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A B S T R A C T

In this article, we are mainly targeting a new numerical algorithm based on Euler wavelets for solving a system
of partial differential equations (PDEs) represented a 3D nanofluid bio convection model near a stagnation
point. The model expresses the conservation of momentum, microorganisms, thermal energy, nanoparticles
and total mass via a set of governing equations. We use Buongiorno’s setting to obtain a generated system
and reduce it to nonlinear ordinary differential equations (NODEs). This initial system of PDEs that transferred
to NODEs is solved based on the collocation discretization and tackled through the Euler wavelet truncated
representation generated by a set of functions Involving matrix inversion. The scheme presents a meaningful
and accurate numerical solution based on the numerical evidences and graphical illustration for several
parameters. This confirms the efficiency of the proposed method and can be extended to other types of NODEs.

Introduction

In the new era of fluids, free-convection flows in 3D at the point
where the fluid flow field presented at rest on the surface of objects (the
stagnation point) have accomplished a substantial devotion. This is due
to their capability and valuable applications in industry, manufacturing
processes, and many more. Among these, the solutions of the boundary
layer flows near a 3D stagnation point on an isothermal surface have
been explored in many settings, see for example [1,2]. Poots in [3]
analyzed based on three factors the flow of a saddle point of accessory.
A great contribution on the hybrid nanofluid can be seen in [4]. Some
other related bio-convection studies can be found in [5–8]. It is impor-
tant here to mention the significant development in bio-convection has
been achieved by the researchers in [9–12].

In this work, we apply the wavelet truncated expansion generated
by a specific construction in the numerical solution of the reduced
NODEs. Wavelets have the right structure to capture the sparsity in lin-
ear and non-linear systems under the current setting, its normality, and
the right approximating structure based on the proposed construction
are the key role for the numerical solution of the general NODEs in this
framework. Recently, some authors have been considering an effective
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line1@wit.edu (E.-B. Lin).

approaches to solve systems of differential equations such as those in
[13–16]. Here, to solve the proposed NODEs we use Euler wavelets
expansion generated via Euler polynomials and based on collocation
technique that was presented in [17].

We start with the mathematical model presented in [18,19]. Note
that, the steady, viscous and incompressible convection nanofluid flow
is considered in the mathematical formulation for the model. Assume
that the flow covers nano-size particles in addition to the motile mi-
croorganisms in the region of the three dimensional stagnation point,
taking into account that the object surface is in the 𝑥 and 𝑦 coordinates,
and 𝑧-axis is orthogonal to the surface of the object. Given that, the
temperature 𝑃𝑤, density of motile microorganisms 𝐷𝑤 and the volume
fraction 𝑉𝑤 have the constant values of 𝑃∞;𝐷∞ and 𝑉∞, we have the
following system of nonlinear PDEs as in [18,19] such that

𝑢𝑥 + 𝑣𝑦 +𝑤𝑧 = 0,

𝜌𝑔
(

𝑢𝑢𝑥 + 𝑣𝑢𝑦 +𝑤𝑢𝑧
)

− 𝜇
(

𝑢𝑢𝑥𝑥 + 𝑣𝑢𝑦𝑦 +𝑤𝑢𝑧𝑧
)

= 𝑎𝑥
(

𝜌𝑔𝛽(1 − 𝑉𝑤)(𝑃 − 𝑃∞) − 𝛾𝛥𝜌(𝜌 − 𝜌𝑔 )(𝑉 − 𝑉∞)
)

𝜌𝑔
(

𝑢𝑣𝑥 + 𝑣𝑣𝑦 +𝑤𝑣𝑧
)

− 𝜇
(

𝑢𝑣𝑥𝑥 + 𝑣𝑣𝑦𝑦 +𝑤𝑣𝑧𝑧
)

= 𝑏𝑦
(

𝜌𝑔𝛽(1 − 𝑉𝑤)(𝑃 − 𝑃∞) − 𝛾𝛥𝜌(𝜌 − 𝜌𝑔 )(𝑉 − 𝑉∞)
)

𝑢𝑃𝑥 + 𝑣𝑃𝑦 +𝑤𝑃𝑧 − 𝛼(𝑃𝑥𝑥 + 𝑃𝑦𝑦 + 𝑃𝑧𝑧) = 𝜏𝐷∞

(

𝑃𝑥𝑉𝑥 + 𝑃𝑦𝑉𝑦 + 𝑃𝑧𝑉𝑧 + 𝑃 2
𝑥 + 𝑃 2

𝑦 + 𝑃 2
𝑧

)

𝑢𝑉𝑥 + 𝑣𝑉𝑦 +𝑤𝑉𝑧 −𝐷∞(𝑉𝑥𝑥 + 𝑉𝑦𝑦 + 𝑉𝑧𝑧) = 𝜏𝐷∞∕𝑐
(

𝑉 2
𝑥 + 𝑉 2

𝑦 + 𝑉 2
𝑧

)

𝑢𝐷𝑥 + 𝑣𝐷𝑦 +𝑤𝐷𝑧 + (𝑂𝑣𝑥)𝑥 + (𝑂𝑣𝑦)𝑦 + (𝑂𝑣𝑧)𝑧 = 𝐷∞(𝐷𝑥𝑥 +𝐷𝑦𝑦 +𝐷𝑧𝑧),
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where 𝑣 = 𝑂𝑏𝑊 ∇𝑐. The boundary conditions BCs of the above setting
is given by

𝑃 = 𝑃𝑤, 𝐷 = 𝐷𝑤, 𝑉 = 𝑉𝑤, 𝑢 = 0, 𝑣 = 0, 𝑤 = 0 𝑤ℎ𝑒𝑛 𝑧 → 0

𝑃 = 𝑃∞, 𝐷 = 𝐷∞, 𝑉 =∞, 𝑢 = 0, 𝑣 = 0 𝑤ℎ𝑒𝑛 𝑧 → ∞

Now, under the similarity condition given in [18],

𝑢 = 𝑣𝑟0.5𝑥𝑔′(𝜂)𝑎2𝐺,

𝑣 = 𝑣𝑟0.5𝑦𝑠′(𝜂)𝑎2𝐺,

𝑤 = −𝑣𝑟0.5𝑥(𝑐𝑠(𝜂) + 𝑔(𝜂)),

𝜃(𝜂) = 𝑃 − 𝑃∞∕
(

𝑃𝑤 − 𝑃∞
)

,

𝜙(𝜂) = 𝑉 − 𝑉∞∕
(

𝑉𝑤 − 𝑉∞
)

,

(𝜂) = 𝐷 −𝐷∞∕
(

𝐷𝑤 −𝐷∞
)

,

𝜂 = 𝑎𝑒0.25𝑧𝐺,

and the following components transformation,

𝑥, 𝑦 →
(

𝑎𝑥𝛽𝜌∞(1 − 𝑉𝑤)(𝑃 − 𝑃∞) − 𝑎𝑥(𝜌𝑔 − 𝜌𝑔∞ )(𝑉 − 𝑉∞)

+𝛾𝑎𝑥(𝐷 −𝐷∞)
)

, 𝑧 → 0,

the above system of nonlinear PDEs can be transferred into the follow-
ing set of NODEs where

𝑔′′(𝜂)(𝑐𝑠(𝜂) + 𝑔(𝜂)) + 𝑔(3)(𝜂) − 𝑔′(𝜂)2 −
Nr𝜙(𝜂)
GrPr +

Rab𝜉(𝜂)
Gr + 𝜃(𝜂) = 0 (1)

𝑠(3)(𝜂) + (𝑔(𝜂) + 𝑐𝑠(𝜂))𝑠′′(𝜂) − 𝑐𝑠′(𝜂)2 + 𝜃(𝜂)

−𝑁𝑟∕(𝑃𝑟𝐺𝑟)𝜙(𝜂) + 𝑅𝑎𝑏∕𝐺𝑟(𝜉)(𝜂) = 0 (2)
Pr 𝜃′(𝜂)(𝑐𝑠(𝜂) + 𝑔(𝜂)) + NB𝜃′(𝜂)𝜙′(𝜂) + NT𝜃′(𝜂)2 + 𝜃′′(𝜂) = 0 (3)

LePr 𝜙′(𝜂)(𝑐𝑠(𝜂) + 𝑔(𝜂)) +
NT𝜃′′(𝜂)

NB + 𝜙′′(𝜂) = 0 (4)

Sc𝜉′(𝜂)(𝑐𝑠(𝜂) + 𝑔(𝜂)) − Pe
(

𝜉′(𝜂)𝜙′(𝜂) + 𝜉(𝜂)𝜙′′(𝜂)
)

+ 𝜉′′(𝜂) = 0, (5)

with the BCs given by

𝑔(0) = 0, 𝑓 ′(0) = 0, 𝑠(0) = 0, 𝑠′(0) = 0, 𝜃(0) = 1, 𝜙(0) = 1, (6)
𝜉(0) = 1, 𝑔′(𝐿) = 0, 𝑠′(𝐿) = 0, 𝜃(𝐿) = 0, 𝜙(𝐿) = 0, 𝜉(𝐿) = 0, (7)

where

𝐺𝑟 = 𝜌𝑔∞ (𝑃𝑤 − 𝑃∞)(1 − 𝑉∞)∕(𝑣2𝑎3𝜌𝑔), 𝑁𝑟 = 𝑔(𝑉𝑤 − 𝑉∞)(𝜌 − 𝜌∞)∕(𝑎3𝜇),

𝑃 𝑟 = 𝑣∕𝛼, 𝐿𝑒 = 𝛼∕𝐷𝑤, 𝑁𝑡 = 𝜏(𝑃𝑤 − 𝑃∞)∕𝛼,𝑁𝐵 = 𝜏(𝑉𝑤 − 𝑉∞)∕𝛼.

The numerical solution via Euler wavelets

The Euler polynomial 𝐸𝑗 (𝑥), 𝑗 = 1, 2,… , can be calculated by the
below equation such that
∞
∑

𝑗∈Z+

𝐸𝑘(𝑥)𝑡𝑘

𝑘!
= 𝑒𝑥𝑡

(

𝑒𝑡 + 1
)−1 ,

where 𝐸0 = 1. The first few polynomials are given explicitly as

𝐸1(𝑥) = 𝑥 − 0.5,

𝐸2(𝑥) = 𝑥2 − 𝑥,

𝐸3(𝑥) = 𝑥3 − 3𝑥2
2

+ 0.25,

𝐸4(𝑥) = 𝑥4 − 2𝑥3 + 𝑥,

𝐸5(𝑥) = 𝑥5 − 5𝑥4
2

+ 5𝑥2
2

− 0.5,

𝐸6(𝑥) = 𝑥6 − 3𝑥5 + 5𝑥3 − 3𝑥,

𝐸7(𝑥) = 𝑥7 − 7𝑥6
2

+ 35𝑥4
4

− 21𝑥2
2

+ 17
8
.

Now we define the needed functions to illustrate the numerical
technique as follows:

𝐸1(𝑥) = −0.5 + 𝑥, 𝐸2(𝑥) = −𝑥 + 𝑥2, (8)

𝐼11 = ∫

𝑥

0
𝐸1(𝑡)𝑑𝑡 (9)

𝐼12 = ∫

𝑥

0
𝐸2(𝑡)𝑑𝑡 (10)

𝐼21 = ∫

𝑥

0
𝐼11 (𝑡)𝑑𝑡 (11)

𝐼22 = ∫

𝑥

0
𝐼12 (𝑡)𝑑𝑡. (12)

Define 𝛯 to be the set of all functions given in Eqs. (8)–(12). For
any function 𝜏 ∈ 𝛯, we define the function 𝜑(𝑥) as

𝜑(𝑡) = 𝜏𝜒[0,1](𝑡),

where 𝜒[0,1] is the indicator function on [0,1]. Assume that

𝜑1 = 𝐸1, 𝜑2 = 𝐸2, 𝜑1,1 = 𝐼11 , 𝜑2,1 = 𝐼12 , 𝜑1,2 = 𝐼21 , 𝜑2,2 = 𝐼22 ,

we define the following set of wavelets, where 𝑗, 𝑘 ∈ Z as

𝜑1(𝑗, 𝑘, 𝑡) = 𝜑1(2𝑗 𝑡 − 𝑘),

𝜑2(𝑗, 𝑘, 𝑡) = 𝜑2(2𝑗 𝑡 − 𝑘),

𝜑(𝑗, 𝑘, 𝑡) = (𝜑1(𝑗, 𝑘, 𝑡) + 𝜑2(𝑗, 𝑘, 𝑡)),

𝜑1,1(𝑗, 𝑘, 𝑡) = 𝜑1,1(2𝑗 𝑡 − 𝑘),

𝜑1,2(𝑗, 𝑘, 𝑡) = 𝜑1,2(2𝑗 𝑡 − 𝑘),

𝜑2,1(𝑗, 𝑘, 𝑡) = 𝜑2,1(2𝑗 𝑡 − 𝑘),

𝜑2,2(𝑗, 𝑘, 𝑡) = 𝜑2,2(2𝑗 𝑡 − 𝑘),

𝜑1(𝑗, 𝑘, 𝑡) = (𝜑1,1(𝑗, 𝑘, 𝑡) + 𝜑2,1(𝑗, 𝑘, 𝑡))∕𝑗,

𝜑2(𝑗, 𝑘, 𝑡) = (𝜑2,1(𝑗, 𝑘, 𝑡) + 𝜑2,2(𝑗, 𝑘, 𝑡))∕𝑗2.

Recall that, see e.g. [17], a function 𝜏 ∈ 𝐿2(R) can be expanded
using the following series,

𝜏(𝜂) =
2
∑

𝓁=1

∞
∑

𝑗,𝑘∈Z
𝑑𝓁𝑗,𝑘𝜑

𝓁
𝑗,𝑘(𝜂), (13)

where,

𝑑𝓁𝑗,𝑘 =
⟨

𝜏, 𝜑𝓁
𝑗,𝑘(𝜂)

⟩

= ∫R
𝜏(𝜂)𝜑𝓁

𝑗,𝑘(𝜂)𝑤(𝑥)𝑑𝜂,

in which ⟨⋅, ⋅⟩ denotes the usual inner product over the space 𝐿2(R) and
𝑤 is a proper weight function.

One may truncate Eq. (13) by 𝜏𝑛,𝑀 where

𝜏𝑛,𝑀 (𝑡) =
2
∑

𝓁=1

𝑛
∑

𝑗=0

𝑀−1
∑

𝑘=0
𝑑𝓁𝑗,𝑘𝜑

𝓁
𝑗,𝑘(𝑡). (14)

Therefore,

‖

‖

𝜏 − 𝜏𝑛,𝑀‖

‖

2
2 =

‖

‖

‖

‖

‖

‖

2
∑

𝓁=1

∑

𝑗≥𝑛+1

∑

𝑘≥𝑀+1
𝑑𝓁𝑗,𝑘𝜑

𝓁
𝑗,𝑘(𝑡)

‖

‖

‖

‖

‖

‖

2

2

To solve the proposed NODEs (1)-(7), we construct a vector 𝛯𝜏 of
length 𝑀 = 2𝑛+1, 𝑛 ∈ N, such that

𝛯𝜏 = [𝜑𝜏 , 𝜎
𝜅 (1, 0, 𝑥),… , 𝜎𝜅 (2𝑗 , 𝑘, 𝑥),… , 𝜎𝜅 (2𝑛, 2𝑛−1, 𝑥)],

𝑗 = 0, 1, 2,… , 𝑛; 𝑘 = 0, 1, 2,… , 2𝑗−1,

where,

⎧

⎪

⎨

⎪

⎩

𝜑𝜏 = 1, 𝜎𝜅 = 𝜑 𝑤ℎ𝑒𝑛 𝜏 = 𝐸1, 𝐸2, 𝜅 = 1,
𝜑𝜏 = 𝑥, 𝜎𝜅 = 𝜑1 𝑤ℎ𝑒𝑛 𝜏 = 𝐼11 , 𝐼

1
2 , 𝜅 = 𝑗,

𝜑𝜏 = 𝑥2∕2, 𝜎𝜅 = 𝜑2 𝑤ℎ𝑒𝑛 𝜏 = 𝐼21 , 𝐼
2
2 , 𝜅 = 𝑗2.

As an illustration, when 𝑛 = 2, we have:
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• When 𝜑𝜏 = 1, 𝜅 = 1, we have

𝛯𝜏 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[1, 0,… , 0] 𝑥 ∈ R − [0, 1)
[

1, 𝑥2 − 0.5, 0, 4𝑥2 − 4𝑥 + 0.5, 0, 0, 0, 16𝑥2 − 24𝑥 + 8.5
]

𝑥 ∈ [0.75, 1)
[

1, 𝑥2 − 0.5, 0, 𝑥2 − 4𝑥 + 0.5, 0, 0, 16𝑥2 − 16𝑥 + 3.5, 0
]

𝑥 ∈ [0.5, 0.75)
[

1, 𝑥2 − 0.5, 4𝑥2 − 0.5, 0, 0, 0.5 − 8𝑥 + 16𝑥2, 0, 0
]

𝑥 ∈ [0.25, 0.5)
[

1, 𝑥2 − 0.5, 4𝑥2 − 0.5, 0, 16𝑥2 − 0.5, 0, 0, 0
]

True

• When 𝜑𝜏 = 𝑥, 𝜅 = 𝑗,

𝛯𝜏 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[𝑥, 0,… , 0] 𝑥 ∈ R − [0, 1)

[𝑥, 𝑥
3

3 − 𝑥
2 , 0,

4𝑥3
3 − 2𝑥2 + 𝑥

2
+ 1

12 , 0, 0, 0,
16𝑥3
3 − 12𝑥2 + 17𝑥

2 − 15
8 ] 𝑥 ∈ [0.75, 1)

[𝑥, 𝑥
3

3 − 𝑥
2 , 0,

4𝑥3
3 − 2𝑥2 + 𝑥

2 + 0.0833333, 0, 0,
16𝑥3
3 − 8𝑥2 + 7𝑥

2 − 5
12 , 0] 𝑥 ∈ [0.5, 0.75)

[𝑥, 𝑥
3

3 − 𝑥
2 ,

4𝑥3
3 − 𝑥

2 , 0, 0,
16𝑥3
3 − 4𝑥2 + 𝑥

2 + 1
24 , 0, 0] 𝑥 ∈ [0.25, 0.5)

[𝑥, 𝑥
3

3 − 𝑥
2 ,

4𝑥3
3 − 𝑥

2 , 0,
16𝑥3
3 − 𝑥

2 , 0, 0, 0] True

• When 𝜑𝜏 = 𝑥2∕2, 𝜅 = 𝑗2, we have

𝛯𝜏 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[0.5𝑥2, 0,… , 0] 𝑥 ∈ R − [0, 1)

[0.5𝑥2, 𝑥
4

12 − 𝑥2

4 , 0, 𝑥
4

3 − 2𝑥3
3 + 𝑥2

4 + 𝑥
12

− 1
24 , 0, 0, 0,

4𝑥4
3 − 4𝑥3 + 17𝑥2

4 − 15𝑥
8 + 9

32 ] 𝑥 ∈ [0.75, 1)

[0.5𝑥2, 𝑥
4

12 − 𝑥2

4 , 0, 𝑥
4

3 − 2𝑥3
3 + 𝑥2

4 + 𝑥
12

− 1
24 , 0, 0,

4𝑥4
3 − 8𝑥3

3 + 7𝑥2
4 − 5𝑥

12 + 1
48 , 0] 𝑥 ∈ [0.5, 0.75)

[0.5𝑥2, 𝑥
4

12 − 𝑥2

4 , 𝑥
4

3 − 𝑥2

4 , 0, 0, 48𝑥4 − 28𝑥3

− 47𝑥2
12 + 11𝑥

24 − 1
96 , 0, 0] 𝑥 ∈ [0.25, 0.5)

[0.5𝑥2, 𝑥
4

12 − 𝑥2

4 , 𝑥
4

3 − 𝑥2

4 , 0, 4𝑥
4

3 − 𝑥2

4 , 0, 0, 0] True

The mathematical procedure

Now, we define the approximate solution of Eqs. (1)–(5) based on
the truncated Euler expansion defined in Eq. (14) as follows

𝑔(3)(𝜂) ≈ 𝑔(𝜂) =
2
∑

𝓁=1

𝑛
∑

𝑗=0

𝑀−1
∑

𝑘=0
𝑑𝓁,𝑔𝑗,𝑘 𝜑

𝓁(𝜂), (15)

𝑠(3)(𝜂) ≈ 𝑠̃(𝜂) =
2
∑

𝓁=1

𝑛
∑

𝑗=0

𝑀−1
∑

𝑘=0
𝑑𝓁,𝑠𝑗,𝑘𝜑

𝓁(𝜂), (16)

𝜃′′(𝜂) ≈ 𝜃(𝜂) =
2
∑

𝓁=1

𝑛
∑

𝑗=0

𝑀−1
∑

𝑘=0
𝑑𝓁,𝜃𝑗,𝑘 𝜑

𝓁(𝜂), (17)

𝜉′′(𝜂) ≈ 𝜉(𝜂) =
2
∑

𝓁=1

𝑛
∑

𝑗=0

𝑀−1
∑

𝑘=0
𝑑𝓁,𝜉𝑗,𝑘 𝜑

𝓁(𝜂), (18)

𝜙′′(𝜂) ≈ 𝜙(𝜂) =
2
∑

𝓁=1

𝑛
∑

𝑗=0

𝑀−1
∑

𝑘=0
𝑑𝓁,𝜙𝑗,𝑘 𝜑𝓁(𝜂). (19)

Hence,

𝑔(𝜂) ≈ ∭𝜂
𝑔 =

2
∑

𝓁=1

𝑛
∑

𝑗=0

𝑀−1
∑

𝑘=0
𝑑𝓁,𝑔𝑗,𝑘 ∭𝜂

𝜑𝓁
𝑗,𝑘, (20)

𝑠(𝜂) ≈ ∭𝜂
𝑠̃ =

2
∑

𝓁=1

𝑛
∑

𝑗=0

𝑀−1
∑

𝑘=0
𝑑𝓁,𝑠𝑗,𝑘 ∭𝜂

𝜑𝓁
𝑗,𝑘, (21)

𝜃(𝜂) ≈ ∬𝜂
𝜃 =

2
∑

𝓁=1

𝑛
∑

𝑗=0

𝑀−1
∑

𝑘=0
𝑑𝓁,𝜃𝑗,𝑘 ∬𝜂

𝜑𝓁
𝑗,𝑘, (22)

𝜉(𝜂) ≈ ∬𝜂
𝜉 =

2
∑

𝓁=1

𝑛
∑

𝑗=0

𝑀−1
∑

𝑘=0
𝑑𝓁,𝜉𝑗,𝑘 ∬𝜂

𝜑𝓁
𝑗,𝑘, (23)

𝜙(𝜂) ≈ ∬𝜂
𝜙 =

2
∑

𝓁=1

𝑛
∑

𝑗=0

𝑀−1
∑

𝑘=0
𝑑𝓁,𝜙𝑗,𝑘 ∬𝜂

𝜑𝓁
𝑗,𝑘. (24)

Using Eqs. (16)–(20), the NODEs given by Eqs. (1)–(5) yields the
following

∫𝜂
𝑔(𝑡)𝑑𝑡

(

𝑐∭𝜂
(𝑠̃(𝑡) + 𝑔(𝑡))𝑑𝑡

)

−
(

∬𝜂
𝑔(𝑡)𝑑𝑡

)2
−

Nr∭𝜂 𝜙(𝑡)𝑑𝑡

GrPr

+
Rab∭𝜂 𝜉(𝑡)𝑑𝑡

Gr +∭𝜂
𝜃(𝑡)𝑑𝑡 = 0

𝑠̃(𝜂) +
(

∭𝜂
𝑔(𝑡)𝑑𝑡 + 𝑐∭𝜂

𝑠̃(𝑡)𝑑𝑡
)

∫𝜂
𝑠̃(𝑡)𝑑𝑡 − 𝑐

(

∬𝜂
𝑠̃(𝑡)𝑑𝑡

)2

+∭𝜂
𝜃(𝑡)𝑑𝑡 − 𝑁𝑟

𝑃𝑟𝐺𝑟 ∭𝜂
𝜙(𝑡)𝑑𝑡+

𝑅𝑎𝑏
𝐺𝑟 ∭𝜂

𝜉(𝑡)𝑑𝑡 = 0

𝑃𝑟∬𝜂
𝜃(𝑡)𝑑𝑡

(

𝑐∭𝜂
𝑠̃(𝑡)𝑑𝑡 +∭𝜂

𝑔(𝑡)𝑑𝑡
)

+ NB∭𝜂
𝜃(𝑡)𝑑𝑡∬𝜂

𝜙(𝑡)𝑑𝑡

+NT
(

∬𝜂
𝜃(𝑡)𝑑𝑡

)2
+ ∫𝜂

𝜃(𝑡)𝑑𝑡 = 0

LePr∬𝜂
𝜙(𝑡)𝑑𝑡

(

𝑐∭𝜂
𝑠̃(𝑡)𝑑𝑡 +∭𝜂

𝑔(𝑡)𝑑𝑡
)

+
NT ∫𝜂 𝜃(𝑡)𝑑𝑡

NB + ∫𝜂
𝜙(𝑡)𝑑𝑡 = 0

Sc∬𝜂
𝜉(𝑡)𝑑𝑡

(

𝑐∭𝜂
𝑠̃(𝑡)𝑑𝑡 +∭𝜂

𝑔(𝑡)𝑑𝑡
)

− Pe
(

∬𝜂
𝜉(𝑡)𝑑𝑡∬𝜂

𝜙(𝑡)𝑑𝑡

+∭𝜂
𝜉(𝑡)𝑑𝑡∫𝜂

𝜙(𝑡)𝑑𝑡
)

+ ∫𝜂
𝜉(𝑡)𝑑𝑡 = 0,

To implement the collocation point, we define

𝑀 = 21+𝑛, 𝑛 = 1, 2,… ,

as a collocation node where

𝑠𝑖 = 𝑠𝑖−1 + 1∕𝑀, 𝑖 = 1, 2,… ,𝑀 ; 𝜂𝑖 =
1
2
(𝑠𝑖−1 + 𝑠𝑖), 𝑖 = 1, 2,… ,𝑀.

Now, by substituting the collocation points to the system of equa-
tions above, we have

∫𝜂𝑖
𝑔(𝑡)𝑑𝑡

(

𝑐∭𝜂𝑖
(𝑠̃(𝑡) + 𝑔(𝑡))𝑑𝑡

)

−

(

∬𝜂𝑖
𝑔(𝑡)𝑑𝑡

)2

−
Nr∭𝜂𝑖

𝜙(𝑡)𝑑𝑡

GrPr

+
Rab∭𝜂𝑖

𝜉(𝑡)𝑑𝑡

Gr +∭𝜂𝑖
𝜃(𝑡)𝑑𝑡 = 0

𝑠̃(𝜂𝑖) +

(

∭𝜂𝑖
𝑔(𝑡)𝑑𝑡 + 𝑐∭𝜂𝑖

𝑠̃(𝑡)𝑑𝑡

)

∫𝜂𝑖
𝑠̃(𝑡)𝑑𝑡 − 𝑐

(

∬𝜂𝑖
𝑠̃(𝑡)𝑑𝑡

)2

+∭𝜂𝑖
𝜃(𝑡)𝑑𝑡 − 𝑁𝑟

𝑃𝑟𝐺𝑟 ∭𝜂𝑖
𝜙(𝑡)𝑑𝑡+

𝑅𝑎𝑏
𝐺𝑟 ∭𝜂𝑖

𝜉(𝑡)𝑑𝑡 = 0

𝑃𝑟∬𝜂𝑖
𝜃(𝑡)𝑑𝑡

(

𝑐∭𝜂𝑖
𝑠̃(𝑡)𝑑𝑡 +∭𝜂𝑖

𝑔(𝑡)𝑑𝑡

)

+ NB∭𝜂𝑖
𝜃(𝑡)𝑑𝑡∬𝜂𝑖

𝜙(𝑡)𝑑𝑡

+NT
(

∬𝜂𝑖
𝜃(𝑡)𝑑𝑡

)2

+

∫𝜂𝑖
𝜃(𝑡)𝑑𝑡 = 0
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Fig. 1. The improvement of 𝑔, 𝜃, and 𝜉 verses 𝑁𝑟, receptively, when 𝑐 = 0, 𝑃 𝑟 = 𝐺𝑟 = 𝑃𝑒 = 𝐿𝑒 = 𝑅𝑎𝑏 = 𝑆𝑐 = 1, 𝑁𝐵 = 𝑁𝑇 = 0.1.

Fig. 2. The improvement of 𝑔, 𝜃, and 𝜉 verses 𝑁𝑇 , receptively, when 𝑐 = 0, 𝑃 𝑟 = 𝐺𝑟 = 𝑃𝑒 = 𝐿𝑒 = 𝑅𝑎𝑏 = 𝑆𝑐 = 1, 𝑁𝐵 = 𝑁𝑟 = 0.1.

Fig. 3. The improvement of 𝑔, 𝜃, and 𝜉 verses 𝑁𝐵, receptively, when 𝑐 = 0, 𝑃 𝑟 = 𝐺𝑟 = 𝑃𝑒 = 𝐿𝑒 = 𝑅𝑎𝑏 = 𝑆𝑐 = 1, 𝑁𝑟 = 𝑁𝑇 = 0.1.

LePr∬𝜂𝑖
𝜙(𝑡)𝑑𝑡

(

𝑐∭𝜂𝑖
𝑠̃(𝑡)𝑑𝑡 +∭𝜂𝑖

𝑔(𝑡)𝑑𝑡

)

+
NT ∫𝜂𝑖 𝜃(𝑡)𝑑𝑡

NB

+∫𝜂𝑖
𝜙(𝑡)𝑑𝑡 = 0

Sc∬𝜂𝑖
𝜉(𝑡)𝑑𝑡

(

𝑐∭𝜂𝑖
𝑠̃(𝑡)𝑑𝑡 +∭𝜂𝑖

𝑔(𝑡)𝑑𝑡

)

− Pe
(

∬𝜂𝑖
𝜉(𝑡)𝑑𝑡∬𝜂𝑖

𝜙(𝑡)𝑑𝑡

+∭𝜂𝑖
𝜉(𝑡)𝑑𝑡∫𝜂𝑖

𝜙(𝑡)𝑑𝑡

)

+

∫𝜂𝑖
𝜉(𝑡)𝑑𝑡 = 0,

Therefore, the collocation division generates a system of algebraic
equations that can be solved easily by Mathematica software to produce
the unknown coefficients 𝑑𝓁,𝑔𝑗,𝑘 , 𝑑

𝓁,𝑠
𝑗,𝑘 , 𝑑

𝓁,𝜃
𝑗,𝑘 , 𝑑

𝓁,𝜉
𝑗,𝑘 and 𝑑𝓁,𝜙𝑗,𝑘 needed to find an

approximate solutions given by Eqs. (16)–(20).

Graphical illustration

In this part, we present the behavior of the approximated func-
tions 𝑔, 𝜃, and 𝜉 for some values of 𝑐, 𝑃𝑟, 𝐺𝑟, 𝑃𝑒, 𝐿𝑒, 𝑅𝑎𝑏 , 𝑆𝑐 , 𝑁𝐵 , and
𝑁𝑇 . More specifically, Figs. 1–9 illustrate the effect of 𝑔, 𝜃, and 𝜉
under 𝑃𝑟, 𝑁𝑇 , 𝑁𝐵 , 𝑐, 𝐿𝑒, 𝑃𝑟, 𝑅𝑎𝑏 , and 𝑆𝑐 , respectively. For example, with
regards of 𝜉, we interpret the following:

• In a gradual way, the relation between the buoyancy ratio and 𝜉
is clearly viewed in Fig. 1.

• The behavior of 𝜉 is present when 𝑁𝑇 increased as depicted in
Fig. 2.

• The variation in 𝜉 versus 𝑁𝐵 is illustrated in Fig. 3. The effect of
the ratio parameter on 𝜉 profile is viewed in Fig. 4.

• The impact of 𝐿𝑒 on the density of 𝑥𝑖 is described in Fig. 5.
• The dual impact of 𝑃𝑟 on 𝜉 is depicted in Fig. 6.
• The behavior of 𝜉 by increasing 𝑅𝑎𝑏 exhibited in Fig. 7.
• The same behavior in 𝜉 is gradually increased by the values of
𝑆𝑐, 𝑃 𝑒 respectively and displayed by Figs. 8, and 9.

Figs. 10–13 show the improvement in 𝑔′′(0), −𝜃′′(0), −𝜙′′(0) and
−𝜉′′(0) respectively by enhancing 𝑁𝑟,𝑁𝐵 and, 𝑁𝑟,𝑁𝑇 .

The graphical representation of square residual is depicted in
Fig. 14, where it is clearly proves the reliability and accuracy of the
used method along with the computational cost. In Table 1 we present
the error bounds for each truncated parameter based on Euler wavelets
by approximating the below integrals where

𝛥𝑔 = ∫𝜂∞

(

𝑔′′(𝜂)(𝑐𝑠̃(𝜂) + 𝑔(𝜂)) + 𝑔(3)(𝜂) − 𝑔′(𝜂)2

−
Nr𝜙(𝜂)
GrPr +

Rab𝜉(𝜂)
Gr + 𝜃(𝜂)

)

𝑑𝜂
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Fig. 4. The improvement of 𝑔, 𝜃, and 𝜉 verses 𝑐, receptively, when 𝑃𝑟 = 𝐺𝑟 = 𝑃𝑒 = 𝐿𝑒 = 𝑅𝑎𝑏 = 𝑆𝑐 = 1, 𝑁𝑟 = 𝑁𝐵 = 𝑁𝑇 = 0.1.

Fig. 5. The improvement of 𝑔, 𝜃, and 𝜉 verses 𝐿𝑒, receptively, when 𝑐 = 0, 𝑃 𝑟 = 𝐺𝑟 = 𝑃𝑒 = 𝑅𝑎𝑏 = 𝑆𝑐 = 1, 𝑁𝑟 = 𝑁𝐵 = 𝑁𝑇 = 0.1.

Fig. 6. The improvement of 𝑔, 𝜃, and 𝜉 verses 𝑃𝑟, receptively, when 𝑐 = 0, 𝐿𝑒 = 𝐺𝑟 = 𝑃𝑒 = 𝑅𝑎𝑏 = 𝑆𝑐 = 1, 𝑁𝑟 = 𝑁𝐵 = 𝑁𝑇 = 0.1.

Fig. 7. The improvement of 𝑔, 𝜃, and 𝜉 verses 𝑅𝑎𝑏 , receptively, when 𝑐 = 0, 𝐿𝑒 = 𝑃𝑟 = 𝐺𝑟 = 𝑃𝑒 = 𝑆𝑐 = 1, 𝑁𝑟 = 𝑁𝐵 = 0.1, 𝑁𝑇 = 0.3.

Fig. 8. The improvement of 𝑔, 𝜃, and 𝜉 verses 𝑆𝑐 , receptively, when 𝑐 = 0, 𝐿𝑒 = 𝑃𝑟 = 𝐺𝑟 = 𝑃𝑒 = 𝑅𝑎𝑏 = 1, 𝑁𝑟 = 𝑁𝐵 = 𝑁𝑇 = 0.1.
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Fig. 9. The improvement of 𝑔, 𝜃, and 𝜉 verses 𝑃𝑒, receptively, when 𝑐 = 0, 𝐿𝑒 = 𝑃𝑟 = 𝐺𝑟 = 𝑆𝑐 = 𝑅𝑎𝑏 = 1, 𝑁𝑟 = 𝑁𝐵 = 𝑁𝑇 = 0.1.

Fig. 10. The improvement of 𝑔′′ verses 𝑁𝑟,𝑁𝐵 and, 𝑁𝑟,𝑁𝑇 respectively when 𝐿𝑒 = 𝑃𝑟 = 𝐺𝑟 = 𝑆𝑐 = 𝑅𝑎𝑏 = 1, 𝑐 = 𝑁𝐵 = 0.1.

Fig. 11. The improvement of −𝜃′(0) verses 𝑁𝑟,𝑁𝐵 and, 𝑁𝑟,𝑁𝑇 respectively when 𝐿𝑒 = 𝑃𝑟 = 𝐺𝑟 = 𝑆𝑐 = 𝑅𝑎𝑏 = 1, 𝑐 = 𝑁𝑇 = 0.1.

Fig. 12. The improvement of −𝜙′(0) verses 𝑁𝑟,𝑁𝐵 and, 𝑁𝑟,𝑁𝑇 respectively when 𝐿𝑒 = 𝑃𝑟 = 𝐺𝑟 = 𝑆𝑐 = 𝑅𝑎𝑏 = 1, 𝑐 = 𝑁𝑇 = 0.1.
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Fig. 13. The improvement of −𝜉′(0) verses 𝑁𝑟,𝑁𝐵 and, 𝑁𝑟,𝑁𝑇 respectively when 𝐿𝑒 = 𝑃𝑟 = 𝐺𝑟 = 𝑆𝑐 = 𝑅𝑎𝑏 = 1, 𝑐 = 𝑁𝑇 = 0.1.

Fig. 14. The error bounds illustration.

Table 1
Some numerical evidences of square residual error versus approximations.
𝑀 𝛥𝑔 𝛥𝑔 𝛥𝜃 𝛥𝜙 𝛥𝜉 CPU time (s)

66 8.032 × 10−17 8.032 × 10−17 7.152 × 10−18 6.629 × 10−17 1.112 × 10−16 32.639

𝛥𝑠 = ∫𝜂∞

(

𝑠̃(3)(𝜂) + (𝑔(𝜂) + 𝑐𝑠̃(𝜂))𝑔′′(𝜂) − 𝑐𝑠̃′(𝜂)2 + 𝜃(𝜂)

−𝑁𝑟∕(𝑃𝑟𝐺𝑟)𝜙(𝜂) + 𝑅𝑎𝑏∕𝐺𝑟(𝜉)(𝜂)
)

𝑑𝜂

𝛥𝜃 = ∫𝜂∞

(

Pr 𝜃′(𝜂)(𝑐𝑠̃(𝜂) + 𝑔(𝜂)) + NB𝜃′(𝜂)𝜙′(𝜂) + NT𝜃′(𝜂)2 + 𝜃′′(𝜂)
)

𝑑𝜂

𝛥𝜙 = ∫𝜂∞

(

LePr 𝜙′(𝜂)(𝑐𝑠̃(𝜂) + 𝑔(𝜂)) +
NT𝜃′′(𝜂)

NB + 𝜙′′(𝜂)
)

𝑑𝜂

𝛥𝜉 = ∫𝜂∞

(

Sc𝜉′(𝜂)(𝑐𝑠̃(𝜂) + 𝑔(𝜂)) − Pe
(

𝜉′(𝜂)𝜙′(𝜂) + 𝜉(𝜂)𝜙′′(𝜂)
)

+ 𝜉′′(𝜂)
)

𝑑𝜂.

Conclusion

The intended work is devoted to shedding some light on the use of
wavelets through a new scheme in the area of numerical solutions of
PDEs formed by various parameters in nanofluid applications. The Eu-
ler polynomials have been successfully applied to test the 3D nanofluid

bio-convection model around a stagnation point. The generated system
of PDEs has been reduced to a system of NODEs under the given
governing equations. The solution of the reduced model is conducted by
a new technique involved by a set of functions with proper translation
and dilation.

This is a new contribution of using such wavelets in the area of
nanofluids and we are certain that this contribution will open many
doors for future investigations. Finally, it is remarkable to notice the er-
ror is decreased while 𝑀 is increasing. This gives rise to the efficiency,
accuracy and the low computational cost of the proposed method. We
will explore our method in various PDEs in nanofluids.
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