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A Brief Comparison of K-means
and Agglomerative Hierarchical Clustering

Algorithms on Small Datasets

Hassan I. Abdalla(B)

College of Technological Innovation, Zayed University, P.O. Box 144534, Abu Dhabi, UAE
hassan.abdalla@zu.ac.ae

Abstract. In this work, the agglomerative hierarchical clustering and K-means
clustering algorithms are implemented on small datasets. Considering that the
selection of the similarity measure is a vital factor in data clustering, two mea-
sures are used in this study - cosine similarity measure and Euclidean distance
- along with two evaluation metrics - entropy and purity - to assess the cluster-
ing quality. The datasets used in this work are taken from UCI machine learn-
ing depository. The experimental results indicate that k-means clustering outper-
formed hierarchical clustering in terms of entropy and purity using cosine simi-
larity measure. However, hierarchical clustering outperformed k-means clustering
using Euclidean distance. It is noted that performance of clustering algorithm is
highly dependent on the similarity measure. Moreover, as the number of clusters
gets reasonably increased, the clustering algorithms’ performance gets higher.

Keywords: Clustering · K-means · Hierarchical clustering · Clustering
comparison · Cosine · Euclidean

1 Introduction

Clustering algorithms are a vital techniques of machine learning, and are widely used
in almost all scientific application including databases [1, 2], collaborative filtering [3],
text classification [4], indexing, etc. The clustering is an automatic process of assem-
bling of data points into similar assembles so that points in the same cluster are highly
similar to each other, and maximally dissimilar to points in other assembles. With the
constantly-increasing volumes of daily data and information, clustering is being unde-
niably helpful technique in organizing collections of data for an efficient and effective
navigation [1]. However, with the dynamic characteristics of the collected data, the clus-
tering algorithms have to be able to cope and deal with the newly-added data in every
second so it would help in discovering knowledge effectively and timely. As one of the
most commonly known techniques for the unsupervised learning, clustering comes with
the main objective finding the natural clusters among the assigned patterns. It simply
groups data points into categories of similar points.

This paper is organized as follows: inSect. 2, relatedwork is briefly covered. Section3
covers methodology including clustering algorithms and similarity measures used in
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this work. Section 3 introduces performance evaluation including experimental setup,
datasets description, evaluation metrics and results. Discussion is concisely covered in
Sect. 4. Finally, conclusions and future work is given in Sect. 5.

2 Related Work

In literature, the Hierarchical clustering is often seen to give solutions of better quality
than k-means. However, it is limited due to its complexity in terms of quadratic time.
Opposed to hierarchical, K-means has a linear time complexity. It is linear in the number
of points to be assigned. However, it is seen to give inferior clusters comparing with
hierarchical. Most of earlier works used both algorithms with K-means algorithm (with
Euclidean distance) is used more frequently to assemble the given data points. In its
nature, K-means is linked with the finding of centroids. The centroids comes from the
Euclidean Geometry itself. K-means also enjoys its being scalable and more accurate
than hierarchical clustering algorithm chiefly for document clustering [5].

In [5], on the other hand, the experimental results of agglomerative hierarchical and
K-means clustering techniques were presented. The results showed that hierarchical
is better than k-means in producing clusters of high quality. In [6] authors compared
two similarity measures - cosine and fuzzy similarity measures - using the k-means
clustering algorithm. The results showed that fuzzy similarity measure is better than
cosine similarity in terms of time and clustering solutions quality. In [7], severalmeasures
for text clustering were described approaches using affinity propagation. In [8] different
clustering algorithms were explained and implemented on text clustering. In [9] some
problems that that text clustering have been facing was explained. Some key algorithms,
and their merits and des-merits were discussed in details. The feature selection and the
similaritymeasurewere the corner stones for proposing an effective clustering algorithm.

3 Methodology

3.1 Term Weighting

TheTermFrequency (TFIDF) technique, as themostwidely used, ofweighting is adapted
in this work.

3.2 K-Means Clustering Algorithm

The k-means clustering algorithm is widely used in data mining [1, 4] for its being more
efficient than hierarchical clustering algorithm. It is used in our work as follows;

1. The number of clusters is one of these K values [2, 4]. That means K-means is run
three times with one different K value each time.

2. The centroids has been chosen at first step randomly.
3. The standard k-means is run by getting all the data points involved in the first loop.

The results are saved for next iteration and centroids are modified. Then, the clus-
tering process run over for successive iteration by setting all points of clusters free,
and randomly selecting new centroids.

4. Step 3 is iteratively continued till either number of iterations reach 30 iterations or
each cluster has been seen in stable state.
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3.3 The Hierarchical Clustering (HC)

Initialization:Given a set of pointsN, the data pointmatrix between points, initial clusters
were initiated by randomly picking head for each cluster [10]. Then, in each loop, for any
new data point, the data point cost between the new point and each cluster is calculated.
The cluster whose average cost is the lowest would contain the relative point at hand.
The step (1) is repeated till all points were clustered. Like K-means, number of clusters
is selected to be one of these K values [2, 4]. That means hierarchical clustering is run
three times with one different K value each time.

3.4 Similarity Measures

The similarity measures, used in this study, are Cosine and Euclidean [1].

Euclidean Distance (ED). In ED, each document is seen as a point in 2D space based
on the term frequency of N terms that would represent the N dimension. ED measures
the similarity between each point pair in this space using their coordinate based on the
following equation:

DEuc(x, y) =
∑√

x1 − y1)2 + x2 − y2)2 + · · · xn − yn)2 (1)

Cosine Similarity Measure. The Cosine similarity, as one of the most widely-used
measure, computes the pairwise similarity between ach document pair using the dot
product and the magnitude of both vectors of both documents. It is computed as follows:

SimCos(x, y) =
∑n

i=1 (x ∗ y)√∑n
i=1 x

2 ∗ √∑n
i=1 y

2
(2)

The union is used to normalize the inner product. Where x and y are the point pair
needed to be clustered.

3.5 Experimental Setup

Machine Description. Table 1 displays themachine and environment descriptions used
to perform this work.
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Table 1. Machine and environment description.

Task Tool Specification

Clustering Language Python 3, Development Software: Jupyter Notebook

OS Windows 8 (64 bit)

Memory RAM 4 GB

CPU Intel I Core ™ (i5)

Dataset Glass & Iris

3.6 Dataset Description

Tables 2, 3 hold the datasets description which is taken literally from UCI (Machine
Learning Repository).

Table 2. Iris dataset

Dataset
characteristics:

Multivariate Number of
instances:

150 Area Life

Attribute
characteristics:

Real Number of
attributes:

4 Date donated 1988–07-01

Associated tasks: Classification Missing
values?

No Number of web
hits:

3536252

Table 3. Glass identification dataset

Data set characteristics: Multivariate Number of instances: 214

Attribute characteristics: Real Number of attributes: 10

Associated tasks: Classification Missing Values? No

3.7 The Clustering Evaluation Criterions

The evaluation metrics used to assess clustering quality are Entropy and Purity.

Purity (also known as Accuracy): It determines how large the intra-cluster is, and how
less the inter-cluster is [1]. In other words, it is use to evaluates how much coherent the
clustering solution is, and is formulated as follows;

Purity = 1

N

k∑

i=1

maxj|ci ∩ tj| (3)
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where N is the number of objects (data points), k is the number of clusters, ci is a cluster
in C, and tj is the classification which has the max count for cluster ci.

Entropy. It is used to measure the extent to which a cluster contain single class and not
multiple classes. It is formulated as follows:

Entropy =
∑c

i=1
ci ∗ log(ci) (4)

Unlike purity, the best value of entropy is “0” and the worst value is “1”.

4 Results and Discussion

In this section, we provide the obtained results of running both algorithms on both
datasets using both measures – Cosine and Euclidean. Three K values for clusters – 2,
4, and 8 – along with using two evaluation metrics.

Table 4. Iris dataset - Cosine

AHC

Metric/K 2 4 8

Entropy 4.60517 4.60937 3.70626

Purity 0.66667 0.66667 0.68

K-means

Metric/K 2 4 8

Entropy 4.60517 4.47621 4.81686

Purity 0.66667 0.97333 0.95333

Table 5. Iris dataset - Euclidean

AHC

Metric/K 2 4 8

Entropy 3.91202 3.93659 3.82572

Purity 0.66667 0.68667 0.7

K-means

Metric/K 2 4 8

Entropy 3.97029 4.68630 4.7789

Purity 0.66667 0.88667 0.97333

For Iris dataset, k-means with cosine outperformed AHC. However, AHC with
Euclidean outperformed k-means. On the other hand, for Glass dataset, AHCwith cosine
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Table 6. Glass dataset - Cosine

AHC

Metric/K 2 4 8

Entropy 4.72739 4.60619 4.62534

Purity 0.48131 0.49065 0.53738

K-means

Metric/K 2 4 8

Entropy 4.96284 4.99857 5.09285

Purity 0.67757 0.71963 0.85981

Table 7. Glass dataset - Euclidean

AHC

Metric/K 2 4 8

Entropy 0.69315 4.93907 4.85886

Purity 0.36449 0.62617 0.67290

K-means

Metric/K 2 4 8

Entropy 4.68213 4.98090 5.09710

Purity 0.51402 0.74766 0.83178

and Euclidean outperformed k-means in terms of entropy. In contrast, k-means out-
weighed AHC in terms of purity for both cosine and Euclidean. If we took this analysis
as points for both algorithm, Table would hold these points.

Table 8. K-means and AHC in points

AHC

Dataset/Measure Cosine Euclidean

Iris 0 1

Glass 1 1

K-means

Dataset/Measure Cosine Euclidean

Iris 1 0

Glass 1 1
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From Table 8, it can be noted that both algorithms have similar trend performance
on both datasets. However, AHC preferred giving smaller entropy than k-mean, when
k-means preferred giving higher purity.

In next Tables 9, 10, 11 and 12,Mean and Standard Deviation (STD) of both Entropy
and Purity were taken in an average of all K values (2, 4, and 8) of each algorithm
with respect to each evaluation metric -Entropy and Purity. Booth Mean and STD are
interpreted using the basic values of entropy and purity that are drawn in Tables 4, 5, 6
and 7).

Table 9. Iris dataset - Cosine

AHC

Mean STD

Entropy 4.30693 0.42474

Purity 0.67111 0.00629

K-means

Metric/K Mean STD

Entropy 4.63275 0.14043

Purity 0.86444 0.14009

Table 10. Iris dataset - Euclidean

AHC

Mean STD

Entropy 3.89144 0.04754

Purity 0.68444 0.01370

K-means

Metric/K Mean STD

Entropy 4.47851 0.36135

Purity 0.84222 0.12908

Table 11. Glass dataset - Cosine

AHC

Mean STD

Entropy 4.65297 0.05320

Purity 0.50312 0.02453

(continued)
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Table 11. (continued)

K-means

Metric/K Mean STD

Entropy 5.01809 0.05484

Purity 0.75234 0.07791

Table 12. Glass dataset – Euclidean

AHC

Mean STD

Entropy 3.49703 1.98291

Purity 0.55452 0.13572

K-means

Metric/K Mean STD

Entropy 4.92035 0.17509

Purity 0.69782 0.13443

Mean (Purity) in k-means is always better than AHC. However, Mean (Entropy)
in AHC is always better than K-means. This confirms our previous analysis that AHC
always produces solutions of lower entropy andK-means always gives solutions of higher
purity. However, STD in AHC is better than K-means on both Iris and Glass datasets for
both Euclidean and Cosine respectively. On the other hand, K-means is better than AHC
on both Iris and Glass datasets for both Cosine and Euclidean respectively. As a rule
of thumb, when STD is >=1, that implies a relatively high variation. However, when
STD <=1, it is seen low. This means that the distributions with STD higher than 1 are
seen of high variance whereas those with STD lower than 1 are seen of low-variance. In
General, STD is better when it is kept as much low as possible which means that data
has less variations around the mean with different K values for clusters.

5 Conclusions and Future Work

In this paper, we tried to briefly investigate the behavior of hierarchical and k-means
clustering algorithms using cosine similarity measure and Euclidean distance along with
using two evaluation metrics – Entropy and Purity. In general, AHC produced cluster-
ing solution of lower entropy than k-means. In contrast, k-means produced clustering
solution of higher purity than AHC. Both algorithms look to have a similar performance
trend on both datasets with AHC being slightly superior in terms of clustering solu-
tion quality. On the other hand, although we have not discussed the run time, we found
from experiments that AHC suffers from the computational complexity comparing with
K-means which was faster. However, the hierarchical clustering produced a clustering
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solutions of slightly high-quality than K-means. As a matter of fact, the performance of
both algorithms on both “small” datasets could not be taken as a decisive factor for the
report on behavior of both algorithm.

Therefore, the future work is directed towards extending this study significantly by:
(1) Proposing new clustering algorithm, (2) including medium-sized and big datasets,
(3) investigatingmore similaritymeasures [12], (4) consideringmore evaluationmetrics,
and finally, (5) studying one more clustering algorithm [13]. The ultimate aim of future
work is to draw a valuable comparison study between all algorithms on target datasets
so that the best combination of clustering algorithm and the relative similarity measure
is captured. Moreover, the effect of using a different incremental number of clusters “K”
is investigated.
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