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The sinoatrial node (SAN) is composed of highly specialized cells that mandate the
spontaneous beating of the heart through self-generation of an action potential (AP).
Despite this automaticity, the SAN is under the modulation of the autonomic nervous
system (ANS). In diabetes mellitus (DM), heart rate variability (HRV) manifests as a hallmark
of diabetic cardiomyopathy. This is paralleled by an impaired regulation of the ANS, and by
a pathological remodeling of the pacemaker structure and function. The direct effect of
diabetes on the molecular signatures underscoring this pathology remains ill-defined. The
recent focus on the electrical currents of the SAN in diabetes revealed a repressed firing
rate of the AP and an elongation of its tracing, along with conduction abnormalities and
contractile failure. These changes are blamed on the decreased expression of ion
transporters and cell-cell communication ports at the SAN (i.e., HCN4, calcium and
potassium channels, connexins 40, 45, and 46) which further promotes arrhythmias.
Molecular analysis crystallized the RGS4 (regulator of potassium currents), mitochondrial
thioredoxin-2 (reactive oxygen species; ROS scavenger), and the calcium-dependent
calmodulin kinase II (CaMKII) as metabolic culprits of relaying the pathological remodeling
of the SAN cells (SANCs) structure and function. A special attention is given to the
oxidation of CaMKII and the generation of ROS that induce cell damage and apoptosis of
diabetic SANCs. Consequently, the diabetic SAN contains a reduced number of cells with
significant infiltration of fibrotic tissues that further delay the conduction of the AP between
the SANCs. Failure of a genuine generation of AP and conduction of their derivative waves
to the neighboring atrial myocardium may also occur as a result of the anti-diabetic
regiment (both acute and/or chronic treatments). All together, these changes pose a
challenge in the field of cardiology and call for further investigations to understand the
etiology of the structural/functional remodeling of the SANCs in diabetes. Such an
understanding may lead to more adequate therapies that can optimize glycemic control
and improve health-related outcomes in patients with diabetes.

Keywords: sinoatrial node, diabetes, action potential, ion channels, gap junctions, structural remodeling,
metabolic changes
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1 THE SINOATRIAL NODE AS A
PACEMAKER OF THE HEART

Cardiac rhythm is controlled by the activity of a heterogeneous
collection of highly specialized cells forming the SAN, located at
the wall (epicardium) of the right atrium, laterally to the entrance
of the superior vena cava, and in the vicinity to the cristae
terminalis (1, 2). Since its discovery about a century ago (1907)
by Arthur Keith and Martin Flack, the SAN has attracted the
attention of scientists to decipher its characteristics (3).

The length of the SAN ranges from 8-21.5 mm, comprising
the head, the central area and the tail (4, 5). Optical mapping
techniques identified several spots, within the SAN, that
discharge action potentials (APs), ultimately leading to the
depolarization of the atrial muscle (6). The unique
electrophysiological properties of the SAN cells (SANCs) are
conducive to self-excitation yielding spontaneous depolarization,
thus pacemaker activity, in the absence of external stimuli (7).
This is mandated by the ingress of sodium (funny current) and
calcium ions through the sarcolemma (8) which constantly lifts
up the unstable resting membrane potential (~ 60 mV) of SANCs
towards the threshold (~ -40 mV), before the upstroke of the AP
arises (9, 10). Despite this, the self-excitation process per se is
insufficient; it still requires a special cellular organization/
structure that promotes the exit of the AP throughout well-
defined pathways to spread through, and efficiently depolarize
the adjacent myocardium (left atrium) (11). These include a
remarkable cell-cell communication profile implicating low
conductance gap junctions with a particular transmission
pattern of the electrical signals, along with an electrical
insulator (connective tissue) surrounding the grouped SANCs
(12). The connective tissue is needed to avoid the random
dissipation of the depolarization wave and to focus its
trajectory through specific exit pathways for an effective
propagation of the AP through the atrial myocardium (13).
The blood supply to the SAN is mainly through the right
coronary artery in most cases, to a lesser extent by the
circumflex of the left coronary artery, and by both coronary
arteries in a very minor portion of the population (14–16).
Therefore, the safety of cardiac rhythm highly hinges on a
properly functioning SAN that must be constantly supplied by
the appropriate amount of oxygen/nutrients.

2 SAN CELLS LINEAGE AND
DEVELOPMENTAL CHANGES

SANCs are structurally and functionally different from the
surrounding cardiomyocytes (17, 18). The SAN comprises a
collection of weakly connected cells (pacemaker cells,
adipocytes, myocytes, and fibroblasts) out of which those
defining the pacemaker activity of the node are divided into
three main types of cells; the elongated spindle shaped cells (~80
µm in length), the spindle cells (~ 40µm), and the spider-shaped
cells [reviewed in (19)]. A careful inspection of human SAN
revealed the presence of mainly three different types of cells: the

pale (P) cells organized in clusters with elongated cytoplasmic
extensions, the transitional (T) cells that resemble
cardiomyocytes but with fewer sarcomeres, and the fibroblast-
like cells with long bi-tripolar contacting cells (20). All together,
these cells are insulated by fibrous tissues from the rest of the
atrial myocardium. This insulation shields the SANCs from atrial
hyperpolarization and provides a unidirectional route for the
depolarization wave initiated at the SAN center to spread in
mainly three directions (outside the superior vena cava, outside
the inferior vena cava, and between both venae cava) and
therefore to invade the atrial muscle (21). Despite the
heterogeneity of these cells, along with the difference in their
distribution across the SAN (cristae terminals vs atrial septum),
there are unifying active electrical properties at the plasma
membrane that support the pacing activity under normal
circumstances. At the initial stages of cardiac development, all
cardiac cells possess pacemaker activity, however, the majority
develop into working myocardium and few cells form the
conduction system of the heart (SAN, Atrioventricular node,
and His-Purkinje fibers). This is achieved by localized and
targeted repression of differentiation of specific genes that
drive these cells into cardiac muscle via an interplay between
different modulators of the transcription (example: Tbx5, Nkx-5,
Tbx-2, Tb-3, and Id2) (22). A primordium SAN is shown as early
as Embryonic (E) day 10.5 in mouse hearts (23). At this stage,
SANCs are relatively poor in organelles and myofibrils compared
to the other cardiomyocytes at E16 and E18 in mice, and they are
characterized by a strikingly poor proliferative capacity at
embryonic levels (compared with cardiomyocytes) (24). At
birth, the pacing of the SAN overrides all other parts of the
conduction system (Atrioventricular node and His-Purkinje
fibers) and guarantees a heart rate of about 70-90 beats per
min in healthy subjects. Heart rate variability (HRV) is tightly
linked to changes in the activity of the SAN (intrinsic or extrinsic
factors). With age, the decrease in the volume of nodal cells and
SAN tissues, along with the development of fibrosis can result in
dysfunction of the SAN (25, 26).

3 REGULATION OF SAN BY THE
AUTONOMIC NERVOUS SYSTEM AND
THE COUPLED-CLOCK SYSTEM

Under physiological conditions, HRV is regulated by two main
signaling cascades: the autonomic nervous system (ANS) and
the coupled-clock system within the SANCs (27). The
involvement of the ANS implicates the brain as a modulator
of the SANCs automaticity through a balanced control of G-
protein-coupled receptors (GPCRs) from both ANS branches:
the sympathetic and the parasympathetic nervous system (SNS
and PNS). Stimulation of the sympathetic nervous system
(SNS) increases HR while stimulation of the parasympathetic
nervous system (PNS) decreases the HR (28, 29). Acetylcholine
that is released upon PNS stimulation acts on muscarinic
receptors (M2R) in the SAN of the human heart and reduces
its rate of firing (29).
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The sympathetic activation of the heart (adrenergic), via the
release of its neurotransmitter norepinephrine (NE), leads to
the activation of the b-adrenergic receptors (b-AR) expressed
at the sarcolemma of SANCs, thus causing the activation of the
b-AR cyclase. The b-AR pathway involves the activation of
adenylyl cyclase (AC), via the stimulatory guanosine
triphosphate (GTP) regulatory protein (Gs), which converts
adenosine triphosphate (ATP) into adenosine 3′ , 5′-
monophosphate (cAMP), which in turn stimulates cAMP-
dependent protein kinase A (PKA) (30). PKA is a central
mediator of b-AR regulation of cardiac function. Subsequently,
a multitude of target proteins including the ryanodine receptors
(RyR) and the sarco-/endoplasmic reticulum Ca2+ ATPase
(SERCA) Ca2+ pumps in the SAN are phosphorylated by PKA
to evoke intracellular Ca2+ [(Ca2+)i] oscillations affecting
currents through the Na+/Ca2+ exchanger (NCX) (31). This
surge of [Ca2+]i ultimately increases the slope of the
spontaneous diastolic depolarization (SDD) and consequently
the heart rate (HR) (positive chronotropic effect) (32). There is
increasing evidence that SAN pacemaker activity is subject to an
intrinsic regulation by CaMKII via modulation of L-type Ca2+

currents (ICa,L)inactivation and reactivation (31, 33).
Additionally, the hyperpolarization-activated cyclic nucleotide-
gated (HCN) channel gene family is a key determinant of
mechanisms underlying chronotropic effects of b-AR
stimulation (34). HCN4 channels are the most prevalent in
SAN. These channels are regulated by PKA and therefore they
are involved in the auto-pacing activity of SAN, as well as in the
autonomic modulation of the HR (35).

In contrast, the parasympathetic input represses the rhythm
of SANCs through the release of acetylcholine (ACh) which
reduces the production of cAMP in SANCs. More importantly,
ACh activates the potassium channels driving the SANCs into
the hyperpolarized state. This leads to a reduced slope of SDD
and a decrease in HR (negative chronotropic effect) (36).
Nonetheless, exposure of SAN cells to adrenaline or
acetylcholine revealed a shift in the pacemaker locus across the
SAN tissues, thus implying a different expression pattern of the
effectors/signaling cascades (to these neurotransmitters) by
SANCs and reinstating their heterogeneity (18).

Although debatable, the “coupled-clock” system is believed to
regulate the automaticity of the SANCs (7). It comprises an
ensemble of highly dynamic membranes: the surface membrane
(Sarcolemma-SL) and the sarcoplasmic reticulum (SR)
membrane. The SL and SR membranes express ion channels
and transporters defining the membrane clock or “M clock” and
“Ca2+ clock”. Both clocks work interdependently but
synergistically contribute to SDD, triggering the AP upstroke
(37). The degree of the coupling between the “M” and the “Ca2+”
clocks delineates the normal pacemaker function (7).

Electrophysiological studies identified electrical currents that
form the pacemaker AP in SANCs. The ionic currents defining
the “M clock” include the funny current (If) carried by HCN
channel (38), T-type (Cav3.1) calcium current (ICa,T) (39), L-type
(Cav1.3 and Cav1.2) calcium currents (ICa,L) (40), sodium-
calcium exchange current (INCX) (41), and rapid and slow

delayed rectifier potassium currents (IK,r and IK,s) (42, 43).
Proteins defining the “Ca2+ clock” include RyR2 (44) and
SERCA (45).

In general, local diastolic Ca2+ releases (LCRs) from the SR
occur rhythmically. This promotes the Na+/Ca2+ exchange
(NCX) current (INCX) to generate a local AP which
subsequently spreads as a depolarization wave over the SANCs
and the neighboring myocardium (46). It is believed that the Ca2
+-cAMP-PKA pathway is also involved in regulating the clock
coupling (45). In fact, Ca2+ release stimulates both the CaMKII
and PKA via Ca2+-calmodulin activated ACs. These kinases
phosphorylate the SL “M clock” proteins and the SR Ca2+

cycling proteins, which promotes SR Ca2+ release, thus further
promoting the Ca2+ -calmodulin-activated ACs and CaMKII
(32). It has been shown that withdrawal of b-AR stimulation
uncouples the clocks, thus failing to generate a spontaneous AP
in SANCs (45). Recently, Sirenko and colleagues reported that
the inhibition of the phosphoprotein phosphatases (PP)
increases the firing rate of APs via the coupled-clock
mechanism, including respective increases in the SR Ca2+

pumping rate, ICa,L, and INCX (46).

4 SAN REMODELING AND DYSFUNCTION
IN DIABETES

Diabetes mellitus (DM) is a global health problem that affects
hundreds of millions of people worldwide (47). The chronic
hyperglycemia seen in diabetes is precipitated due to
abnormalities in insulin secretion, insulin action, or a
combination of both in the form of insulin resistance. The
prevalence worldwide ranges from around 5% to more than
15%. In the Middle East, the prevalence is reported to be among
the highest in the world, with an average of 11.4% (48). The
prevalence of cardiovascular risk factors is high among patients
with diabetes and in those with earlier onset of the disease, where
higher cardiovascular risks and poorer cardiovascular outcomes
and mortality are seen (49). In fact, the leading cause of mortality
among patients with diabetes is cardiovascular disease (50).
Besides mechanical changes, alteration in the electrical
function is another main characteristic of a diabetic heart.

Overall, metabolic abnormalities have been linked to a
reduction in sympathetic activity and atypical SAN function
(51, 52). This is mainly blamed on nerve growth factor
production by adipocytes (53). Such release of growth factors
can also account for the higher level of innervation seen in the
nodal tissue (53). For example, the adipocyte-derived metabolic
hormone leptin has also been suggested to be linked to the SAN
function. Leptin receptor-deficient mice are at higher risk of
developing arrhythmias due to a reduction in SAN recovery time
and relative autonomic denervation (54). The SAN function has
also been linked to metabolic changes through the role of free
fatty acids (FFA) whereby the If current is upregulated by FFA
and sympathetic innervation, which results in increasing
intracellular Ca2+ level and Ist current (55, 56). Collectively,
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these studies demonstrate that diabetes induces metabolism-
mediated dysfunction of the SAN.

4.1 Effects of the Impaired Autonomic
Nervous System on SAN Function in
Diabetic Conditions
One of the most important determinants of cardiac function and
performance is the HR, which is modulated by the intrinsic
rhythmical firing of the SAN. DM is associated with significant
cardiovascular complications and neuropathies (57, 58). The
regulation of HR by the ANS has been shown to be impaired
in diabetic patients (59, 60). This condition is referred to as
cardiovascular autonomic neuropathy (CAN), one of the earliest
manifestations of DM (59). Up to 90% of diabetic patients exhibit
CAN, which is often accompanied by impairment of the nerves
of the heart and possible damage to the PNS mechanisms
regulating HR (59, 60). These findings are of crucial clinical
significance since DM patients with CAN have increased
mortality as compared to patients with DM who do not exhibit
CAN (61).

In type 2 DM (T2DM), PNS activity is impaired (59, 62). In
addition, in type 1 DM (T1DM), there is an impairment in the
mechanisms regulating HR by PNS, and that this impairment is
accompanied by a change in the response of the SAN to PNS
agonists such as carbachol (CCh) (63, 64). The impaired PNS
activity and CAN are demonstrated earlier in T2DM as
compared to T1DM (59); however, the mechanisms that are
involved in the impaired regulation of HR by PNS in T2DM are
not completely understood. It appears that the cardiac
autonomic dysfunction that is associated with T2DM is mainly
caused by direct damage to the autonomic nerves themselves (59,
65, 66); however, a direct impairment of the SAN function with
T2DM cannot be ruled out at this time.

It is important to note that screening diabetic patients for
cardiac autonomic neuropathy is highly recommended,
especially in those patients with a history of macrovascular or
microvascular complications, increased cardiovascular risk, and
poor glycemic control (67). While cardiovascular reflex tests are
still standard of care, the measurement of HRV is one of the most
convenient, pain-free ways to reliably assess the cardiac
autonomic neuropathy (68, 69). HRV is defined as the
variation between two consecutive heartbeats. A decrease in
ANS function has been reported to precede the progression
into hypertension (70). Higher HRV indicates higher
parasympathetic activity and reflects better adaptations to
microenvironmental changes (71), and low HRV is reported as
a marker of increased cardiovascular risk (69, 72). Among the
general population, increased systolic blood pressure, abdominal
diameter, waist–hip ratio, and body mass index (BMI) have been
associated with decreased HRV (73, 74). HRV was reported to be
improved following weight loss (75). No substantial data is
available on the relationship of these parameters in the diabetic
state, and the present data on HRV among patients with diabetes
is contradictory (76, 77). Nevertheless, it has been reported that
HRV is reduced in T1DM youth patients (78).

4.2 Cellular and Molecular Changes Within
the Diabetic SAN Tissue
Irrespective of the modality of diabetes (T1DM vs. T2DM),
manifestations of the sympathetic and parasympathetic axes
certainly precipitate variabilities in cardiac rhythm. Despite
this direct modulation of the SAN by the ANS, the cellular,
molecular, and structural changes within the SAN tissue in
hyperglycemic conditions remain ill-defined.

Spontaneous and rhythmical APs are generated by the
SANCs, the primary pacemaker of the heart. Under normal
circumstances, these spontaneous APs, and the slow diastolic
depolarization between successive APs, contribute to the
determination of the intrinsic HR (29). The length of time
between successive APs in the myocytes of the SAN is
determined by the contributions of ionic currents that can
affect the transition from the maximum diastolic potential
(MDP) to the threshold and the initiation of the next AP. The
ionic currents include the hyperpolarization-activated current or
funny current (If), and a rapidly activating delayed rectifier K+

currents (IKr) generated by ether-a-go-go (ERG) channels (7, 28,
79). The PNS reduces HR by activation of inhibitory G proteins
associated with M2R and attenuating spontaneous firing of AP in
SAN myocytes (58). While the primary pacemaker activity of the
SAN is spontaneously generated, the rate of this activity and,
therefore the HR, can be modified by factors such as ANS,
hormones and neurotransmitters, medications, ions, hypoxia, as
well as disease states.

In a recent study, Liu et al. (58) examined the effects of
carbachol (CCh) on HR and SAN function in isolated SAN
cardiomyocytes of male and female db/db mice, an animal model
exhibiting features of T2DM. CCh showed an attenuated effect
on slowing the spontaneous AP firing which was associated with
a smaller decrease in the slope of diastolic depolarization and a
reduced hyperpolarization of the MDP. CCh did not produce
significant hyperpolarization in SAN cardiomyocytes isolated
from male and female db/db mice (58). The results of this study
provided some evidence for cellular and molecular mechanisms
that might lead to the attenuated regulation of PNS on HR in
T2DM (58). The acetylcholine-activated K+ current (IKACh)
becomes desensitized and its amplitude diminishes in the
presence of an M2R agonist such as CCh (80–82). This
channel, IKACh, which mediates the activation of PNS in the
SAN, was found to exhibit increased desensitization and faster
deactivation kinetics in the SAN of db/db mice, resulting in an
attenuated effect of CCh on HR in these mice. Furthermore, the
impaired IKACh in SAN myocytes was attributed to altered G
protein signaling 4 (RGS4) and phosphatidylinositol (3,4,5) P3
(PIP3) signaling. The authors concluded that their findings may
identify new interventions that might benefit diabetic patients
with CAN, and with attenuated ANS signaling to the SAN (58).
In support of this contention, earlier studies have also shown that
the kinetics of IKACh are regulated by RGS4 and PIP3 signaling in
the SAN (83). RGS4 is inhibited by PIP3 which is activated by
insulin-mediated phosphoinositide-3 kinase (PI3K) signaling.
Therefore, impaired insulin and PI3K signaling in T2DM
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could result in enhanced RGS4 activity due to a loss of PIP3-
mediated inhibition of RGS4 (84–86).

At the molecular level, the CaMKII pathway, known to
maintain the pacemaker activity of SAN (33) is altered in
diabetes and could lead to SAN anomalies. This is mainly
achieved through the oxidation of CaMKII into ox-CaMKII
which slows down the pacemaker activity of the SAN and
promotes apoptosis of SANCs leading to high mortality in
human and in experimentally diabetic animal models (33, 87,
88). In fact, inhibition of CaMKII oxidation (mice lacking active
NADPH oxidase), or pharmacological inhibition of CaMKII
concedes resistance to apoptosis and fibrosis for injured SAN
(87). Furthermore, using antioxidants in streptozotocin (STZ)-
treated rats successfully reversed this process (87–89).

In addition to CaMKII sustained activity, hyperglycemia
furthers the production of detrimental ROS that damage the
cells and induce apoptosis leading to reduced SAN function.
High blood glucose levels in diabetes increases diacylglycerol
(DAG) content that activates protein kinase C (PKC). This in
turn phosphorylates NADPH-oxidase, leading to further
production of ROS. Such inflammatory reactions may also be
associated with the action of advanced glycation end products
(AGEs), which interact with their respective receptors (RAGE)
on the cell surfaces, to produce the proinflammatory cytokines.
Collectively, these promote inflammation, oxidative stress, and
cellular death (90).

In SAN, basal PKC activity is crucial for normal spontaneous
SANC activity. In freshly isolated rabbit SANCs, inhibition of
PKC suppressed SR Ca2+ cycling and the spontaneous beating of
the cells. Normally, SANCs firing is regulated by local
subsarcolemmal Ca2+ release from the SR. Such release takes
place during the SDD and stimulates NCX leading to an
increased rate of SDD and acceleration of spontaneous SANC
activity (91).

The pathological remodeling of the SAN in diabetic
conditions resembles the one noticed in the elderly, whereby
nodal cells are atrophied and are surrounded by infiltrated
fibrous tissues (25, 26) (Figure 1). This profoundly alters the
electrical conduction between the SANCs. In fact, the diabetes-
induced fibrosis in STZ-treated rats detrimentally reduces the
conduction properties of SAN tissues, often depicted by a wider
P wave on the ECG tracings (92, 93). In contrast, the remodeling
of the SAN in obese rats is manifested by hypertrophied SANCs
and enlarged SAN tissues (94). Moreover, in diabetic conditions,
the adenosine receptor AR1 is upregulated in the heart (95).
Functional analysis showed that the upregulation of AR1
promotes SAN dysfunct ion and nodal conduct ion
abnormalities (96). Thus, the direct effect of diabetes on SAN
safety cannot be simply ignored. In addition, the indirect effect of
diabetes on SAN tissues exemplified by the hypoperfusion of the
SAN by the coronary arteries, due to their pathological
remodeling in hyperglycemic conditions, profoundly alters
SAN function.

4.3 Insights on Ion Channels Dysfunction
and Cytoskeletal Remodeling in
Diabetic SAN
Disruption of cardiac electrical activity has been widely observed
in the hearts of both T1DM and T2DM patients (97). For
example, prolongation of QRS and QT segments (98),
disturbance in automaticity of SAN, atrioventricular block, and
left bundle branch block have been commonly reported (99–
101). T2DM patients have a high risk of atrial fibrillation (102,
103), ventricular arrhythmia (104), and fibrillation (105).

Similarly, prolonged QRS and QT intervals have also been
reported in animal studies on diabetes. In isolated perfused
hearts of non-obese Goto-Kakizaki (GK) T2DM rats,
spontaneous HR was lower compared to control rats. This

A B

FIGURE 1 | Schematic diagram of healthy SANCs showing intact gap junctions (GJ) (A) and remodeling of the diabetic SANCs showing decreased GAP junctions,
infiltration of fibrous tissues, and apoptosis of SANCs (B). Red arrow represents cell apoptosis; blue arrow represents nuclear blebbing; GJs are characterized by
altered expression of connexins. Fibroblasts (FB) are populating in the extracellular matrix.
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observation implies that the changes are, at least in part, due to
an intrinsic abnormality in the cardiac electrical conduction
system (106). Although earlier studies in animal models have
reported a profound decrease in HR and increased mortality in
diabetic animals (106), reports on SAN remodeling in diabetes
are limited. In STZ-treated diabetic rats, HR was found to be
slower compared to controls. Furthermore, SAN conduction and
pacemaker cycle length and time were prolonged (107). Recently,
in a recent, in leptin-receptor deficient T2DM diabetic mice,
disturbance of systolic and diastolic activity of the heart,
prolongation of SAN recovery time and relative autonomic
denervation were reported (54).

Structural and/or functional channelopathies are thought to
play a role in the electrical abnormalities reported in the diabetic
heart. At the cellular level, diabetes reduces the velocity of SAN
conduction and the slope of SDD and prolongs the duration of
cardiac AP which is attributed to the altered expression and
electrophysiological properties of various ion channels (97, 108–
110) (Figure 2).

4.3.1 SAN Ion Channels
As mentioned earlier, the pacemaker activity of the SAN is
regulated by several ion channels that are thought to
contribute to the SDD. Specifically, the pacemaker activity is
determined by a net inward current caused by the deactivation of
outward current (IK,s) and the activation of inward currents,
carried mainly by voltage-gated sodium channels (Nav1.5),
hyperpolarization-activated cyclic nucleotide-gated channels
(HCN), Cav3.1 channels and Cav1.3 channels (1, 12, 111).
Therefore, disruption of one or more of these ion channels
would alter the electrophysiological properties of the SAN.
Figure 3 shows the main ionic currents involved in the AP
of SANCs.

4.3.1.1 Voltage Gated Sodium Channel (Nav1.5)
The voltage-gated sodium channel (Nav1.5) is predominantly
expressed in the heart and governs the upstroke of the AP in the
atrial and ventricular cells (112). However, its expression and
distribution in the SAN tissues remain debatable. While studies
showed the presence of the Nav1.5 in SAN tissues, others

indicated that they are mainly expressed at the periphery but
absent from the center of the SAN (113). Moreover,
developmental studies showed that this particular isoform of
the sodium channel is highly expressed at an early stage during
development, and its expression is reduced later on when the
heart adopts a slower rate of contraction (114). From the
functional point of view, while studies showed an implication
of Nav1.5 in the conduction of SANCs (115), others indicated
that Nav1.5 rescues the pacing activity of SANs in
hyperpolarization conditions (114).

In heterozygous knockout mice Nav1.5+/− , delayed
conduction and arrhythmia were reported (116). In alloxan-
induced diabetic rabbits, the protein level of Nav1.5 and the
density of INa in the ventricle were significantly reduced (117). In
agreement with this finding, Zhang et al. found that Nav1.5 was
significantly decreased in the left atrium and right ventricle by
33% and 37%, respectively (118). However, Ferdous, et al. (2016)
showed an upregulation of the gene encoding Nav1.5 in the SAN
of STZ diabetic heart compared to normal (107). Such change in
the expression of Nav1.5 could be an important determinant for
arrhythmogenesis observed in diabetes. Furthermore, increased
production of ROS in diabetic hearts, which is known to modify
the properties of Na+ channels, could also contribute to the
impaired SAN function in diabetes (119, 120).

4.3.1.2 Hyperpolarization-Activated Cyclic Nucleotide-
Gated Channel
HCN channel conducts the hyperpolarization current (funny
current; If). The channel activity is responsible for the
spontaneous diastolic membrane depolarization of the SANCs
and therefore the generation of spontaneous SAN AP. The
channel is a tetramer that is composed of four HCN subunits
that are made of six transmembrane segments. Although four
HCN gene family members (HCN1, HCN2, HCN3 and HCN4)
have been found in the heart, HCN4 is the prominent HCN in
human SAN (121).

FIGURE 2 | Schematic diagram showing action potential (AP) pattern of
SANCs in control (black) and diabetic (red) SAN.

FIGURE 3 | Schematic diagram of SANC showing main ion channels that
play a role in AP generation and along with ryanodine receptor 2 (RyR2), the
sarcoplasmic reticulum (SR) calcium pump (SERCA2a) and the Na+/Ca2+

exchanger (NCX1). ↓ represents the currents that play a main role in
generation of AP and are inhibited in diabetes. If, funny current; ICa,T, current
conducted by T-type voltage-gated Ca2+ channel; ICa,L, current conducted by
L-type voltage-gated Ca2+ channel.
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The HCN channel is modulated by cAMP (122). Specifically,
the activity of the channel rises with the increase in intracellular
concentrations of cAMP, which binds to the C-terminus of the
channel (123). While cAMP activates the channel, muscarinic
agonists inhibit the inward current at diastolic potentials by
shifting the activation curve to more negative values (124). It is
believed that regulation of HCN4 by cAMP in the heart is
essential for HR modulation by the ANS. While cAMP-
dependent increase in HCN4 activity is needed for the
acceleration of the HR under ANS stimulation, a drop in the
levels of cAMP following vagal stimulation lessens HCN4
activity and decreases HR (28, 123).

Studies in animal models have reported that SANCs from
knockout mice lacking HCN4 have a parallel decrease of 75% in
If (125). In STZ T1DM, altered mRNA expression of HCN4
channels was reported (107). In support of this finding, a recent
study conducted by Zhang et al. (2019) has shown a significant
disturbance in the ECG characteristics of STZ-treated diabetic
rats. This change was marked by prolongation of the PR interval,
RR interval, QT interval and QRS complex. In addition, the
beating rate of SAN was slower compared to control.
Electrophysiological experiments showed that blocking of
HCN4 channels with CsCl resulted in reduction of the beating
rate of rat SAN preparations, indicating that HCN4 channels
play a vital role in sustaining the spontaneous pacemaker
activity. Along with the downregulation of HCN4 in the SAN,
If was significantly reduced which could explain the observed
reduction in SAN function (118).

Similarly, altered expression of HCN4 was reported in T2DM
animals. In vivo experiments conducted in GK diabetic rats have
shown that a decrease in the HR of young animals was coupled to
downregulation of the expression of HCN4 gene (126). It is
important to note that downregulation of HCN4 and If might be
partly responsible for bradyarrhythmia observed in diabetic
patients (127).

Although elevated ROS is a consistent finding in cardiovascular
complications of diabetes, data on defined molecular targets and
pathways that connect increased oxidation with SAN function are
very limited. In sick sinus syndrome, mitochondrial oxidative
stress was found to induce HCN4 downregulation (128). A
recent study found that this effect involves the inhibition of
mitochondrial thioredoxin-2, an important ROS scavenger that
regulates the mitochondrial apoptosis signaling pathway. Indeed,
the deletion of thioredoxin-2 in the whole mouse heart caused
dilated cardiomyopathy, atrioventricular block and sinus
bradycardia. The mice also displayed reduced expression of
HCN4 in SANCs and typical electrophysiological signs of sick
sinus syndrome (129).

4.3.1.3 T-Type Voltage-Gated Ca2+ Channel (Cav3.1)
The T-type voltage-gated Ca2+ channel plays a key role in cell
excitation and Ca2+ handling in the heart. Three types of T-type
Ca2+ channels were cloned; Cav3.1 (a1G), Cav3.2 (a1H) and
Cav3.3 (a1I) (130). The Cav3.1 is highly expressed in the SAN
and atrioventricular node, while it is poorly expressed in the
myocardium. Cav3.1 contributes to the total Ca2+ current in the
SAN. It was found to play a vital role in pace-making and

impulse conduction in both mice and humans (131). The current
generated by Cav3.1(ICa,T) is marked by delayed activation at
voltages expanding over the diastolic depolarization phase, and
rapid inactivation (132). It was reported that mice deficient in
Cav3.1 had slower SAN recovery time, decelerated pacemaker
activity of SAN and HR, and delayed atrioventricular
conduction. These findings show that Cav3.1 is a major
contributor to the generation of cardiac rhythmicity (132). An
earlier study demonstrated that ICa,T of mouse SAN is activated
by isoproterenol in a PKA-dependent manner; however, the
physiological role of adrenergic control of ICa,Tis not well-
understood (130).

Studies on the expression of Cav3.1 in diabetic animals
reported conflicting results. Ferdous et al. (2016) have shown
that in the SAN of STZ diabetic rats, mRNA expression of Cav3.1
is upregulated (107). In agreement with this finding, earlier
studies have reported upregulation of Cav3.1 in the ventricle
from the GK and the Zucker diabetic fatty rat (133, 134). It is
expected that the upregulation of Cav3.1 upsurges T-type Ca2+

current and, consequently the slope of the pacemaker potential
and HR in STZ rats. In contrast and in a more recent study, it has
been shown that the expression of Cav3.1 gene is downregulated
by three folds in GK rats. As a result, reductions in pacemaker
activity and the slope of diastolic depolarization are expected
(126, 132).

4.3.1.4 L-Type Voltage-Gated Ca2+ Channel (Cav1.3)
Two types of L-type voltage-gated Ca2+ channels, namely Cav1.2
and Cav1.3 are expressed in the heart; however, Cav1.3 is
predominantly expressed in the SAN and atrioventricular
node. In SAN, Cav1.3 not only contributes to the pacemaker
activity but also to the initiation of diastolic depolarization and
regulation of Ca2+ release from SR during SAN pacemaker
activity (135, 136). Evidence shows that downregulation of the
Cav1.3 gene in mice causes a reduction in pacemaker activity and
causes spontaneous arrhythmia in SANCs (135).

Experiments in isolated perfused hearts of STZ diabetic
animals have shown that decreased HR and prolonged SAN
AP were associated with a significant decrease (32%) in the
expression of Cav1.3 gene in diabetic SAN compared to control
SAN (118). Previous studies have shown that deletion of the
channel (Cav1.3–/–) caused the prolongation of the PR interval
and the complete block of the atrioventricular conduction
(137). As a result, downregulation of Cav1.3 could be a
source of bradyarrhythmia and heart block in patients with
T1DM. In GK diabetic rats , SAN Cav1.3 was also
downregulated (126). This reduction in ICa,T observed in
diabetes may be attributed to the change in the activation/
inactivation kinetics of the channels, the expression of the
channel proteins, or the change in the single-channel
conductance. Although several studies have investigated the
effect of diabetes on such electrophysiological properties in
ventricular myocytes, the data on SAN Cav1.3 is scarce (138).

An earlier study examined the effect of CaMKII on SAN
spontaneous excitation and modulation of ICa,L in freshly
isolated rabbit single SANCs. It was found that inhibition of
CaMKII can completely arrest SANCs largely as a result of
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depressed ICa, L amplitude, reduced window current, and slowed
recovery of L-type Ca2+ channels from inactivation. This finding
shows a key role of CaMKII in regulating cardiac pacemaker
activity (33).

4.3.2 SAN Cytoskeletal Proteins
Cytoskeleton proteins support cell shape, elasticity, and
contractility. For example, collagen I is an extracellular protein
that provides a structural framework to the cardiac myocytes,
stiffness to the myocardial wall, and assists in force transmission
(139). Therefore, changes in the level of expression of this protein
affects the conduction properties in the heart, thus promoting
arrhythmogenesis. In fact, several studies have shown that
collagen I is overexpressed in diabetic rat hearts, which would
contribute to the decreased ventricular compliance (140). A
recent study in STZ diabetic rats has shown an increase in the
level of collagen I expression throughout the conduction system
in the heart including the SAN (118).

Caveolin-3 is a structural and regulatory protein that
modulates the function of ion channels, including those
involved in pace-making (141). Mutations in the gene
encoding caveolin-3 have been linked to several cardiac
diseases such as long QT syndrome, myocardial hypertrophy,
and diabetic cardiomyopathy (142, 143). SAN cells are rich in
caveolin-3 protein (144). Studies have shown that caveolin-3 co-
localizes with HCN4 channel and affects its function (145). The
expression of caveolin-3 mutant modifies the gating properties of
HCN4 channels by causing a rightward shift in the activation
curve (146). Furthermore, when caveolae are disturbed in the
SAN, b2-adrenergic receptor regulation of HCN4 channel was
found to be lost (145). In spontaneously beating neonatal cardiac
cells, the T78M mutation of the caveolin-3 gene significantly
enhanced peak-to-peak AP variability linked to rightward shift of
activation potential of HCN4 channels (147). In support of the
vital role of Caveolin-3 in SAN function, Lang et al. (2016) found
that in caveolin-3 knockout mice, heart rate fluctuation with
altering periods of bradycardia-tachycardia rhythm was
observed. Such change was linked to the disturbance of SAN
function (144). In chronic STZ-induced diabetic rats, lower
expression of caveolin-3 was detected (148, 149).

PKC-b2 is known to be overexpressed in the diabetic heart
and contributes to cardiomyocyte hypertrophy in diabetes.
Interestingly, impairment in caveolin-3 expression was found
to be one of the underlying mechanisms for cardiac dysfunction
that is linked to hyperglycemia-induced PKC-b2 activation
(150). Therefore, it is expected that changes in the expression
of caveolin-3 in any region in the heart may contribute to the
pathogenesis of diabetic cardiomyopathy. However, data on the
altered expression of caveolin-3 in the SAN of diabetic rats is
scarce. In addition, a-actinin is another structural protein
involved in maintaining cell shape and contractility. A
significant decrease in the expression of a-actinin was
observed throughout the heart regions but not in the diabetic
SAN (118).

A hallmark of cell-to-cell coupling is the gap junction at the
intercalated discs, forming macrochannels for effective transmission
and propagation of the AP between cardiac cells. The expression

and distribution of the different variants of connexins-Cx (the
proteins forming gap junctions) is specific to each different area
of the SAN (151). While Cx40, Cx45, and Cx46 are abundantly
distributed in the central area of the SAN, Cx43 is almost non-
existent in this tissue (12). The heterogeneity of the expression of
these Gap junction proteins explains the distinctiveness of
conduction through the SAN. Of interest, one of the striking
remodeling features in diabetic cardiomyopathy is the persistently
reduced transmission of the AP through gap junctions. In fact, the
function of Cx43, which is predominantly expressed in the working
myocardium, depends on tyrosine phosphorylation. Both the
expression/distribution and phosphorylation of Cx43 are altered
in diabetic hearts, leading to reduced impulse propagation which
increases the risk for the development of fibrillation (152, 153). In
SAN from diabetic animal models, the expression of Cx40, Cx43,
and Cx45 is still controversial. Howarth et al. (2007) showed a
moderate increase of these connexins in the SAN of the STZ-treated
rats (154). However, Ferdous et al. (2016) reported an increase in
the mRNA of Cx45 in the SAN of STZ-treated rats, without a
significant change in the expression pattern of the Cx40 and Cx43
(107). The literature falls short on the implication of Cx40 and Cx45
in the electrical remodeling of the diabetic SAN, the slow
conductance of the AP, and consequently cardiac rhythm. This
warrants extensive investigation to fill this gap in the literature and
to help stabilize cardiac rhythm in diabetic conditions.

4.4 Electrophysiological Effects of Anti-
Diabetic Drugs on SAN Currents
While few studies indicate that anti-diabetic drugs significantly
protect the cardiovascular system, other controversial reports
conclude that anti-diabetic medicine is far from reversing the
cardiac complications manifested in diabetic settings (155). For
example, Metformin, a medicine used to treat T2DM, stimulates
the 5′ adenosine monophosphate-activated protein kinase
(AMPK) signaling pathway, which consequently stimulates the
ATP-sensitive potassium channels (KATP) involved in the control
of HR (156). In the same vein, the activation of AMPK contributes
to the maintenance of the ICa,L, the ICa,L- triggered Ca

2+ transients
amplitude, the Ca2+ content, and promotes cell contraction (157).

Rosiglitazone, the thiazolidinedione class of anti-diabetic
drugs, acts to inhibit KATP channels in the pancreatic b-cells
(158). Inhibition of these channels by high levels of
ATP causes membrane depolarization, Ca2+ influx through
voltage-gated Ca2+ channels and Ca2+ -dependent secretion of
insulin; thus inhibition of pancreatic KATP channels prevents
insulin secretion (159). Conversely, the blockade of the cardiac
isoform of the KATP channel (KIR6.2/SUR2A) severely
compromises the cardiac ability to cope with ischemic assaults
(158, 160–162), implying that the KATP of SANCs would be
tremendously altered in diabetic patients on Rosiglitazone
treatment. However, existing studies do not provide
confirmatory information on the role of anti-diabetic drugs on
the AP of SANCs. This field warrants further investigations.

While insulin remains an ultimate treatment for a large group
of diabetic patients, its effect on the electrophysiological
properties of cardiac cells remains inexplicit. However, few
studies highlighted an implication of insulin in the electrical
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activity of cardiac myocytes. For example, in myocytes isolated
from T1DM diabetic hearts, the main affected repolarizing
current is the Ito (138). In an earlier report (1999), Shimoni
and colleagues have shown that insulin treatment of isolated
ventricular myocytes from STZ diabetic rats reverses the
depression of ventricular K+ currents (163). Moreover, insulin
mediates its effect through insulin receptors and the cAMP-
dependent PKA to stimulate ICa,L in isolated rat ventricular
myocytes in a dose-dependent and reversible manner (164).
Interestingly, insulin may also play a role in both the “M” and
“Ca2+” clock systems by stimulating Ca2+-ATPase activity at the
SR and the SL, and by increasing the Na+/Ca2+ exchange
activity (164).

It is noticed that in insulin-resistant cardiac tissues, the
normal rise in a calcium-independent sustained K+ current is
either reduced or eradicated (165). The addition of insulin to
myocytes isolated from insulin-resistant rats, treated with
metformin (an insulin-sensitizing drug), produced a very
significant enhancement of sustained K+ current (165). Thus,
Metformin modulates the insulin resistance effect observed for
cardiac K+ current which implies that these changes may also
occur at the SAN level. In addition, both acute and chronic
insulin treatment improved sodium currents in the atrial muscle
of T1DMAtika mice by promoting the electrical properties of the
Nav1.5 channel and by increasing its expression. This
stabilization effect of insulin on atrial fibrillation could
probably be stretched on SAN tissues since they express the
Nav1.5 channel, and since arrhythmic SANCs are a hallmark of
diabetes in animal models (54, 166).

5 CONCLUSION AND FUTURE
PERSPECTIVES

Despite its primordial role in generating the AP waves that drive
cardiac contractions, the dynamics of the SAN in diabetic
settings remain ill-defined. It is clear that hyperglycemia

modulates the expression/function of the ion channels
underlying the electrical properties of the SANCs. This is
manifested by repression of the currents involved in the
upstroke of the AP and the conduction of SAN tissues.
Chronic anti-diabetes treatments (metformin, insulin,
rosiglitazone) adversely affect the SAN and, consequently,
cardiac function. This is in addition to the structural/
functional changes that underscore diabetic cardiomyopathy
(working myocardium and other parts of the conduction
system, i.e., the atrioventricular node and Purkinje fibers).
Although various animal models are now established to study
diabetes, the literature falls short on the synergy of the SAN
during this metabolic syndrome. This includes a gap in the
knowledge on the structural remodeling of SAN in diabetes as
well as the metabolic changes induced by diabetes in the SANC.
This calls for more investigations focused on the molecular
signature of diabetes-induced SAN dysfunction to build an
informative platform that links the clinical aspect of SAN
failure with diabetes, and to provide a safer therapeutic
approach for this metabolic disorder of the cardiac pacemaker.
The advent of live imaging and optical mapping provides unique
tools to study the metabolic and electrical changes in human
diabetic SANCs. An alternative and more attractive approach
would be a targeted therapy (pharmacological or genetic) of the
SAN in diabetic subjects to warrant normal pacemaker activity
and typical cardiac function. The different modalities of diabetic
SAN injuries showcased herein must be carefully considered in
the field of biological SAN engineering to develop a diabetes-
resistant SAN for patients with diabetes.
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