, cannot be deployed on the edge devi-

ces, it must be decomposed; then, being distributed among

the edge devices. Once the AI subtasks accomplish, they

need to be composed and be transformed into a single

solution. Since meta-heuristic algorithms best suit the NP-

Hard problems, we adopted three well-known meta-

heuristic algorithms to evaluate our proposed framework.

We classified the meta-heuristic algorithms as shown in

Fig. 5 into two main groups, including single-solution-

based [e.g., SA, tabu search (TS)], and population-based.

The population-based algorithms are also classified into

two groups, encompassing evolutionary-based [e.g., GA,

black widow optimization (BWO)] and swarm

Meta-Heuristics

Single solution-based Population-based

Swarm Intelligence-basedEvolutionary-based

E.g., SA, TS, ...

E.g., PSO, ACO, BBO, ...E.g., GA, BWO, ...

Fig. 5 Classification of meta-heuristic algorithms

Cluster Computing

123

intelligence-based [e.g., bio-geographical based optimiza-

tion (BBO), ant colony optimization (ACO), PSO]. We

adopted one algorithm from each group, including SA

[30, 31], PSO [32], and BWO [33], to evaluate our pro-

posed framework.

All in all, meta-heuristic algorithms utilize various

strategies in exploring the problem’s search space. How-

ever, they have some basic flows in common. For instance,

three adopted algorithms have the following features in

share.

● Random initialization they all generate their initial

solution(s) randomly.

● Solution encoding all three algorithms adopt the same

encoding for their solution in the form of an array with

the length of n (n is the number of subtasks, which is

equal to eight in our example scenario mentioned in

Sect. 1).

● Fitness function the fitness function, cost function,

evaluation function, or objective function is the function

mentioned as Eq. 5, which is used by all three

algorithms with the same input data.

● Iteration all three algorithms iteratively approach

towards the near-optimal solution. It means that they

iteratively repeat applying some operations on their

current solutions to improve them and move them to the

objective.

● Operators although each algorithm uses different oper-

ators to reach the near-optimal solution, some operators

have similar behavior. For example, the mutation

operator in BWO and neighbor generation in SA, both

randomly choose a component in the current solution

and replace it with a random value that fits the search

space.

The exclusive information and pseudo-codes of the algo-

rithms are discussed in the ensuing subsections. It should

be noted that “The initial parameter settings and the

composite service request, including the initial composition

matrix” are the input and “Near-optimal composite service

(AI task)” is the output for all three algorithms.

4.1 Simulated annealing algorithm

Simulated annealing (SA) is a meta-heuristic algorithm for

the optimization problems. This algorithm imitates the

physical procedure of heating a material and then gradually

lowering the temperature to let the material get cool [30].

The developed SA algorithm is illustrated in Algorithm 1.

The algorithm starts with a random potential solution for

the related issue (line 3). Then, a pre-defined number of

neighbors for the initial solution are produced based on a

random modification on the original solution. Among the

produced neighbors, the best one will be chosen to be used

as the best solution, if it overcomes the initial solution

(lines 5 to 15). If none of the neighbors could prevail over

the initial solution, the best neighbor will have a chance to

be selected as the best solution based on Boltzmann

probability (lines 16 to 23). The initial value of temperature

T is set as 100,000 and decreased in each iteration by the

ratio of Eq. 6.

TempReduction Ratio ¼ ðT � TFÞ=MaxIter; ð6Þ
where TF is the minimum temperature, and MaxIter is the

maximum iteration of the algorithm, which are set to 100

and 200, respectively.

Briefly, SA algorithm starts with a single random solu-

tion (sol). Then, generates some neighbors for it and

compare the best neighbor with the sol. If the best neighbor

is better than sol, it will be assigned to sol; otherwise, based

on Boltzmann probability (Eq. 7), the algorithm will decide

on whether replace sol with the best neighbor or not. This

will be repeated until the stop condition is satisfied. As

stated in Sect. 5, the stop condition is considered as the

maximum number of iteration, which is equal to 200 in all

the experiments.

Cluster Computing

123

P ¼ �½ðbestSol� solÞ=sol�=T ; ð7Þ
where bestSol is the best neighbor, sol is the initial/current

solution, and T is the current temperature.

4.2 Particle swarm optimization algorithm

PSO is a meta-heuristic algorithm that represents the

movement of organisms like fish school and bird flock

towards a new settlement of food source [32]. Algorithm 2

illustrates the pseudo-code of the PSO algorithm. PSO is a

population-based swarm intelligence-based algorithm,

which starts with a pre-defined number of initial random

solutions named particle (line 3). Then, solutions are sorted

with regards to their fitness value (line 4), and the best

solution is defined as the global best (gBest) (line 5). Each

solution keeps its own best state during the whole process

as the local best (lBest). In each iteration, the algorithm,

first updates the velocity for all solutions (line 8, where R1

and R2 are random numbers between 0 and 1, w is inertia

weight, and C1 and C2 are constant values that should be

determine as hyper parameters). Then, based on the

updated velocity values, their position should be updated

(line 9). Consequently, their fitness value will be recalcu-

lated using the fitness function (line 10). Then, considering

the new fitness value, gBest and lBest should be updated

(lines 11 to 16). These steps will be repeated until the stop

condition. Ultimately, the last gBest will be returned as a

final solution of PSO.

4.3 Black widow optimization algorithm

The implementation of the BWO algorithm is presented in

Algorithm 3. This algorithm is a population-based evolu-

tionary algorithm, which is inspired by the weird lifestyle

of black widow spiders. The stages of the algorithm [33]

are as follows. The algorithm is started by the initial ran-

dom population of potential solutions (line 3 in Algorithm

3. Then, the procreate operation produces children for each

pair of parents (line 9). The number of children will

diminish by cannibalism operators (lines 10 and 11). The

mutation operator is responsible for modifying the existing

solutions and consequently producing novel solutions (li-

nes 14 to 18). Finally, the number of current solutions

should be decreased to the initial value by omitting the

worst ones (lines 19 to 21). These steps will be repeated

until the stop criteria are met. Then, the best solution will

be returned as the concluding solution of the algorithm for

the corresponding issue.

Cluster Computing

123

5 Experiments and simulation results

This section consists of two parts. The details of experi-

ments including the dataset information, experimental

scenarios, and the used system information are mentioned

in Sect. 5.1. Then, the simulation results, comparisons, and

discussion are stated in Sect. 5.2.

5.1 Simulation setup and metrics

To validate the proposed AI subtasks composition frame-

work, evaluations have been conducted on a laptop with an

Intel Core-i7-10750H CPU 2.60 GHz and 16 GB RAM,

using MATLAB R2020b. In order to carry out a fair

comparison, all three algorithms were fed with the same set

of services collected from the dataset. As mentioned

before, the QWS dataset has been used as the initial QoS

values in all the experiments. However, the QoS values are

updated randomly during the composition process to per-

form a dynamic composition framework. We have col-

lected the information of four QoS parameters,

encompassing availability, reliability, response time, and

latency. Furthermore, as mentioned in Sect. 3.5 calculated

QoE values have been adopted as a new QoS parameter.

The mentioned QoS parameters are adopted as our

evaluation metrics besides the scalability and execution

time that can be defined as follows:

● Reliability alludes to the rate of error messages to the

total messages.

● Availability specifies the proportion of successful invo-

cations to the total invocations of a service.

● Latency is defined as the communication delay, the time

duration that message spends on the path from source to

destination.

● Response time refers to the total time duration that takes

the service requesters to get the response from the

system for their request. It can be determined as the

summation of service time and latency.

● Scalability implies the ability to conduct AI subtasks

composition in large-scale network environments.

● Execution time indicates the time duration takes to run

the corresponding algorithm in order to achieve the

composition result.

Besides, three meta-heuristic algorithms, namely BWO,

PSO, and SA, have been adopted to evaluate the proposed

framework. In all experiments, the maximum number of

iterations is set to 200 and is considered as a stop criterion

for all algorithms. Moreover, the number of initial popu-

lation for BWO and PSO is set to 100, and for SA is set to

one since SA is a single-solution-based algorithm.

5.2 Simulation results and discussion

In this section, the experimental results are provided and

discussed. The experiments have been done in five types,

including scalability analysis (Sect. 5.2.1), fault monitoring

analysis (Sect. 5.2.2), success rate (Sect. 5.2.3), similarity

analysis (Sect. 5.2.4), and computation time comparison

(Sect. 5.2.5). The detail information of each experiment is

mentioned in the following relevant subsections.

5.2.1 Scalability analysis

In order to conduct the scalability analysis, we have con-

sidered different network sizes by varying the number of

edge devices in the network. In the beginning, the number

of edge devices is defined as 30. Then, it is increased up to

180 with the step of 30. For each scenario, we run the

algorithm for 10 times and collect the mean value as the

final result.

The results of this experiment are depicted in Figs. 6, 7,

8, 9 which represent mean fitness, mean reliability, mean

availability, and mean QoE values respectively. Moreover,

Table 4 shows the analysis results for the mentioned

Cluster Computing

123

metrics. It can be seen that in almost all cases there are no

remarkable changes in the results of various network sizes.

Therefore, scalability is preserved.

5.2.2 Fault monitoring analysis

In order to prevent the possible service faults, we adopted

the local fault monitoring (LFM) method mentioned in

Sect. 3.7. We run the algorithms two times, one with

applying LFM and the other without it, and compared their

outcomes. Figures 10, 11, 12, and 13 demonstrate the

comparison results for fitness value, the convergence fig-

ure for fitness value, reliability, and availability respec-

tively. It can be seen that in all cases the results of the

scenario with LFM outperform the other scenario. Also,

comparing the algorithms show that BWO in the majority

of cases has better performance. Moreover, Fig. 10 shows

that, in this scenario, BWO has better convergence speed in

comparison to PSO and SA algorithms.

5.2.3 Success rate analysis

One of the vital objectives of service composition strate-

gies is to collect reliable services to produce and deliver a

composite service that fulfills the service requester con-

straints. However, the uncertainty of QoS values in the

selected services often contributes to the deviation of user

constraints and preferences. Thus, service composition

failure is one of the critical challenges in this scope. To this

end, this section is addressed this challenge and compares

the adopted algorithms in this regard.

30 60 90 120 150 180
Network Size (Number of Edge Devices)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
ea

n
Fi

tn
es

s V
al

ue
BWO PSO SA

Fig. 6 Evaluation of Fitness value with different network size

30 60 90 120 150 180
Network Size (Number of Edge Devices)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
R

el
ia

bi
lit

y

BWO PSO SA

Fig. 7 Evaluation of Reliability value with different network size

30 60 90 120 150 180
Network Size (Number of Edge Devices)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
A

va
ila

bi
lit

y

BWO PSO SA

Fig. 8 Evaluation of Availability value with different network size

30 60 90 120 150 180
Network Size (Number of Edge Devices)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
M

ea
n

Q
oE

 V
al

ue

BWO PSO SA

Fig. 9 Evaluation of QoE value with different network size

Cluster Computing

123

Success ratio (SR) reveals how often the obtained

aggregated QoS value meets the corresponding constraint

value. To assess this, Eq. 8 is adopted to count the number

of composite services, in ten times run, which meet the

constraints for both reliability and availability. Then, the

attained Nsr value is used in Eq. 9 to calculate the SR for

the corresponding approach.

NSr ¼
Xrun
i¼1

1; If ReliðsiÞ�CReli and

AvailðsiÞ�CAvail;

0; Otherwise;

8><
>:

ð8Þ

SR ¼NSr

10
� 100%; ð9Þ

where run refers to the number of composite services that

we evaluate, si is the ith service, Reli and Avail are the

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.85

0.9

0.95

1

Fi
tn

es
s V

alu
e

BWO PSO SA

Fig. 10 Convergence of Solutions with LFM

Fig. 11 Evaluation of Fitness value with(out) LFM

Table 4 Scalability analysis

Network size (number of edge devices)

30 60 90 120 150 180

Algorithm PSO SA BWO PSO SA BWO PSO SA BWO PSO SA BWO PSO SA BWO PSO SA BWO

Fitness 1.12 1.22 1.07 1.22 1.22 1.06 1.08 1.22 1.06 1.15 1.21 1.06 1.20 1.26 1.09 1.17 1.20 1.07

Availability 0.72 0.64 0.69 0.62 0.67 0.75 0.72 0.61 0.75 0.65 0.65 0.75 0.66 0.70 0.72 0.65 0.66 0.73

Reliability 0.69 0.66 0.73 0.66 0.67 0.73 0.72 0.69 0.73 0.71 0.69 0.72 0.68 0.62 0.72 0.67 0.67 0.72

QoE 0.91 0.85 0.95 0.80 0.82 0.92 0.94 0.84 0.96 0.88 0.81 0.94 0.87 0.90 0.91 0.94 0.83 0.94

Fig. 12 Evaluation of Reliability value with(out) LFM

Fig. 13 Evaluation of Availability value with(out) LFM

Cluster Computing

123

aggregated value of reliability or availability for the cor-

responding service (si, and CReli and CAvail are the pre-

defined constraint values for the reliability and availability,

respectively.

In order to conduct this experiment, we have considered

different network sizes starting from 30 edge devices

increasing it to 180 with the step of 30. All three algorithms

have been run 10 times for each network size, and in each

scenario, the obtained best solution is evaluated based on

two pre-determined constraints. Since this paper focuses on

reliability and availability, we have considered the con-

straint on these two parameters and set them as CReli ¼
0:85 and CAvail ¼ 0:70. The result is depicted in Fig. 14.

Also, the average SR for BWO is obtained as 83:33%, and

65%, and 38:33% respectively for PSO, and SA. Higher the

SR, lower the failure ratio. Thus, according to this exper-

iment BWO achieves a high SR and accordingly has a

lower failure rate comparing to PSO and SA algorithms.

With respect to Fig. 14, this is even correct for the large

network sizes.

5.2.4 Similarity analysis

This experiment is adopted from [34] and intends to

compare the similarity factor of the employed algorithms.

The similarity factor evaluates the obtained fitness values

between two algorithms one by one. Since BWO has out-

performed the other two algorithms, namely, PSO and SA

in the majority of the previous experiments, we have

selected it as the main algorithm for this test. Thus, the

similarity of PSO and SA against BWO has been assessed

by Eq. 10. In this equation, Algorithm X can be either PSO

or SA and Algorithm Y in both cases is BWO.

Similarity ¼ FitnessValue AlgorithmX

FitnessValue AlgorithmY
: ð10Þ

Aiming to have a comprehensive analysis, the similarity of

PSO and SA has also been calculated by Eq. 10 and the

result is shown in Fig. 15 using green color. For this test,

we have considered SA as Algorithm Y and PSO as

Algorithm X.

The attained values from Eq. 10 show the similarity of

the two algorithms in terms of their fitness value. In order

to conduct this experiment, we run the algorithms 20 times,

and their similarities have been calculated for each run.

The network size is considered 30 edge devices. The other

setups, such as the number of the initial population and the

maximum number of iterations, have been kept the same as

previous experiments. Figure 15 demonstrates the result of

this experiment. If the obtained similarity value is equal to

1, it means that the compared algorithms are totally similar.

Furthermore, the similarity value greater than 1 reveals the

superiority of the selected main algorithm to the other one.

The similarity value less than 1 means that the selected

main algorithm behaves weaker than the compared algo-

rithm. As mentioned before, BWO has been selected as the

main algorithm (Fig. 15), and for the PSO–SA line, SA has

been the selected main algorithm.

According to the attained outcomes shown in Fig. 15 it

can be concluded that BWO has better performance in

comparison to PSO and SA since the similarity values

obtained for PSO–BWO and SA–BWO are greater than 1.

Moreover, PSO has better performance compare to SA

since the similarity values of SA against PSO are mostly

less than 1. Overall, the achieved results from 20 execu-

tions of our experimental algorithms can be summarized as

follow:

● BWO behaves better in 19 executions out of 20

execution in comparison to PSO. Figure 15 also depicts

this fact. At the first execution, the line PSO–BWO

(similarity of PSO against BWO) almost touches 1. The

30 60 90 120 150 180
Network Size (Number of Edge Devices)

0

10

20

30

40

50

60

70

80

90

100

Su
ce

ss
 R

ati
o (

%
)

BWO PSO SA

Fig. 14 Evaluation of success ratio

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Execution

0.8

0.9

1

1.1

1.2

1.3

1.4

Si
m

ila
rit

y

PSO-BWO SA-BWO PSO-SA

Fig. 15 Similarity evaluation of the adopted algorithms

Cluster Computing

123

real similarity value for the first execution is 0.99778,

which is less than 1. However, the overall efficiency of

BWO over PSO is 95%.

● BWO outperforms SA in all of 20 executions, which

implies 100% efficiency of BWO against SA. Figure 15

shows this visually. Considering the SA–BWO, the

similarity values for all 20 executions are greater than 1.

● PSO defeats SA in 17 executions out of 20 executions,

which indicates 85% efficiency of PSO against SA.

With regards to the PSO–SA line in Fig. 15, it can be

seen that only three of similarity values are greater than

1.

5.2.5 Execution time comparison

In this experiment, we evaluated the adopted algorithms in

terms of their execution time for finding the best possible

solution for AI subtask composition in edge computing. To

this end, we have conducted the experiment in different

network sizes. The network size is varied from 30 edge

devices to 180 edge devices with a step size of 30 as can be

seen in Fig. 16. Although SA and PSO have achieved better

results on large scales, their execution times have

remarkable fluctuation. The result of this experiment shows

that the BWO not only does obtain a short execution time,

but it has negligible changes through the different network

sizes.

6 Conclusions and future directions

This paper depicts a novel dynamic and reliable framework

for AI subtasks composition in the edge computing envi-

ronment for the connected healthcare application. The key

motivation is to facilitate the deployment of AI tasks on

resource-constrained edge devices. With regards to the fact

that the combination of edge computing, service comput-

ing, and AI can contribute to offering extremely distributed

heterogeneous smart devices abstracted as services, which

can be adopted in different smart application cases. Thus,

enabling AI deployment on these devices can pave the way

for providing smart and efficient systems, such as con-

nected healthcare systems. However, there are some chal-

lenges and limitations since the IoT/edge devices suffer

from low storage and computation capacity. In this regard,

we have addressed this challenge by considering the fact

that big AI tasks can be decomposed, distributed on edge

devices to be performed close to where data are being

produced, and finally, the outcomes are composed and

deliver the result to the requester. This issue is mapped on

the service composition problem, which is an NP-Hard

problem. Hence, since this problem can not be solved in a

deterministic way, we have utilized three well-known

meta-heuristic algorithms, including PSO, SA, and BWO.

We also adopted the QWS dataset as our data source for

conducting the experiments. The experimental results val-

idate the applicability of our proposed framework since it

demonstrates efficient performance in almost all the tests,

particularly for fault prevention. Moreover, among the

three adopted meta-heuristics, BWO performs better

compared to PSO and SA. More precisely we demonstrate

that BWO prevails SA and PSO in all and 95% of exper-

iments respectively.

Despite the high performance of the proposed frame-

work, there are some limitations that we intend to cover in

our future research works. The number of subtasks for all

the experiments is considered the same and constant in the

proposed framework. The only factor for varying the size

of the network is the number of edge devices in the net-

work. Also, we have considered edge devices and service

requester in the same network, so the fact that an edge

device (service) can be moved to the out of network during

the composition process is neglected in this research.

Besides, another future research direction would be to

evaluate the impact of our method on the accuracy and

performance of AI algorithms.

Acknowledgements This research was supported by the Faculty of

Technological Innovation, Zayed University (ZU), under Grant

Number RIF-20130.

Funding The authors have not disclosed any funding.

Data availability Enquiries about data availability should be directed

to the authors.

Declaration

Conflict of interest The authors have not disclosed any competing

interests.

30 60 90 120 150 180
Network Size (Number of Edge Devices)

3

3.5

4

4.5

5

5.5

Ex
ec

ut
io

n
Ti

m
e (

Se
co

nd
s)

BWO PSO SA

Fig. 16 Evaluation of execution time

Cluster Computing

123

References

1. Balasubramanian, V., Wang, M., Reisslein, M., Xu, C.: Edge-

Boost: enhancing multimedia delivery with mobile edge caching

in 5G-D2D networks. In: IEEE International Conference on

Multimedia and Expo (ICME) 2019, pp. 1684–1689 (2019)

2. Lu, H., He, X., Du, M., Ruan, X., Sun, Y., Wang, K.: Edge QoE:

computation offloading with deep reinforcement learning for

Internet of Things. IEEE Internet Things J. 7(10), 9255–9265
(2020)

3. Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S., Zomaya, A.Y.:

Edge intelligence: the confluence of edge computing and artificial

intelligence. IEEE Internet Things J. 7(8), 7457–7469 (2020)

4. Hayyolalam, V., Aloqaily, M., Ozkasap, O., Guizani, M.: Edge

intelligence for empowering IoT-based healthcare systems. IEEE

Wirel. Commun. Mag. (2021). https://doi.org/10.48550/arXiv.

2103.12144

5. Hayyolalam, V., Aloqaily, M., Özkasap, Ö., Guizani, M.: Edge-

assisted solutions for IoT-based connected healthcare systems: a

literature review. IEEE Internet Things J. 3, 1 (2021). https://doi.

org/10.1109/JIOT.2021.3135200

6. Rahman, M.S., Khalil, I., Atiquzzaman, M., Yi, X.: Towards

privacy preserving AI based composition framework in edge

networks using fully homomorphic encryption. Eng. Appl. Artif.

Intell. 94, 103737 (2020)

7. Zhao, J., Tiplea, T., Mortier, R., Crowcroft, J., Wang, L.: Data

analytics service composition and deployment on edge devices.

In: Proceedings of Workshop on Big Data Analytics and Machine

Learning for Data Communication Networks, 2018, pp. 27–32

(2018)

8. Balasubramanian, V., Otoum, S., Aloqaily, M., Al Ridhawi, I.,

Jararweh, Y.: Low-latency vehicular edge: a vehicular infras-

tructure model for 5G. Simul. Model. Pract. Theory 98, 101968
(2020)

9. Wang, X., Han, Y., Leung, V.C., Niyato, D., Yan, X., Chen, X.:

Convergence of edge computing and deep learning: a compre-

hensive survey. IEEE Commun. Surv. Tutor. 22(2), 869–904

(2020)

10. Hayyolalam, V., Kazem, A.A.P.: A systematic literature review

on QoS-aware service composition and selection in cloud envi-

ronment. J. Netw. Comput. Appl. 110, 52–74 (2018)

11. Hamzei, M., Navimipour, N.J.: Toward efficient service compo-

sition techniques in the Internet of Things. IEEE Internet Things

J. 5(5), 3774–3787 (2018)

12. Al Ridhawi, I., Aloqaily, M., Boukerche, A., Jaraweh, Y.: A

Blockchain-based decentralized composition solution for IoT

services. In: ICC 2020—IEEE International Conference on

Communications (ICC), pp. 1–6. IEEE (2020)

13. Al Ridhawi, I., Aloqaily, M., Kotb, Y., Al Ridhawi, Y., Jararweh,

Y.: A collaborative mobile edge computing and user solution for

service composition in 5G systems. Trans. Emerg. Telecommun.

Technol. 29(1), e3446 (2018)

14. Huang, J., Liang, J., Ali, S.: A simulation-based optimization

approach for reliability-aware service composition in edge com-

puting. IEEE Access 8, 50 355-50 366 (2020)

15. Gao, H., Huang, W., Duan, Y.: The cloud-edge-based dynamic

reconfiguration to service workflow for mobile ecommerce

environments: a QoS prediction perspective. ACM Trans. Inter-

net Technol. 21(1), 1–23 (2021)

16. Wang, R., Lu, J.: QoS-aware service discovery and selection

management for cloud-edge computing using a hybrid meta-

heuristic algorithm in IoT. Wirel. Pers. Commun. (2021). https://

doi.org/10.1007/s11277-021-09052-4

17. Fekih, H., Mtibaa, S., Bouamama, S.: The dynamic reconfigura-

tion approach for fault-tolerance web service composition based

on multi-level VCSOP. Procedia Comput. Sci. 159, 1527–1536
(2019)

18. Elsayed, D., Nasr, E., El Ghazali, A., Gheith, M.: A self-healing

model for QoS-aware web service composition. Int. Arab J. Inf.

Technol. 17(6), 839–846 (2020)

19. Laleh, T., Paquet, J., Mokhov, S., Yan, Y.: Constraint verification

failure recovery in web service composition. Future Gener.

Comput. Syst. 89, 387–401 (2018)

20. Wang, L., He, Q., Gao, D., Wan, J., Zhang, Y.: Temporal-per-

turbation aware reliability sensitivity measurement for adaptive

cloud service selection. IEEE Trans. Serv. Comput. 3, 1 (2020).

https://doi.org/10.1109/TSC.2020.3046360

21. Peng, Q., Xia, Y., Zhou, M., Luo, X., Wang, S., Wang, Y., Wu,

C., Pang, S., Lin, M.: Reliability-aware and deadline-constrained

mobile service composition over opportunistic networks. IEEE

Trans. Autom. Sci. Eng. 18(3), 1012–1025 (2020)

22. Hosseini Bidi, A., Movahedi, Z., Movahedi, Z.: A fog-based

fault-tolerant and QoE-aware service composition in smart cities.

Trans. Emerg. Telecommun. Technol. 32(11), e4326 (2021)

23. Hayyolalam, V., Pourghebleh, B., Pourhaji Kazem, A.: Trust

management of services (TMoS): investigating the current

mechanisms. Trans. Emerg. Telecommun. Technol. 31(10),
e4063 (2020)

24. Pourghebleh, B., Hayyolalam, V., Anvigh, A.A.: Service dis-

covery in the Internet of Things: review of current trends and

research challenges. Wirel. Netw. 26(7), 5371–5391 (2020)

25. Hayyolalam, V., Pourghebleh, B., Chehrehzad, M.R., Pourhaji

Kazem, A.A.: Single-objective service composition methods in

cloud manufacturing systems: recent techniques, classification, and

future trends. Concurr. Comput. Pract. Exp. 34(5), e6698 (2021)

26. Hayyolalam, V., Pourhaji Kazem, A.A.: QoS-aware optimization

of cloud service composition using symbiotic organisms search

algorithm. J. Intell. Proced. Electr. Technol. 8(32), 29–38 (2017)

27. Hayyolalam, V., Kazem, A.A.P.: Review of service composition

approaches in cloud environment. In: First International Com-

prehensive Competition Conference on Engineering Sciences in

Iran (2018)

28. Eyhab Al-Masri: QWS Dataset (2007). https://qwsdata.github.io/

qws2.html

29. Lalanne, F., Cavalli, A., Maag, S.: Quality of experience as a

selection criterion for web services. In: Eighth International

Conference on Signal Image Technology and Internet Based

Systems, pp. 519–526. IEEE (2012)

30. Aarts, E.H., Korst, J.H., van Laarhoven, P.J.: Simulated

Annealing. Princeton University Press, Princeton (2018)

31. Abdel-Basset, M., Ding, W., El-Shahat, D.: A hybrid Harris

Hawks optimization algorithm with simulated annealing for

feature selection. Artif. Intell. Rev. 54(1), 593–637 (2021)

32. Khanam, R., Kumar, R.R., Kumar, C.: QoS based cloud service

composition with optimal set of services using PSO. In: 4th

International Conference on Recent Advances in Information

Technology (RAIT), pp. 1–6. IEEE (2018)

33. Hayyolalam, V., Kazem, A.A.P.: Black widow optimization

algorithm: a novel meta-heuristic approach for solving engi-

neering optimization problems. Eng. Appl. Artif. Intell. 87,
103249 (2020)

34. Asghari, P., Rahmani, A.M., Javadi, H.H.S.: Privacy-aware cloud

service composition based on QoS optimization in Internet of

Things. J. Ambient Intell. Humaniz. Comput. (2020). https://doi.

org/10.1007/s12652-020-01723-7

Publisher's Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Cluster Computing

123

https://doi.org/10.48550/arXiv.2103.12144
https://doi.org/10.48550/arXiv.2103.12144
https://doi.org/10.1109/JIOT.2021.3135200
https://doi.org/10.1109/JIOT.2021.3135200
https://doi.org/10.1007/s11277-021-09052-4
https://doi.org/10.1007/s11277-021-09052-4
https://doi.org/10.1109/TSC.2020.3046360
https://qwsdata.github.io/qws2.html
https://qwsdata.github.io/qws2.html
https://doi.org/10.1007/s12652-020-01723-7
https://doi.org/10.1007/s12652-020-01723-7

Vahideh Hayyolalam received

her B.S. Degree in Applied

Mathematics from Payam-Noor

University of Tabriz, Iran, and

her M.Sc. Degree in Computer

Engineering from Science and

Research Branch, Islamic Azad

University, Iran, in 2016. Cur-

rently, she is a Ph.D. Student at

Koç University, Istanbul, Tur-

key. Her research interests

include optimization, IoT, cloud

computing, edge intelligence,

machine learning.

Safa Otoum M’19 is an Assis-

tant Professor of Computer

Engineering in the College of

Technological Innovation

(CTI), Zayed University, United

Arab Emirates and a Researcher

in the Field of Communications

and Networks Security. Prior to

joining the CTI, she was a

Postdoctoral Fellow at the

University of Ottawa and has

been a Data Scientist in Cheetah

Networks, Inc. Ottawa since

2019. She received her M.A.Sc.,

and Ph.D. Degrees in Computer

Engineering from the University of Ottawa, Canada, in 2015 and

2019, respectively. She is actively working on several rep-

utable events within IEEE and ACM. Her research interests include

networks security, Blockchain applications, applications of ML and

Aim, IoT, intrusion detection and prevention systems. She received

several academic and research scholarships, including the prestigious

NSERC Canada Graduate Scholarships-Doctoral, the NSERC FSS

and the RIF-Zayed University grant. Currently, she is an IEEE

Member and a Professional Engineer (P.Eng.) Ontario.

Öznur Özkasap is a Professor

with the Department of Com-

puter Engineering, Koç Univer-

sity, Istanbul, Turkey, which she

joined in 2000. She was awar-

ded the TÜBİTAK-NATO A2

Ph.D. Research Scholarship

Abroad, and was a Graduate

Research Assistant at Cornell

University, Department of

Computer Science from 1997 to

1999, where she completed her

Ph.D. Dissertation. From 1992

to 2000, she has been a

Research and Teaching Assis-

tant at Ege University, Department of Computer Engineering. She

received her Ph.D. Degree in Computer Engineering from Ege

University in 2000. Her research interests include distributed systems,

peer-to-peer systems, bio-inspired distributed algorithms, energy

efficiency, cloud storage and computing, mobile and vehicular ad hoc

networks, scalable reliable multicast protocols, security in distributed

systems, and computer networks.

Cluster Computing

123

	Dynamic QoS/QoE-aware reliable service composition framework for edge intelligence
	Recommended Citation

	Dynamic QoS/QoE-aware reliable service composition framework for edge intelligence
	Abstract
	Introduction
	Motivation
	Challenges
	Contributions

	Related work
	Edge service composition
	Fault tolerance on conventional service composition scenarios
	Summary and comparison

	Proposed framework
	Preliminaries
	Example scenario
	Framework overview
	QoS model
	QoE model
	Evaluation function
	Fault monitoring

	Meta-heuristics for composing AI subtasks
	Simulated annealing algorithm
	Particle swarm optimization algorithm
	Black widow optimization algorithm

	Experiments and simulation results
	Simulation setup and metrics
	Simulation results and discussion
	Scalability analysis
	Fault monitoring analysis
	Success rate analysis
	Similarity analysis
	Execution time comparison

	Conclusions and future directions
	Data availability
	References

