
Zayed University Zayed University

ZU Scholars ZU Scholars

All Works

1-1-2022

Multi-party Contract Management for Microservices Multi-party Contract Management for Microservices

Zakaria Maamar
Zayed University

Noura Faci
Laboratoire d'Informatique en Images et Systèmes d'Information

Joyce El Haddad
Paris Dauphine University

Fadwa Yahya
Prince Sattam Bin Abdulaziz University

Mohammad Askar
Paris Dauphine University; Centre for Ethnology and Comparative Sociology

Follow this and additional works at: https://zuscholars.zu.ac.ae/works

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Maamar, Zakaria; Faci, Noura; El Haddad, Joyce; Yahya, Fadwa; and Askar, Mohammad, "Multi-party
Contract Management for Microservices" (2022). All Works. 5283.
https://zuscholars.zu.ac.ae/works/5283

This Conference Proceeding is brought to you for free and open access by ZU Scholars. It has been accepted for
inclusion in All Works by an authorized administrator of ZU Scholars. For more information, please contact
scholars@zu.ac.ae.

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5283&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5283&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/5283?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5283&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholars@zu.ac.ae

Multi-party Contract Management for Microservices

Zakaria Maamar1 a, Noura Faci2 b, Joyce El Haddad3 c, Fadwa Yahya4 d and Mohammad Askar3,5

1Zayed University, Dubai, U.A.E.
2Université Calude Bernard, CNRS, LIRIS, 69622 Villeurbanne Cedex, France

3Université Paris Dauphine-PSL, Paris, France
4Prince Sattam Bin Abdulaziz University, Al kharj, Saudi Arabia

5Université Paris Nanterre, Nanterre, France

Keywords: Cloud, Contract, Edge, Internet of Things, Microservices, Quality-of-Service.

Abstract: This paper discusses the necessary steps and means for ensuring the successful deployment and execution of
software components referred to as microservices on top of platforms referred to as Internet of Things (IoT)
devices, clouds, and edges. These steps and means are packaged into formal documents known in the literature
as contracts. Because of the multi-dimensional nature of deploying and executing microservices, contracts
are specialized into discovery, deployment, and collaboration types, capturing each specific aspect of the
completion of these contracts. This completion is associated with a set of Quality-of-Service (QoS) parameters
that are monitored allowing to identify potential deviations between what has been agreed upon and what has
really happened. To demonstrate the technical doability of contracts, a system is implemented using different
datasets that support experiments related to assessing the impact of the number of microservices and platforms
on the performance of the system.

1 INTRODUCTION

A cloud/edge-based Internet-of-Things (IoT) environ-
ment comprises a number of interconnected devices
(aka things) working together to provision services
that end-user applications would compose together.
To sustain this provisioning and avoid the pitfalls of
monolithic applications, the best architectural styles
should be adopted with focus lately on microser-
vices (Brito et al., 2021; Butzin et al., 2016). In
a recent post by NGINX1, Netflix shared its expe-
rience of transitioning “from a traditional develop-
ment model with 100 engineers producing a mono-
lithic DVD-rental application to a microservices ar-
chitecture with many small teams responsible for the
end-to-end development of hundreds of microservices
that work together to stream digital entertainment to
millions of Netflix customers every day”.

a https://orcid.org/0000-0003-4462-8337
b https://orcid.org/0000-0001-7428-6302
c https://orcid.org/0000-0002-2709-2430
d https://orcid.org/0000-0003-4661-1344
1https://tinyurl.com/ojm9zgp.

Tapping into microservices’ core characteristics
as per (Lewis and Fowler, 2014), high-cohesion and
loosely-coupled, the trend nowadays is to deploy
microservice-based applications on a mix of cloud
and edge platforms despite their differences. Ac-
cording to Khebbeb et al., cloud means more re-
sources, more reliability, and more latency, and edge
means less resources, less reliability, and less la-
tency (Khebbeb et al., 2020). In fact, they comple-
ment each other (De Donno et al., 2019; Singh, 2017).

In a previous work, we designed and implemented
the deployment and execution of microservices in
the presence of many stakeholders exemplified with
things, edge platforms, and cloud platforms (Maa-
mar and Faci, 2021). The design and implementation
took into account constraints related to things’ lim-
ited technical capabilities, edges’ closeness to things,
and clouds’ inappropriateness for real-time applica-
tions2 along with additional characteristics like types

2Puliafito et al. report that “the average round trip time
between an Amazon Cloud server in Virginia (U.S.A.) and
a device in the U.S. Pacific Coast is 66ms; it is equal to
125ms if the end device is in Italy; and reaches 302ms when
the device is in Beijing” (Puliafito et al., 2019).

276
Maamar, Z., Faci, N., El Haddad, J., Yahya, F. and Askar, M.
Multi-party Contract Management for Microservices.
DOI: 10.5220/0011266200003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 276-287
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

of things (static versus mobile), forms of interac-
tions (vertical versus horizontal), and properties of
resources that are consumed (limited versus limited-
but-renewable versus non-shareable). In this pa-
per, we identify and afterwards formalize the nec-
essary steps and mechanisms that would first, con-
firm the binding of things/edges/clouds as stakehold-
ers to microservices and second, allow these stake-
holders to collaborate together, should they run into
any obstacles that these constraints and characteristics
could cause. We package the steps and mechanisms
into contracts and track their satisfaction through a
set of non-functional properties forming what the
ICT community refers to as Quality-of-Service (QoS)
model (Menascé, 2002).

The adoption of contracts is commonly reported
in the ICT literature as per the survey paper (Marino
et al., 2019). However, to the best of our knowl-
edge, little exists when it comes to first, identify-
ing contracts in the context of microservices, things,
and edge/cloud platforms and second, defining con-
tracts’ types, lifecycles, and adjustments, should the
QoS non-functional properties become unsatisfied.
To address this gap, we proceed with (i) defining con-
tracts to regulate microservices’ deployment and exe-
cution, (ii) identifying types of contracts to ensure the
success of this deployment and execution, (iii) spec-
ifying lifecycles of and dependencies between con-
tracts, and, finally, (iv) demonstrating contract man-
agement through a system. The rest of this paper is
organized as follows. Related work is discussed in
Section 2. Section 3 presents our microservices’ de-
ployment and execution approach that is referred to as
choreOrchest mixing choreography and orchestration
to achieve this deployment and execution. Section 4
examines contracts in terms of types, clauses, and
lifecycles. Section 5 discusses the system that was
implemented and the results obtained out of the ex-
periments. Finally, Section 6 concludes and points out
some future work.

2 RELATED WORK

To the best of our knowledge, there are not dedicated
works that examine contracts and their complete life-
cycles in an ecosystem of microservices, IoT, cloud,
and edge. To address this gap, we discuss some works
that adopt contracts for multiple purposes like moni-
toring, regulation, and security.

Balint and Truong propose a contract-aware
IoT framework to manage and monitor IoT data mar-
ketplaces in (Balint and Truong, 2017). Contracts re-
fer to data rights (e.g., derivation and reproduction),

quality of data (e.g., completeness and conformity),
pricing model (e.g., charges and subscription period),
purchasing policy (e.g., contract termination and re-
fund) and control (e.g., warranty and indemnity).
Contracts are established between customers (either
persons or software) and things’ providers. Both
providers and customers engage in contract negotia-
tion to specify contractual terms when purchasing or
selling data. To address the scalability of data mar-
ketplaces, the framework is designed as a microser-
vices architecture allowing each service to scale with-
out disrupting other services in the framework.

Longo et al. discuss the importance of pub-
lic contracts to regulate the management of pub-
lic services such as data services in (Longo et al.,
2019). The authors note that the rapid and con-
tinued change of these services’ requirements and
expectations, is making contracts “obsolete” calling
for their regular adjustment. To keep the contracts
up-to-date, Longo et al. propose a cloud-based ap-
proach for assessing the QoS of local Transporta-
tion Services (TS) in Apulia Region (Southern Italy).
SLA between TS providers and the Regional Au-
thority, as well as the minimal guaranteed QoS lev-
els between TS providers and passengers, are mod-
eled as contracts enacted via a cloud-based system,
which gathers data from sensors embedded into pas-
sengers’ smartphones. As a result, changes in con-
tracts’ conditions to improve the perceived and deliv-
ered QoS have been quick and facilitated based on
collected data.

Pan et al. report about first, the security and scala-
bility challenges that IoT is facing because of the lim-
ited capabilities of IoT devices and second, the role
that edge could have in helping IoT tackle these chal-
lenges in (Pan et al., 2019). The authors designed and
prototyped an edge-based IoT framework, EdgeChain,
that capitalizes on blockchain and smart contract tech-
nologies. EdgeChain uses a credit-based resource
management system to control how much edge re-
sources are made available for IoT devices with re-
spect to predefined policies that consider priority, ap-
plication types, and past behaviors. To enforce these
policies, smart contracts regulate IoT devices’ behav-
iors in a non-deniable and automated manner. In ad-
dition, all IoT devices’ activities and transactions are
recorded using blockchain for secure data logging and
auditing. As a result, contracts permit carrying out
trusted transactions.

Singh et al. propose a Service Level Agree-
ment (SLA)-aware autonomic Technique for Allo-
cation of Resources (STAR) given that current re-
source management solutions may not provision ef-
ficient services for cloud nodes and may end-up vio-

Multi-party Contract Management for Microservices

277

lating the SLA’s clauses in (Singh et al., 2020). STAR
aims at mitigating such violations and improving user
satisfaction. Furthermore, STAR considers different
QoS parameters such as execution time, cost, latency,
reliability and availability to analyze the impact of
QoS parameters on SLA violation and to dynamically
manage resources based on QoS requirements.

Sun et al. present a contract-based resource shar-
ing approach to schedule tasks in a fog-cloud envi-
ronment in (Sun et al., 2020). Due to clouds’ limi-
tations, the authors address how to take advantage of
clusters of fog resources so, that, more tasks can run
on these resources. Using a sealed-bid bilateral auc-
tion mechanism (buyers, sellers, and auctioneers) and
constructing functional domains, Sun et al. identify
the best fog nodes (where some are mobiles) in each
cluster with respect to the betweeness centrality, com-
puting performance, and communication delay to the
IoT nodes. During contract formation, a fog cluster
can be either a buyer in the sense of having the right
to use some fog nodes in other fog clusters or a seller
in the sense of giving the right to other fog clusters to
use the fog nodes that fall into its cluster, the cloud is
seen as a trusted third party, and the commodity in the
auction is the specific type of fog nodes in a particular
fog cluster under corresponding time slot.

Truong and Klein adopt DevOps contracts to en-
sure the proper execution of IoT microservices over
edge resources in (Truong and Klein, 2020). The
authors note that many stakeholders participate in
preparing the contracts, for instance IoT service users,
IoT service providers, IoT unit providers, IoT devel-
opers, and IoT gateway/platform and edge platform
providers. All these stakeholders share many con-
cerns about IoT units, services, and, infrastructure re-
sources. Terms such as access to data, quality of data,
QoS, and price are included in the contracts.

It is clear that the works above (although a sample)
expose the gap in examining contracts in an ecosys-
tem of microservices, IoT, edge, and cloud. Our ap-
proach to manage contracts for microservices sheds
light on types of contracts, lifecycles of contracts, in-
teractions between contracts, and properties of con-
tracts. This management also considers the platforms
upon which microservices will be deployed and ex-
ecuted. Some platforms like things have limited pro-
cessing capabilities while others like clouds are not fit
for satisfying real-time applications’ requirements.

3 MICROSERVICES
DEPLOYMENT AND
EXECUTION

This section summarizes our previous work on de-
ploying and executing microservices over things,
edges, and/or clouds.

Three elements namely, types of things, forms
of interactions, and availabilities of resources, were
taken into account:

Types of things. We identify 2 types of things la-
belled as either static or mobile. By considering these
2 types, we identify the strengths and limitations of
things when it comes to interacting with the environ-
ment and consuming resources. On the one hand,
a static thing is assigned to a physical location and
cannot be moved because of its size, security con-
cerns, and safety regulations for example. On the
other hand, a mobile thing is fitted with wireless com-
munication means so, that, it roams the environment.
It happens that a mobile thing becomes temporar-
ily static for reasons like running out of resources
before resuming its planned/unplanned roaming and
suspending roaming until some conditions are met.

Forms of interactions. We identify 2 forms of in-
teractions labelled as either horizontal, occurring be-
tween homogeneous peers, or vertical, occurring be-
tween heterogeneous peers. A peer is either a thing,
an edge, or a cloud. Interactions are a mix of bottom-
up from things to edges then clouds conveying data,
and top-down from clouds to edges then things con-
veying commands. These interactions permit to form
coalitions of peers to handle complex users’ demands
and offload demands from one peer to another and
even from one coalition to another.

Availabilities of resources. We consider avail-
abilities of resources since they impact the deploy-
ment and execution of microservices on things, edges,
and/or clouds. Some resources are limited like
storage while others are (temporarily) non-shareable
like data. Building upon our previous work on re-
source management (Baker et al., 2018), we asso-
ciate resource availabilities with 5 consumption prop-
erties referred to as unlimited, shareable, limited (the
consumption of a resource is restricted to a par-
ticular capacity and/or period of time), limited-but-
renewable (the consumption of a resource continues
to happen since the (initial) agreed-upon capacity has
been increased and/or the (initial) agreed-upon period
of time has been extended), and non-shareable (the
concurrent consumption of a resource must be coordi-
nated - e.g., one at a time -). Unless stated, a resource
is by default unlimited and/or shareable.

Deploying microservices would be either orches-

ICSOFT 2022 - 17th International Conference on Software Technologies

278

Cloud1 Cloudn

r

Edge coalition Edge coalition

r

M-things S-things

r

r

ms

r

edge1 edgej

r

r

r

edgek

r

r

M-thingx

r

M-thingy

request

update

deploy

In
te

rf
a
ce

 L
a
y
e
r

Repository
of resources

ms

Repository
microservices

ms

msms

ms

ms

ms

ms ms

deploy

request

co
n
su

lt

update

request

update

request

update

deploy

deploy

Legend

S/M-thing: static/mobile thing; r: resource; ms: microservice; : horizontal interactions; : vertical interactions

ms

Figure 1: choreOrchest in-action.

trated or choreographed. Orchestration would rely
on a centralized component that would decide on
where microservices would be deployed. Contrar-
ily, choreography could rely on peer-to-peer inter-
actions to let communicating platforms decide on
where microservices would be deployed. To cater
for the needs of our cloud, edge, and IoT ecosystem,
we mix choreography and orchestration into a ded-
icated component that we refer to as choreOrchest.
Fig. 1 illustrates how choreOrchest, running on top
of the pool of microservices, is responsible for se-
lecting those that will be deployed on the available
platforms (clouds, edges, static things, and/or mo-
bile things). choreOrchest is aware of the platforms’
resource availabilities along with the microservices’
needs of resources. These availabilities are reported
in the repository of resources that all platforms regu-
larly update. Once choreOrchest consults the repos-
itory of resources and pool of microservices, it dis-
covers relevant platforms that match with microser-
vices. This matching aims at maximizing the income
of each platform (i.e., total sum of incomes for re-
sources that a platform secures when hosting a mi-
croservices for deployment and execution) under the
constraint that deployment and execution of microser-
vices must not exceed a certain budget. Upon match-
ing completion, choreOrchest selects on which plat-
forms the microservices will be deployed and then re-
quests the interface layer to deploy and track them.
In conjunction with the orchestration-based deploy-
ment, it happens during execution that the platforms
would offload some of the hosted microservices to
other peers. Offloading supposes that each platform
maintains a vicinity list containing those collabora-

tive peers that would be willing to support this plat-
form in hosting some microservices in return of a
fee. These offloading opportunities that choreOrchest
may not be aware of could permit to ensure that next
microservices or a group of microservices are exe-
cuted in the same platforms to avoid for instance, un-
necessary data transfer between platforms. It happens
that a microservice would finish the execution earlier
than expected and that a platform would secure ad-
ditional resources through virtualization. As a result
the platforms request from the interface layer to in-
teract with the choreOrchest that would pull relevant
microservices from the pool for deployment through
the interface layer again. For more details, readers are
invited to consult (Maamar and Faci, 2021).

4 CONTRACT MANAGEMENT

This section introduces the concepts underpinning
contract management for microservices deployment
and execution. First, types of contracts with identi-
fied QoS non-functional properties are discussed, and
then interactions between contracts as well as con-
tracts’ lifecycles are presented.

4.1 Types of Contracts

Fig. 2 illustrates the 3 types of contracts that we deem
necessary for managing microservices deployment
and execution over thing, edge, and cloud platforms.
These contracts are discovery, deployment, and
collaboration. The figure also illustrates how the

Multi-party Contract Management for Microservices

279

has impact onDiscovery

contract (QoS) (a)

Deployment

contract (QoS)

Collaboration

contract (QoS)

h
a
s

im
p

a
ct

 o
n

(b
)

h
a
s

im
p

a
ct

 o
n

(c
)

Figure 2: Types of contracts.

contracts impact each other. Indeed, the value of a
QoS non-functional property in a contract is changed
because of a counterpart property in another contract.
In the following, each contract is defined along with
its QoS non-functional properties.

Discovery contract is established between mi-
croservices, a third party (e.g., broker), and potential
hosting platforms.The following QoS non-functional
properties could populate a discovery contract (Fig. 3
as example):

- Discovery time that the third party would need to
connect microservices to platforms.

- Discovery quality that microservices and platforms
would each expect from the third party. Be-
cause of microservices’ and platforms’ separate
expectations, we specialize discovery quality into
dQualityms for the microservices that target a cer-
tain hosting level like reliability by the platforms
and dQualitypl for the platforms that target a cer-
tain execution time of the hosted microservices.
Since discovery quality is assessed after the host-
ing of microservices over platforms occurs ef-
fectively, the deployment contract’s QoS non-
functional properties (discussed next) will impact
the discovery contract as per Fig. 2 (a). Any de-
viation from a discovery contract’s agreed-upon
clause like drop in execution time due to a poor
hosting level should be communicated the third
party that could consider this deviation when rec-
ommending potential platforms to microservices
in the future.
Deployment contract is established between mi-

croservices and confirmed platforms upon the third
party’s recommendations as stated in the discov-
ery contract description. The following QoS non-
functional properties could populate a deployment
contract (Fig. 4as example):

- Deployment time that a platform would need to
have a microservice ready for execution, should
the microservice require a particular set-up.

- Execution time that a platform would need to have
a microservice executed.

Figure 3: Example of JSON instantiated discovery-contract.

- Hosting level that a microservice would require
without degrading its performance nor the per-
formance of the platform. A platform’s hosting
level could be related to its capacity of performing
without failures nor interruptions over a period of
time, and would depend on its technical capabili-
ties.

- Delegation quality that a platform would use
to make a microservice aware of the (pos-
itive/negative) offloading impact on this mi-
croservice’s deployment time and execution time.
Like with the the discovery contract’s discovery-
quality property, we specialize delegation quality
into eQualityms for the microservices that end-up
executed on different platforms and eQualitypl for
the platforms that receive microservices for host-
ing upon the requests of other platforms. Since
delegation quality is assessed after the offload-
ing of microservices occurs effectively, the col-
laboration contract’s QoS non-functional proper-
ties will impact the deployment contract as per
Fig. 2 (b). Any deviation from a deployment con-
tract’s agreed-upon clause like increase/decrease
in an offloaded microservice’s hosting level due to

ICSOFT 2022 - 17th International Conference on Software Technologies

280

Figure 4: Example of JSON instantiated deployment-contract.

a better/worse platform should be communicated
to this microservice’s owner so, that, he decides
in the future on accepting/rejecting offloading de-
mands.

Collaboration contract is established between
either homogeneous peers like things-things, edges-
edges, and clouds-clouds or heterogeneous peers like
things-edges, things-clouds, and edges-clouds. The
following QoS non-functional properties could popu-
late a collaboration contract (Fig. 5 as example):

- Offloading time that a platform would need to
transfer a microservice to another platform for de-
ployment and execution.

- Offloading quality that a microservice would use
to report its experience of being deployed and ex-
ecuted on a different platform from the one that
is reported in the discovery contract. This expe-
rience refers to deployment-time and execution-
time properties that should be benchmarked to
the same properties in the deployment contract.
Along with this experience, offloading quality is
shared with the third party involved in the dis-
covery so, that, future recommendations of plat-
forms to host microservices could be adjusted,
whether the quality turns out positive or nega-
tive. This means that a collaboration contract’s
QoS non-functional properties will impact the dis-
covery contract as per Fig. 2 (c).

- Collaboration quality that a platform would use to
decide in the future on offloading microservices

to other platforms. Collaboration quality should
be benchmarked to the deployment contract’s
delegation-quality property as per Fig. 2 (b).
Like with both the discovery contract’s discovery-
quality property and the deployment contract’s
delegation-quality property, we specialize col-
laboration quality into cRecommendingQualitypl
for the platform recommending a peer and
cRecommendedQualitypl for the platform that is
recommended by a peer and is dependent on the
deployment contract’s eQualityms.

Figure 5: Example of JSON instantiated collaboration-
contract.

Multi-party Contract Management for Microservices

281

4.2 Interactions between Contracts

In Fig. 2, interactions (a), (b), and (c) capture the im-
pacts that some contracts could have on each other.
Indeed, the deployment contract impacts the discov-
ery contract and the collaboration contract impacts
both the discovery contract and the deployment con-
tract. By impact, we mean the completion of a con-
tract at run-time leads into results that would be inte-
grated into the preparation of another contract or up-
dating an existing one.
1. from: Deployment Contract to: Discovery Con-

tract. On the one hand, the satisfaction level
(abstracting deploying-time and execution-time
properties) of a microservice towards a platform
upon which it has been deployed (i.e., dQualityms)
needs to be reported to the third party so, that, fu-
ture discovery cases that could involve this plat-
form could be handled differently. On the other
hand, the satisfaction level (abstracting hosting-
level property) of a platform towards the microser-
vices it has received for hosting (i.e., dQualitypl)
needs to be reported to the third party so, that, fu-
ture discovery cases that could involve these mi-
croservices would be handled differently. Thanks
to details reported to the third party, this one does
not rely on what microservices and platforms an-
nounce in terms of technical requirements and ca-
pabilities, respectively. But, the third party also
relies on what happens at run-time when complet-
ing deployment contracts.

2. from: Collaboration Contract to: Deployment
Contract.] On the one hand, the satisfaction level
(abstracting eQualityms property) of a microser-
vice towards a new platform, that is different from
the initial platform reported in the discovery con-
tract, should be reported to this initial platform so,
that, future delegation cases that could involve this
new platform would be handled differently. On
the other hand, the satisfaction level (abstracting
eQualitypl property) of a platform towards the mi-
croservices it has received for hosting upon the re-
quest of the initial platform reported in the discov-
ery contract should be reported to this initial plat-
form so, that, future delegation cases that could
involve these microservices could be handled dif-
ferently. Thanks to details reported to the ini-
tial platform, this one does not rely on what mi-
croservices and other platforms announce in terms
of technical requirements and capabilities, respec-
tively. But, the initial platform also relies on what
happens at run-time when implementing collabo-
ration contracts.

3. from: Collaboration Contract to: Discovery

Contract. The satisfaction level (abstracting
offloading-quality property) of a microservice to-
wards a new platform, that is different from the
one identified during the discovery, needs to be
reported to the third party so, that, future discov-
ery cases that could involve the first platform that
recommends this new platform would be handled
differently.

4.3 Lifecycles of Contracts

To track and manage different aspects of contracts
like performance and compliance, we define their
lifecycles represented as a state diagram (Fig. 6).
States include initiated (initial state), revised (entry-
point state), performed (initial state), completed (fi-
nal state), canceled (final state), and suspended (fi-
nal state) and are connected together forming Se-
quences (Seqi). Prior to listing these sequences,
we recall that a contract could be subject to
changes(e.g., a new platform is assigned) and/or could
run into obstacles (e.g., late confirmation of a delega-
tion request) that both could result into either cancel-
ing or suspending the contract. For the sake of sim-
plicity, sequences having performed as an initial state
are not listed below since they are already parts of the
sequences having initiated as an initial state.

1. Seq1 = initiated start−→ performed success−→ completed.
A contract is completed successfully without be-
ing subject to any changes nor running into any
obstacles.

2. Seq2 = initiated
change−→ revised

approval−→ performed
success−→ completed. A contract is completed suc-
cessfully after being subject to some changes and
not running into any obstacles.

3. Seq3 = initiated start−→ performed
f ailure−→ canceled.

A contract is canceled although it was not subject
to any changes but has run into some obstacles.

4. Seq4 = initiated
change−→ revised

approval−→ performed
f ailure−→ canceled. A contract is canceled because it
has been subject to some changes and has run into
some obstacles.

5. Seq5 = initiated start−→ performed violation−→ sus-
pended. A contract is suspended without being
subject to any changes but has run into obstacles
that resulted into its violation and hence, suspen-
sion.

6. Seq6 = initiated
change−→ revised

approval−→ performed
violation−→ suspended. A contract is suspended after
being subject to some changes and running into

ICSOFT 2022 - 17th International Conference on Software Technologies

282

performed completed

suspended

revised canceled

ch
an

g
e

approval

success

v
io

latio
n

 h
an

d
li

n
g

failure

initiated
start

Discovery/Collaboration contracts

Deployment contract

Figure 6: Contract’s lifecycle as a state diagram.

some obstacles. Both have resulted into its viola-
tion and hence, suspension.

7. Seq7 = initiated start−→ performed violation−→ suspended
handling−→ performed success−→ completed. A contract is
completed successfully without being subject to
any changes but has run into some obstacles that
have been handled, which has allowed its success-
ful completion.

8. Seq8 = initiated
change−→ revised

approval−→ performed
violation−→ suspended

handling−→ performed success−→ com-
pleted. A contract is completed successfully after
being subject to some changes and running into
some obstacles that have been handled, which has
allowed its successful completion.

9. Seq9 = initiated start−→ performed violation−→ suspended
handling−→ performed

f ailure−→ canceled. A contract is
canceled without being subject to any changes but
has run into some obstacles that although these
obstacles have been handled the contract has been
canceled.

10. Seq10 = initiated
change−→ revised

approval−→ performed
violation−→ suspended

handling−→ performed
f ailure−→ can-

celed. A contract is canceled after being subject
to some changes and running into some obstacles
that although these obstacles have been handled
the contract has been canceled.

After listing a contract’s different sequences of
states, we proceed, hereafter, with identifying the rel-
evant lifecycle per type of contract. Each lifecycle
draws the necessary states from these sequences along
with the option of dropping some states because of the
nature of each contract.

4.3.1 Discovery Contract’s Lifecycle

A discovery contract formalizes the first steps that
lead to identifying the platforms upon which the mi-

croservices will be deployed and then, executed. This
contract’s lifecycle takes on the following states:

• In the initiated state, the discovery contract’s nec-
essary attributes are instantiated in terms of which
microservice needs hosting, which potential plat-
forms are contacted to provide this hosting, and
which third party drives the interactions between
the microservice and platforms. Additional at-
tributes to instantiate could include deadlines to
complete the interactions and particular criteria to
shortlist the platforms.

• In the revised state, the discovery contract’s in-
stantiated attributes could be adjusted, should
some changes blacklike criteria for shortlisting
platforms and/or technical details for hosting mi-
croservices arise.

• In the performed state, the discovery contract is
implemented by making the third party match the
microservice to the adequate platform.

• In the suspended state, the under-performing dis-
covery contract could run into obstacles such as
violating the deadline to identify a platform for a
microservice. Should these obstacles end-up be-
ing handled properly, then the completion of the
discovery contract would resume. Otherwise, it
would be stopped.

• In either completed or canceled state, the under-
performing discovery contract ends with either
success or failure, respectively, depending on the
outcome of assigning a microservice to a plat-
form. A successful completion of the discovery
contract triggers the instantiation of the deploy-
ment contract’s necessary attributes.

4.3.2 Deployment Contract’s Lifecycle

Once a discovery contract completes with success, a
deployment contract is drawn between the microser-
vice and platform. This contract’s lifecycle takes on
the following states:

Multi-party Contract Management for Microservices

283

• In the performed state, the deployment contract is
implemented by making the microservice run over
the platform.

• In the revised state, the instantiated attributes of
the already-prepared deployment contract (out-
come of the discovery contract) could be adjusted,
should some changes arise impacting the deploy-
ment of the microservice on the platform. An ex-
ample of change could be deploying the microser-
vice
on a different platform from the one that is men-
tioned in the discovery contract. Should this
change happen, a collaboration contract would
need to be prepared.

• In the suspended state, the under-performing de-
ployment contract is running into obstacles such
as violating the agreed-upon deployment time and
execution time. Should these obstacles end-up be-
ing handled, then the completion of the deploy-
ment contract would resume. Otherwise, it would
be stopped.

• In either completed or canceled state, the under-
performing deployment contract ends with either
success or failure depending on the outcome of
having the microservice run over the platform.

In the afore-mentioned states, it is worth noting the
absence of initiated state making performed the ini-
tial state and revised an entry-point state for the de-
ployment contract.

4.3.3 Collaboration Contract’s Lifecycle

A collaboration contract formalizes the process of
transferring a microservice from a platform to another
prior to its execution. This contract’s lifecycle takes
on the following states:

• In the initiated state, the collaboration contract’s
necessary attributes are instantiated in terms of
which microservice will be transferred to which
platform and which platform is recommending the
transfer.

• In the revised state, the collaboration contract’s
instantiated attributes could be adjusted, should
some changes arise impacting for instance, the
recommended platform for hosting the microser-
vice.

• In the performed state, the collaboration contract
is implemented through the effective transfer of
the microservice to the recommended platform.

• In the suspended state, the under-performing col-
laboration contract is running into obstacles such
as violating the agreed-upon offloading time and

offloading quality time. Should these obstacles
be handled, then the completion of the collabora-
tion contract would resume. Otherwise, it would
be stopped.

• In either completed or canceled state, the under-
performing collaboration ends with either success
or failure depending on the outcome of having
the microservice transferred to the recommended
platform.

5 IMPLEMENTATION AND
EVALUATION

This section first describes the architecture of the sys-
tem for managing contracts and then, the experiments
that were carried out.

5.1 Implementation

Fig. 7 is the architecture of the system we
developed in Java 1.8 on a Windows 10, In-
tel Core i5-8300H processor, 16 GB RAM,
GPU Nvidia GTX 1050 4GB desktop. The system
consists of 3 repositories (platforms, microservices,
and contracts), 3 managers (contract, monitoring,
and execution), and one log file. In this figure, pr,
ex, and po stand for pre-execution, execution and
post-execution stages, respectively, and arrowed
lines correspond to interactions between all the
repositories, managers, and log.

During the pre-execution stage, the contract man-
ager prepares all types of contracts (discovery, de-
ployment, and collaboration) based on first, microser-
vices’ technical requirements and platforms’ techni-
cal capabilities and second, these platforms’ ongo-
ing/changing loads. During this stage, different val-
ues are assigned to the QoS non-functional proper-
ties according to their roles in finalizing the contracts.
For instance, Discovery time, dQualityms, dQualitypl ,
and Deployment time are assigned random values
according to a specific range, e.g., [5,10], while
eQualityms, eQualitypl , and Offloading quality are as-
signed null, and properties cRecommendingQualitypl
and cRecommendedQualitypl are assigned high. To
address the cold-start concern, we assumed that, at
initialization time, all platforms trust each other con-
firming the high level of collaboration between them.

During the execution stage, the execution man-
ager consults the repository of contracts to deploy the
microservices and then, proceeds with tracking their
execution and potentially offloading some to other
platforms along with measuring the effective values

ICSOFT 2022 - 17th International Conference on Software Technologies

284

informnotify

u
p
d
ate

Execution
Manager

ex

Monitoring
Manager

po

Contract
Manager

po

Repository

of contracts

Repository

microservices

ch
eck

in
p
u
t

in
p
u
t

in
p
u
t

Cloud1 Cloudn

r

Edge coalition Edge coalition

r

M-things S-things

r

r

ms

r

edge1 edgej

r

r

r

edgek

r

r

M-thingx

r

M-thingy

ms

ms

msms

ms

ms

ms

ms ms

ms

d
ep

loy

track

consult

associated with

Log

Repository

of platforms

pr

Figure 7: Architecture of the contract-management system.

of relevant QoS non-functional properties like Discov-
ery time, Deployment time, and Execution time. These
values are stored in the log that the monitoring man-
ager uses during the post-execution stage for bench-
marking against the corresponding values in the de-
ployment contracts.

Should there be any discrepancy according to
some thresholds, the monitoring manager would no-
tify the contract manager that would flag a contract
as either suspended or canceled in compliance with
this contract’s lifecycle (Fig. 6). Otherwise, the con-
tract manager flags the contract as completed in com-
pliance again with this contract’s lifecycle.

5.2 Evaluation

Experiment Setup. Due to the limited availabil-
ity of real datasets that could satisfy our techni-
cal needs and requirements, we resorted to creating
2 datasets (d1 and d2) during the pre-execution stage
and using an existing dataset (d3) that was obtained in
a previous work (Maamar and Faci, 2021). Table 1 re-
ports details about each dataset in terms of number of
microservices, number of platforms, and QoS values
whether real or generated.

Results and Discussions. We conducted a series of
experiments to compute the average execution time
of the monitoring and contract managers. Each ex-
periment was executed 10 times. The first series of
experiments were applied to d1 evaluating the impact
of incrementing by 100 the number of microservices
from 50 to 1050 on the average execution time of both
managers. Table 2 shows that the average execution
time increases exponentially with the number of mi-

croservices. However, even with a large number of
microservices, the achieved performance remains ac-
ceptable.

In the second series of experiments that were ap-
plied to d2, we evaluated the impact of increment-
ing by 50 the number of platforms from 50 to 500
on the average execution time of both managers. As
expected, the average execution time increases expo-
nentially with the number of platforms as per Table 3.
However, even with a large number of platforms, we
still achieve an acceptable performance.

To conclude the series of experiments, we con-
ducted two more. The first one was applied to d2 with
exactly 30 platforms resulting into an average execu-
tion time of 187,4 ms for both managers. Finally, the
second one was applied to d3 checking the validity
of the previous experiment’s results. The average ex-
ecution time of both managers is 184,4 ms which is
in line with these results.

6 CONCLUSION

This paper presented an approach for regulating mi-
croservices’ deployment and execution over plat-
forms using contracts. On the one hand, the plat-
forms are specialized into IoT devices, edges, and
clouds. On the other hand, contracts are specialized
into discovery, deployment, and collaboration defin-
ing who has done what, when, where, and for what
purpose. For instance, discovery contracts regulated
the “deals” between microservices’ owners and plat-
forms’ providers while collaboration contracts regu-
lated the “deals” between platforms offloading their
micorservices to other platforms. Contracts were also

Multi-party Contract Management for Microservices

285

Table 1: Details about the datasets of the experiments.

dataset # of microservices # of platforms real QoS values generated QoS values

d1 1050 30 – discovery time, deployment
time, execution time, hosting
level, offloading time

d2 20 510 – discovery time, deployment
time, execution time, hosting
level, offloading time

d3 15 30 deployment time,
offloading time

discovery time, execution time,
hosting level

Table 2: Impact of number of microservices on the moni-
toring and contract managers.

of microservices average execution time in ms

50 709,1
150 2587,3
250 5567,0
350 7837,3
450 11344,7
550 16044,2
650 20823,4
750 27248,6
850 34761,7
950 42227,3
1050 49351,0

Table 3: Impact of number of platforms on the monitoring
and contract managers.

of platforms average execution time in ms

50 479,7
100 2087
150 4998
200 10116,6
250 15316,4
300 22947,9
350 31323,8
400 39518,9
450 55676,8
500 69392,2

associated with lifecycles allowing to monitor their
progress towards either successful completion or fail-
ure. To demonstrate the technical doability of the con-
tract management approach, a system’s architecture
was first, designed identifying the necessary reposi-
tories and managers and then, implemented in Java.
The system supported different experiments examin-
ing for instance, the impact of increasing the number
of microservices on the performance of the system’s
managers.

In term of future work, we would like to exam-
ine contract monitoring and enforcement. On the

one hand, the former would track contract comple-
tion from creation until expiry going through review
and execution. How to assess the performance of con-
tracts and how to proceed with their renewals without
impacting ongoing contracts are some monitoring-
related questions that need to be addressed. To this
end, we plan to develop techniques that could help
for instance, identify reasons of renewals, recommend
amendments to expedite renewals, and predict these
amendments’ (financial) impacts on stakeholders. On
the other hand, the latter, contract enforcement, would
ensure the full compliance of all stakeholders with
contracts’ clauses. How to build trust among the
stakeholders for long-term collaboration is a ques-
tion that needs to be addressed. To this end, we plan
to develop techniques that could foster trust and in-
centive/penalize good/bad behaviors of stakeholders
linked to contracts.

REFERENCES

Baker, T., Ugljanin, E., Faci, N., Sellami, M., Maamar,
Z., and Kajan, E. (2018). Everything as a Re-
source: Foundations and Illustration through Internet-
of-Things. Computers in Industry, 94.

Balint, F. and Truong, H. (2017). On Supporting Contract-
aware IoT Dataspace Services. In IEEE Int. Conf. on
Mobile Cloud Computing, Services, and Engineering,
San Francisco, USA.

Brito, M., Cunha, J., and de Sousa Saraiva, J. (2021). Iden-
tification of Microservices from Monolithic Applica-
tions through Topic Modelling. In Proceedings of the
36th Annual ACM Symposium on Applied Computing,
Republic of Korea (virtual event).

Butzin, B., Golatowski, F., and Timmermann, D. (2016).
Microservices Approach for the Internet of Things. In
Proceedings of the 21st IEEE Int. Conf. on Emerging
Technologies and Factory Automation, Berlin, Ger-
many.

De Donno, M., Tange, K., and Dragoni, N. (2019). Founda-
tions and Evolution of Modern Computing Paradigms:
Cloud, IoT, Edge, and Fog. IEEE Access, 7.

Khebbeb, K., Hameurlain, N., and Belalab, F. (Novem-
ber 2020). A Maude-based Rewriting Approach to

ICSOFT 2022 - 17th International Conference on Software Technologies

286

Model and Verify Cloud/Fog Self-Adaptation and Or-
chestration. Journal of Systems Architecture, 110.

Lewis, J. and Fowler, M. (2014). Microservices.
Longo, A., Zappatore, M., and Bochicchio, M. (2019). A

Cloud-based Approach to Dynamically Manage Ser-
vice Contracts for Local Public Transportation. In-
ternational Journal of Grid and Utility Computing,
10(6).

Maamar, Z. and Faci, N. (2021). Microservices Deployment
and Execution in a Cloud, Edge, and IoT Configura-
tion. Technical report, Zayed University.

Marino, F., Moiso, C., and Petracca, M. (2019). Automatic
Contract Negotiation, Service Discovery and Mutual
Authentication Solutions: A Survey on the Enabling
Technologies of the Forthcoming IoT Ecosystems.
Comput. Networks, 148.

Menascé, D. A. (2002). QoS Issues in Web Services. IEEE
Internet Computing, 6(6).

Pan, J., Wang, J., Hester, A., AlQerm, I., Liu, Y., and Zhao,
Y. (2019). EdgeChain: An Edge-IoT Framework and
Prototype Based on Blockchain and Smart Contracts.
IEEE Internet Things J., 6(3).

Puliafito, C., Mingozzi, E., Longo, F., Puliafito, A., and
Rana, O. (2019). Fog Computing for the Internet of
Things: A Survey. ACM Transactions on Internet
Technology, 19(2).

Singh, S. (2017). Optimize cloud computations using edge
computing. In IEEE International Conference on Big
Data, IoT and Data Science (BID).

Singh, S., Chana, I., and Buyya, R. (2020). STAR: SLA-
aware Autonomic Management of Cloud Resources.
IEEE Transactions on Cloud Computing, 8(4).

Sun, H., Yu, H., and Fan, G. (2020). Contract-Based Re-
source Sharing for Time Effective Task Scheduling in
Fog-Cloud Environment. IEEE Transactions on Net-
work and Service Management, 17(2).

Truong, H. and Klein, P. (2020). DevOps Contract for As-
suring Execution of IoT Microservices in the Edge.
Internet Things, 9.

Multi-party Contract Management for Microservices

287

	Multi-party Contract Management for Microservices
	Recommended Citation

	tmp.1668601407.pdf.GBSVj

