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Abstract: Groundwater is a valuable resource, and its quality is critical to human survival. Optimal
farming and urbanization degraded groundwater reserves. This research investigates and reports
the spatial variability of selected heavy metals developed in the Liwa area of the United Arab
Emirates. Forty water samples were collected from existing wells and analyzed for different elements.
Principal components analysis was applied to a subgroup of the data set in terms of their usefulness
for determining the variability of groundwater quality variables. Geographic information systems
were used to produce contour maps to analyze the distribution of heavy metals. Ordinary kriging
was used with Circular, Spherical, Tetraspherical, Pentaspherical-Bessel, K-Bessel, Hole effect, and
Stable models for better representation. The water quality index was constructed using heavy metal
concentrations and other variables. This yielded a value of 900 beyond the limit stated by WHO and
US EPA. Nugget analysis showed that Cd (0), K (7.38%), and SO4 (1.81%) variables exhibited strong
spatial dependence. Al (27%), Ba (40.87%), Cr (63%), Cu (34%), EC (27%), HCO3 (56%), NO3(36%),
Pb (64%), and TDS (53%) represented moderate spatial dependence. As (76%), Mn (79%), Ni (100%),
pH (100%), Temp (93%), and Zn (100%) exhibited weak spatial dependence.

Keywords: geostatistics; GIS; heavy metal pollution; groundwater; UAE

1. Introduction

Groundwater reaches the aperture of the landmass and its interior through natural,
artificial, and indirect recharge. It was used by at least 2 billion people [1]. This infringement
of this precious resource can be attributed to its nearest obtainability with partial efforts and
spatial obstinacy. Aquifers at specific demand locations are being drained, and this state
may lead to deprivation of this indispensable resource unless allayed [2]. The hydraulic
conductivity and permeability of the rocks depend on the rocks’ porosity [3]. Heavy metals
are among the most significant pollutants of groundwater sources [4,5]. Nonetheless,
the toxicity of heavy metals depends on their concentration levels in the environment.
With increasing concentrations in the environment and decreasing soils’ capacity toward
retaining heavy metals, they leach into groundwater and soil solution [6,7]. Then, these toxic
heavy metals can be accumulated and concentrated via the food chain in living tissues [8].
Some of these heavy metals are Arsenic (As), Lead (Pb), Nickle (Ni), Chromium (Cr), and
Zinc (Zn). They can be categorized as critical heavy metals that pollute groundwater and
affect human health [9]. One of the advanced techniques used in groundwater quality data
interpolation is geostatistics [10]. The results obtained from the geostatistics can help a
decision-maker to adopt suitable remedial measures to protect the quality of groundwater
sources [11].
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Focus has been devoted to studying groundwater quality and quantity to prevent
groundwater contamination [12]. The native hydrogeological conditions and pollutant
loads are dependent on lateral physicochemical interactions on the surface and sub-surface.
Geostatistical analysis is used in subjecting data to interpolate by understanding the re-
semblances [13]. Radial functions and inverse distance weighted values are significant in
data smoothing [14]. We can investigate uncertainties and produce surface predictions
to get related information without subjecting data to erroneous functions and unneces-
sary manipulations. The geostatistical tools help us understand data in graphical forms
while maintaining the native peaks and troughs, as witnessed by field reports [15]. Three-
dimensional visualization evolved as an in-silico currency to reveal native information
about the local geology and visualization thereof [16]. The sample points measured spa-
tially can be used in the autocorrelation process in the ordinary kriging method [17]. The
association between the transformation between the measured and predicted values can be
described with a semi variogram [18]. Semi variance is the product of slope that appears
within a fitted model and distance between the location pairs. Geostatistical techniques
improved the spatial data distribution with delimited accuracy while maintaining portabil-
ity [19]. Primarily, spatial analysis mandates the use of GIS and statistics. GIS apparatus
is expected to deliver predictions and improved interpretation accuracy per se. Though
technical constraints limit us, we can present a near-accurate portrayal of processes and
features with GIS tools equipped with geostatistics [20].

Inverse distance weighting (IDW) can be stated as a simple interpolation technique.
The weighted average is considered within a neighborhood in IDW [21]. The analyst can
regulate a specific mathematical form of the weight function and the neighborhood size [22].
It is necessary to consider IDW with natural neighbor in analyzing substantial data sets. It
uses cluster scatter points to identify datasets under investigation. This method is apt for
discrete sample data [23].

The geostatistical analysis such as ordinary kriging provides insights into the ground-
water situation. Kriging assumes that random processes with spatial autocorrelation can
mimic at least some of the spatial variation observed in natural events and that the spatial
autocorrelation must be explicitly modeled. However, it has much versatility as a simple
prediction tool. An integrated approach to the assessment combining aquifer-based prese-
lection criteria and multivariate non-parametric geostatistics was proposed to overcome the
traditional approach’s limitations and include the intrinsic hydrogeological and geochem-
ical heterogeneity into the definition of groundwater water quality [24]. Arsenic (As) is
one of the most harmful inorganic contaminants in water streams for the environment and
human health [25]. The correlations between different groundwater quality indices and the
causes and impacting variables of groundwater pollution can be tracked using statistical
and multivariate techniques [26]. The meta-evaluation of the groundwater quality index
was attempted [27]. The quality of groundwater that is being used for irrigation can be
affected by several factors [28].

Groundwater is a vital resource for human life. Land use changes and urbanization
harmed groundwater. This study examines the geographical variability of selected heavy
metals in the UAE’s Liwa region. There were limited studies that used geostatistics to
explain the groundwater quality variability across this study area. This work is focused on
the application of the geostatistical tools to explain the groundwater contamination. The
objectives of this study are: (1) To describe the geospatial relationship between the observed
groundwater variables using geostatistics, and multivariate analysis; (2) To determine the
parameters’ variability at various sample points spread over the study area. PCA was
used to define the parameters controlling the groundwater chemistry and the information
using significant variables was revealed; (3) To investigate the suitability of water for
drinking (Using Weighted Arithmetic Water Quality Index (WA-WQI); (4) To employ
ordinary kriging and select an appropriate model representing spatial distribution and
spatial dependence variables.
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2. General Characteristics of Study Area

The primordial settlements in Abu Dhabi traced to 7000 years ago and elsewhere
are regarded as from the late stone age [29]. Agricultural hubs were established by the
semi-nomadic peoples at Al Ain and Liwa regions [30]. It is an elapsed statistic that
most of the populace endured on sustainable water management, attributed to rough
climatic conditions that prevailed then. Stringent punishments were levied on anyone who
accidentally or purposely threatened the water resources. The Liwa desert accommodates
high temperatures ranging from 40 to 50 ◦C [31]. We can witness the highest dunes
southwards of the Liwa crescent, prevalently known as the Moreeb dune [32]. Though
dry scape appears on the surface, dunes can aid in excellent groundwater recharge with
whatever rainfall is available over this zone. In the northern side of Liwa, i.e., Madinat
Zayed, we can witness fresh water under the dunes [33].

Hydrogeology

The hydraulic conductivities measured at Liwa Crescent and Madinat Zayed ranged
from 10–100 m/d. They were marked as a peak in Abu Dhabi. This property can be
attributed to the sands that are unconsolidated and homogeneous. In the north of Liwa,
water is of low salinity. It was classified as old water as it arrived at the aquifer long ago.
Most of the groundwater levels are shown at the agricultural zones of Liwa with high nitrate
concentrations [34]. The farm soils of Liwa are Torripsamments with no specific profile [35].
The agricultural activity in this area depends on desalinated water, and hence the native
soils are less saline. The Liwa region can be considered an essential food production zone
in the United Arab Emirates. Its water reserves are abundant for agriculture. The aquifer
beneath this region has become vulnerable to pollution, attributed to several factors. The
annual precipitation is confined to the winter season accounting for 100 mm/year [36]. The
groundwater recharge is just 4%, and this area is devoid of surface water resources. The
Liwa region is being degraded due to excess salinity. Its aquifer lodges increased levels of
chromium derived from natural resources.

The Liwa aquifer can be categorized as lens-shaped and with a thickness of 121 mm.
The average transmissivity was observed as 300 m2/day [37]. The groundwater movement
was observed in the north and south, especially in low-lying areas like sabkha physio-
graphic regions, dunes, and sand salt flats [38]. Barchan dune complexes border the Liwa
oasis at the south. There is a gradual incline passing to Oman’s Hajjar massif mountain. The
oil and gas-related activities injected brine into the groundwater zone. Ummer, Radhuma,
Dammam, and Miocene are important aquifers underlying the Liwa region. Rus and
Lower Fars were designated as confining units of this area [39]. Limestone dominates
Ummer Radhuma and Dammam. Figure 1 shows the hydrogeological cross section of the
Liwa region.
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Miocene aquifer is dominated by sandstone. There is minimal silt and clay at the
upper zones of the soil, resulting in high transmissivity and porosity. The Liwa area is
hydrologically unique in the western region, making it a highly productive groundwater
resource. Under the Liwa lens, it was observed that 38 bcm (billion cubic meters) of
groundwater with TDS greater than 15,000 mg/L is present [40]. Since this aquifer is
limited with its connectivity with adjoining aquifer systems, most of the solutes observed
might be of atmospheric origins. The recharge of this shallow aquifer is negligible. The flow
will be confined to the upper aquifer during intense precipitation especially in unsaturated
zones [41]. Unmitigated irrigation-related activities are dumping nitrates into the aquifers.
The freshwater lens is being depleted in the Liwa area due to several agricultural activities
per se. Liwa oasis provided an agricultural base for the semi-nomadic Bani Yas community.
This led to settlements on a large scale in Abu Dhabi [42]. The groundwater studies
using geostatistics of the study area were attempted previously and concluded that the
anthropogenic and natural processes affected the quality of the groundwater [43,44].

3. Materials and Method
3.1. Sampling and Analysis

The groundwater samples were collected from the Liwa region of the UAE. Forty
samples were collected from the study area, and their hydrogeochemical parameters
were analyzed. The water samples were analyzed using the American Public Health
Association (APHA) standards [45]. The Inductively Coupled Plasma—optical emission
spectroscopy (ICP-OES, Avio 200, Perkin Elmer, Waltham, MA, USA) was used to quantify
the heavy metals present in groundwater samples. The correlation coefficient and PCA were
determined to know the correlation between the elements in the sample. After analyzing
the database, the spatial distribution of quality parameters was obtained using ArcGIS
10.8 software to create spatial and layered maps. Semi-variograms were prepared and an
appropriate model selected based on the nugget analysis to establish spatial dependence.

Polyethylene bottles of 1 L capacity were used to collect the samples. In order to
minimize the risk of contamination, the plastic bottles were rinsed with distilled water
prior to being filled with sampled water. The samples were preserved with 65% nitric acid
(HNO3) for a pH of 2, and bottles were kept cool at 4 ◦C. ICP-OES system was used to study
the heavy and trace elements (As, Cr, Al, Mn, Ni, Cu, Pb, Zn, Cr, and Cu). Potassium (K),
Calcium (Ca), Nitrate (NO3), and Sulfate (SO4) were analyzed using Ion Chromatography
(ICS 5000+, Thermo Fisher, Waltham, MA, USA). Bicarbonate was determined by titration.
Analyses were conducted in duplicate to minimize manual and instrumental errors.

3.2. Water Quality Index (WQI)

There have been many water quality assessment methods proposed by international
scholars, such as set pair analysis [46–48], rough set and TOPSIS [49–52], entropy water
quality index [53–55]. However, water quality index (WQI) is the most popular and widely
adopted methods for overall water quality assessment [56,57]. In this study, the water
quality index (WQI) was constructed using the weighted arithmetic average method as
shown below [58].

Calculation f or water quality rating(Qn) = 100 × (Vn − V0)

(Sn − V0)
(1)

Qn: Water quality rating for the nth parameter, Vn: Observed value of the nth parame-
ter, V0: Ideal value, Sn: Standard permissible value of nth parameter.

The unit weight of the corresponding parameter was an inverse proportional value to
the recommended standard value of Sn

Calculation of unit weight (Wn) =
K
Sn

(2)
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Wn: unit weight for the nth parameter, Sn: standard value of the n th parameter, K is
the constant for proportionality: K = 1

Σ 1
Sn

The total water quality index was calculated linearly by adding the quality rating to
the unit weight:

WQI = ∑ QnWn/ ∑ Wn (3)

3.3. Principal Component Analysis (PCA)

PCA is one of the popular statistical analysis techniques that can be used to investigate
data patterns. The Principal Components Approach can be assumed as a comprehensive
Factor Analysis method. The goal of principle component analysis (PCA) is to construct new
variables, known as principal components, from a set of existing original variables [59,60].
The new variables are created by linearly combining the current variables. The PCA
reduces an extensive data set of variables into a few elements known as the principal
components, which can then be analyzed to show the underlying data structure. It is one
of the features of primary components that they are not correlated or orthogonal with
one another. When a data set has a significant variance, the first principal component (F1)
absorbs and accounts for as much variance as feasible. The second component (F2) absorbs
the remaining variation as feasible, and so on. The maximum number of PCs or principal
components equals the total number of variables in a model unless otherwise specified.
Because each standardized variable has one variance, the total variance accounted for by all
of the Fi’s will be equal to the number of variables. Only a few Fi numbers are maintained
in the data processing process to facilitate comprehension. The Kaiser criterion determines
the number of primary components preserved in the analysis. It is also possible to express
the latent root as a proportion of the overall variance in the data set. The diagram showing
methodology is given in Figure 2.
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4. Results and Discussion
4.1. Water Quality Index

The water quality index is represented in Table 1. Water quality classification based
on WQI value. If the WQI value is between 0 and 25, it can be considered excellent, and
it is good if it falls between 26 and 50. Some other ranges, including 51–75 (poor), 76–100
(very poor), and >100 (Unfit for consumption). The calculated WQI of this area is 900, and
it is way beyond the recommended value.

Table 1. Water Quality Index.

Parameters Vn V0 Sn Wn Qn WQI

Cr 0.015 0 0.05 20.000 29.523 29.523
Cu 0.002 0 2 0.500 0.079 0.079
K 8.964 0 20 0.050 44.820 44.820

Mn 0.002 0 0.4 2.500 0.589 0.589
Zn 0.005 0 3 0.333 0.156 0.156
Ba 0.166 0 0.7 1.429 23.704 23.704
As 0.022 0 0.01 100.000 220.996 220.996

TDS 863.049 0 500 0.002 172.610 172.610
EC 1478.488 0 400 0.003 369.622 369.622

NO3 1.410 0 5 0.200 28.200 28.200
SO4 23.570 0 250 0.004 9.428 9.428
pH 6.519 7 8.5 0.118 −32.065 −32.065

HCO3 87.546 0 350 0.003 25.013 25.013
Total 900.52

The descriptive statistics presented in Table 2 reflect different mean values for each
variable in this dataset. The cadmium concentration ranges from 0.17 to 0.183 ppm with a
mean of 0.18, chromium concentration from 0.00048 to 0.023 ppm with a mean of 0.014 ppm,
copper concentration from 0.000873 ppm to 0.004 ppm with a mean value of 0.001 ppm,
potassium concentration observed to be from 2.704 to 17.202 ppm, with a mean value of
8.964 ppm. The mean value of the manganese concentration was found to be 0.0023 ppm.
The Ni concentration ranges from 0.00049 to 0.0044 ppm with a mean value of 0.001 ppm.
The Pb concentration ranges from 0.289 to 0.490 ppm with an observed mean value of
0.412 ppm, and the Zn concentration ranges from 0.000357 to 0.051 ppm with a mean value
of 0.003 ppm. The mean concentration of Ba and Al is 0.166 and 0.990 ppm, respectively.

Table 2. Descriptive statistics.

Variable Mean Max Min SD

Al 0.990 1.450 0.339 0.233
As 0.022 0.029 0.008 0.004
Ba 0.166 0.457 −0.065 0.136
Cd 0.181 0.183 0.175 0.002
Cr 0.014 0.023 0.48 × 10–3 0.006
Cu 0.001 0.004 0.873 × 10−3 9.351 × 10−4

EC 1478.488 3003 328 656.631
HCO3 87.546 236.680 14.640 49.449

K 8.964 17.203 2.704 3.160
Mn 0.002 0.011 0.0002 0.003
Ni 0.001 0.004 0.0004 0.001

NO3 1.410 2.486 0.426 0.557
Pb 0.412 0.490 0.289 0.048
pH 6.519 7.190 6.190 0.259
SO4 23.570 45.794 4.129 9.255
TDS 863.049 1565 136 358.995

Temp 28.378 32.600 23.500 1.741
Zn 0.003 0.051 0.0357 × 10−2 0.008
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Hence, correlation analysis is presented in Figure 3. The correlation analysis was done
to investigate the relationships between the parameters measured.
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The degree to which two variables are allied is weighed by a correlation coefficient,
indicated by the letter r. This coefficient, named after its discoverer, Pearson, measures
linear association used in statistics and education. It is necessary to utilize alternative, more
though measures of the correlation if a curved line is required to describe the relationship.
The correlation coefficient can be measured from + 1 to −1 and is expressed as a percentage.
The degree of complete correlation between two variables is represented by the numbers
+ 1 or −1, respectively. Correlations are positive when one variable increases in response
to another’s increase and negative when one variable reduces in response to the other
increases. The number zero represents the complete absence of association.

Cadmium is negatively correlated with Cr, K, Pb, TDS, and EC and positively cor-
related with Mn, Zn, As, and pH. This shows that the heavy metals with pH other than
Cd are affecting the Cd concentrations and this can be due to anthropogenic causes. Cr is
positively correlated with Cu, K, Ba, Temp, and EC and negatively correlated with Mn, As,
NO3, and HCO3. This shows that the increase in Cr concentration is associated with the
other heavy metals (Antropogenic) along with the EC and temperature (Natural Process).
Cu is positively correlated with Zn, Ba, NO3, Ni (Anthropogenic), EC, HCO3, and Temp.
K exhibits a positive correlation with Mn, Ni, Pb, Al, As, TDS, NO3, SO4, and EC and
a negative correlation with Zn, Ba, Temp, and pH. Mn positively correlates with Al and
As and negatively correlates with Ba and Temp. Ni is positively correlated with Pb, Al,
As, TDS, NO3, SO4, and EC and negatively correlated with Zn and pH. Pb is positively
correlated with Al, As, TDS, NO3, SO4, and EC and negatively correlated with Zn, Ba,
Temp, and pH. Zn is positively correlated with Al and pH and negatively correlated with
Temp and EC. Ba is positively correlated with Temp, pH, and EC and negatively correlated
with Al, As, TDS, and HCO3. Al is positively correlated with As, TDS, NO3, SO4, and
EC and negatively correlated with Temp and pH. As is positively correlated with TDS,
NO3, SO4, HCO3, and EC and negatively correlated with Temp and pH. TDS is positively
correlated with NO3, SO4, and EC and negatively correlated with HCO3, Temp, and pH.
NO3 is positively correlated with SO4, HCO3, and EC and negatively correlated with Temp
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and pH. SO4 exhibits a negative correlation with HCO3, Temp, and pH and positively
correlates with EC. HCO3 is negatively correlated with pH and EC.

The observed cadmium value is 0.18 ppm in the study area. This water might not suit
agriculture, irrigation, and drinking purposes. The increase in cadmium levels can be due
to sewage sludge, fertilizers, battery alloys, and cigarette smoking. The increased levels of
Cd can damage kidneys. Due to this, there will be disruption of the endocrine system and
inhibition of sex hormones in humans. Long-time exposure to Cadmium may cause Itai-itai
in humans. The recommended chromium standard in drinking water is 0.1 ppm (EPA) and
0.05 ppm (WHO). The maximum value of chromium in the water sample is 0.023, which
is well within the permissible limits. Cu (0.004), Mn (0.01), Zn (0.051), Ba (0.457), NO3
(2.4), SO4 (45), Temperature (32.6), pH (7.19), and bicarbonates are within the normal range
specified by WHO and US EPA. The EC values are at 3003, and it is problematic. Pb (0.49),
As (0.028), and Al (1.45) are high in the water samples collected from the study area. The
concentration of Cadmium in the observed samples is 0.184 (0.183984), and this is higher
than the WHO recommended value of 0.003 mg/L. The concentration of lead observed in
the groundwater samples is 0.4905 mg/L against 0.01 mg/L (WHO). The concentration of
Aluminum in the samples analyzed is 1.4502 and is higher than the WHO recommended
value of 0.9 mg/L.

4.2. Principal Component Analysis

Pearson correlation matrices and PCA construed the datasets. Principal components
were generated using varimax rotation, and this yielded variables that contribute more
and other variables that contribute less. Multi-variate analysis was used in the PCA to
transform a significant set of correlated variables into a minor set of uncorrelated variables.
The interrelationships among the variables can be highlighted using covariance by this tool,
and it is also called a dimensionless reduction tool. We can use PCA to know the associated
chemicals construed as variable loadings on certain groundwater quality factors. Two
significant eigenvalues, i.e., PC1 and PC2, were observed in the 40 groundwater samples
with 18 parameters, constituting 35 and 12% of the variance. PC3 exhibited 10% of variance
but PC4 and PC5 exhibited variance less than 10%. The first five components exhibited
eigenvalues that are greater than 0.5. It is assumed that the factor loading value near +/− 1
exhibits a strong correlation. If the value if greater than 0.5, it is significant. PC1 exhibits
35% of variance about significant loadings of K, Pb, Al, As, TDS, nitrate, sulfate, and pH,
and is shown in Table 3.

Table 3. Principal Component Loadings.

Variable PC1 PC2 PC3 PC4 PC5 Uniqueness

Cd 0.739 0.387
Cr −0.680 0.489
Cu 0.841 0.203
K 0.908 0.156

Mn 0.709 0.412
Ni −0.522 0.527
Pb 0.919 0.140
Zn 0.889 0.174
Ba 0.618 0.274
Al 0.708 0.405 0.288
As 0.868 0.156

Nitrate 0.867 0.231
Sulfate 0.768 0.246
HCO3 0.738 −0.836 0.336
Temp 0.270

pH −0.572 0.626 −0.524 0.586
EC 0.810 0.254

0.204
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PC2 showed 12% variance associated with significant loadings of Ba, HCO3, and
pH. The component characteristics and component loadings for this data are presented
in Tables 3 and 4. PC2 is loaded with Ba, HCO3, and pH, whereas PC3 is loaded with
Cd, Cr, and Mn. PC4 is loaded with Zn, Al, and pH and PC5 is loaded with Cu and
Ni. Temperature, Cr, Ni, and Mn exhibited higher uniqueness values, suggesting that
these variables have limited commonality. As evidenced by systematic data analysis, PC1
exhibited significant cations and anions due to anthropogenic and natural sources.

Table 4. Component characteristics.

Variable Model Nugget Ratio (%)

Cd S * 0
Cr P 63.456
Cu C 34.148
K RQ 7.384

Mn G 79.008
Mn S * 79.008
Pb J 64.935
Zn H 100
Ba H 40.879
Al RQ 27.089
As G 76.753
As S * 76.753

Sulfate T 1.817
HCO3 J 56.035
Temp H 93.559

PH C 100
EC J 27.262
Ni C 100

NO3 H 36.387
TDS J 53

S * = stable model.

The cos values are employed to know the representation’s quality, and the individuals
closer to the center of the plot are assumed of limited or low importance for the reported
first components. The low cos values are shown in blue and high cos values in red (Figure 4).
The contribution of the variables with sample points is presented in Figure 5.
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4.3. Geostatistical Analysis of the Study Area (Spatial Distribution)

The statistical and geostatistical analysis was done using ArcGIS 10.2, R, R studio, and
MS Excel 2019. The spatial interpolators can easily predict the values of a specific attribute
at locations unknown to the observer utilizing the values of sample locations known
previously. The deterministic interpolators can utilize mathematical formulae to know
the predicted values. This can be interpreted as similarity among the neighboring points
and smoothing extent. The geostatistical interpolation techniques use certain statistical
properties of the points previously measured to estimate the value of the surface locations.
Depending on the spatial structure of the datasets framed, we can investigate the spatial
dependence among the variables. The ordinary kriging method was selected based on a
comparative analysis of interpolation methods. Models such as Circular (C), Spherical (S),
Tetraspherical (T), Pentaspherical (P), Exponential (E), Gaussian (G), Rational Quadratic
(RQ), Hole effect (H), K-Bessel (K), J-Bessel (J), and Stable (S*) were used to arrive at
appropriate semi variogram. The best-fitted models are RQ (Al and K), G (As), S* (As, Cd,
and Mn), H (Ba, NO3, Temp, Zn), P (Cr), C (Cu, Ni, and pH), and J (EC, HCO3, Pb, and
TDS). Suppose the nugget ratio is less than 25%. In that case, we can assume that there is
strong spatial dependence; 25 to 75% can be reflected as moderate spatial dependence. If
greater than 75%, we can expect least or weak spatial dependence. After nugget analysis,
it is obvious that Cd (0), K (7.38%), and SO4 (1.81%) variables exhibited strong spatial
dependence. Al (27%), Ba (40.87%), Cr (63%), Cu (34%), EC (27%), HCO3 (56%), NO3(36%),
Pb (64%), and TDS (53%) represented moderate spatial dependence. As (76%), Mn (79%),
Ni (100%), pH (100%), Temp (93%), and Zn (100%) exhibited weak spatial dependence.
Nugget analysis for selecting the appropriate model was presented in Table 5.

Table 5. The Spatial distribution and semi variogram element’s observed sites.

S.
No Elements Low Moderate High

1. Aluminum (Al) North west Western end Eastern end

2. Arsenic North west Western end South eastern

3. Barium Western end South western and north eastern South western

4. Cadmium Northern end North-south (extended) Western end

5. Chromium Northern end North-south (extended) Western end

6. Copper North-south (extended) Western end Eastern end

7. Potassium Western end Partially spotted all over the area North eastern

8. Manganese Western end South east North west
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The spatial distribution maps and semi variogram plots of essential variables were
presented in Figures 6–12. Table 5 shows the specific locations of elements distribution in
the area.
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The groundwater investigations in this area are expensive, and the sample locations
were limited. Efforts are in progress to collect more samples with an increased temporal
resolution to cross-validate the results obtained from the actual observations. Geostatistics
in groundwater studies was never attempted for this study area. This study integrated
physio-chemical, multivariate, and geostatistical analysis and water quality indices to
analyze groundwater quality parameters. The parameters were correlated using correlation
analysis, and both positive and negative correlations were found. To mention a few, Arsenic
is positively correlated with nitrates, sulfates and EC and negatively correlated with pH
and temperature. Lead is positively correlated with Al and As and negatively correlated
with Ba and Zn. Ni positively correlated with As, Al, and Pb and negatively correlated with
Zn. Chromium reflected a positive correlation with Ba and Cu and negatively correlated
with As and Mn. Zinc is positively correlated with Al.

A PCA was performed, and the results showed that there were five main components,
PC1 through PC5, which represented a variance of 35% (PC1) and 12% (PC2), 10% (PC3),
<10% (PC4 and PC5), respectively. Significant loadings on PC1 are As, Al, Pb, K, pH, sulfate,
and nitrate. PC2 accommodates significant loadings of Ba and bi-carbonates with pH.

The dataset was subjected to geostatistical analysis, and a suitable model was identified
using standard kriging. The J-Bessel model was selected to represent Pb, TDS, HCO3, and
EC. Pentaspherical model is employed to represent Cr. The circular model was used to
show the distribution of Ni, Cu, and pH. The hole effect model was used to describe the
spatial distribution of Zn, Temp, NO3, and Ba. A stable model was employed to reflect the
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distribution of Mn, Cd, and As. The rational quadratic model was used to represent K and
Al. Based on nugget analysis, it was observed that Zn, As, Mn, Ni, pH, and TDS exhibited
weak spatial dependence. Moderate spatial dependence was exhibited by Al, Ba, Cr, Cu,
Ec, HCO3, NO3, Pb, and TDS. Strong spatial dependence was observed in Cr, K, and SO4.

Groundwater quality deterioration has become a nightmare in this region, and this
was due to limited surveillance and the never-ending injection of pollutants into this
precious source. Most of the populace in this study area rely on this for industrial and
drinking purposes after purification. Several studies were made to evaluate the pota-
bility of groundwater of Liwa aquifer mainly for agricultural needs; however, rigorous
geostatistical methods were sparsely applied. This paper attempts to fill the void left in
using geostatistics to represent groundwater quality. The variation among the sample
clusters was studied previously using PCA. This paper uses optimal interpolation tech-
niques and semivariogram analysis to produce statistically enriched results. Geological
elements, and environmental and hydrological parameters were considered the core of
these studies. Previous studies were made to emulate the subsurface hydrology character-
istics with limited utilization of the geostatistics, and this work will add valuable inputs
to the contemporary research on groundwater situation analysis and management. This
paper presents a GIS-based approach with geostatistics in assessing groundwater quality at
the Liwa region, UAE. The correlation matrix obtained supports PCA analysis. The results
also shed light on groundwater quality deterioration due to anthropogenic activities. The
exponential semivariogram model was systematically authenticated for each groundwater
parameter. Analysis of groundwater samples reflects that cadmium, aluminum, and lead is
in high proportions compared to other parameters like Cr, Cu, K, Mn, Ni, Zn, and Ba. The
distribution maps are produced using the appropriate model of the kriging interpolation
method for each variable.

5. Conclusions and Recommendation

In the present study, the detailed analyses show that this study offers background
information on the groundwater parameters and factors that affect groundwater quality.
This paper can aid water resource planners in coming up with management plans to
safeguard the local population’s health. The water quality index of this area is poor,
and it is to be improved with the immediate inclusion of proposals for the rejuvenation
of groundwater.

Liwa aquifer is exploited beyond the reasonable limit. It will permanently change the
subsurface landscape in the coming decades. Given the observed water quality parameters,
it is proposed that some of the stringent actions must be levied on the exploiters of this
jewel of water in the Liwa basin. The water quality index of this region is alarmingly
high, and the stakeholders in this region must mitigate the problem with immediate
sustainable solutions.

The excess dumping of the wastes and improper groundwater extraction are assumed
to be the main reasons behind this physicochemical variability observed in the water sam-
ples. The local geology might also affect this variability, and it is yet to be studied over all
the study areas. This study combined the multivariate, geostatistical, and physicochemical
analysis; however, complete hydrological analysis in the watershed, HRU, etc., could not
be conducted. This is attributed to the local non-conducive conditions.

This area is devoid of the undulations and inundations of the terrain with almost indis-
criminate relief. The data is collected once, and the second attempt to collect groundwater
samples was not feasible due to budgetary and administrative constraints. If this had been
materialized, there might have been a more intense comparative study with the dynamics of
groundwater quality parameters. Due to the unavailability of the two-date data, there were
no attempts to compare pre-monsoon, monsoon, and post-monsoon groundwater quality.
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