
Zayed University Zayed University

ZU Scholars ZU Scholars

All Works

9-1-2022

A GPU-based Machine Learning Approach for Detection of Botnet A GPU-based Machine Learning Approach for Detection of Botnet

Attacks Attacks

Michal Motylinski
Liverpool John Moores University

Áine MacDermott
Zayed University

Farkhund Iqbal
Zayed University, farkhund.iqbal@zu.ac.ae

Babar Shah
Zayed University, babar.shah@zu.ac.ae

Follow this and additional works at: https://zuscholars.zu.ac.ae/works

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Motylinski, Michal; MacDermott, Áine; Iqbal, Farkhund; and Shah, Babar, "A GPU-based Machine Learning
Approach for Detection of Botnet Attacks" (2022). All Works. 5366.
https://zuscholars.zu.ac.ae/works/5366

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All
Works by an authorized administrator of ZU Scholars. For more information, please contact scholars@zu.ac.ae.

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/5366?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5366&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholars@zu.ac.ae

Computers & Security 123 (2022) 102918

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

A GPU-based machine learning approach for detection of botnet

attacks

Michal Motylinski a , Áine MacDermott a , ∗, Farkhund Iqbal b , Babar Shah

b

a School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, UK
b College of Technological Innovation, Zayed University, United Arab Emirates

a r t i c l e i n f o

Article history:

Received 18 February 2022

Revised 11 August 2022

Accepted 10 September 2022

Available online 14 September 2022

Keywords:

Internet of Things

Machine learning

Random forest

Feature selection

Attack detection

Classification

a b s t r a c t

Rapid development and adaptation of the Internet of Things (IoT) has created new problems for secur-

ing these interconnected devices and networks. There are hundreds of thousands of IoT devices with

underlying security vulnerabilities, such as insufficient device authentication/authorisation making them

vulnerable to malware infection. IoT botnets are designed to grow and compete with one another over

unsecure devices and networks. Once infected, the device will monitor a Command-and-Control (C&C)

server indicating the target of an attack via Distributed Denial of Service (DDoS) attack. These security

issues, coupled with the continued growth of IoT, presents a much larger attack surface for attackers to

exploit in their attempts to disrupt or gain unauthorized access to networks, systems, and data. Large

datasets available online provide good benchmarks for the development of accurate solutions for botnet

detection, however model training is often a time-consuming process. Interestingly, significant advance-

ment of GPU technology allows shortening the time required to train such large and complex models. This

paper presents a methodology for the pre-processing of the IoT-Bot dataset and classification of various

attack types included. We include descriptions of pre-processing actions conducted to prepare data for

training and a comparison of results achieved with GPU accelerated versions of Random Forest, k-Nearest

Neighbour, Support Vector Machine (SVM) and Logistic Regression classifiers from the cuML library. Using

our methodology, the best-trained models achieved at least 0.99 scores for accuracy, precision, recall and

f1-score. Moreover, the application of feature selection and training models on GPU significantly reduced

the training and estimation times.

© 2022 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The Internet of Things (IoT) represents the seamless merging

of the real and digital world, with new devices being created that

store and pass around data. New frameworks, many interconnected

devices, and a plethora of applications (allowing communication

with said devices) make it difficult to develop and maintain ro-

bust security solutions. The growing numbers of IoT devices make

them a very attractive target for threat actors who aim to use them

to access other devices and a form a larger network. According

to Kaspersky’s Threat Report, “the IoT will become one of the main

targets of cyber-attacks in the near future ” (Kaspersky, 2022). Mali-

cious software, or malware, arguably constitutes one of the most

significant categories of threats to computer systems. With nearly

∗ Corresponding author.

E-mail address: a.m.macdermott@ljmu.ac.uk (Á. MacDermott) .

12,0 0 0 new instances of malware being created everyday detec-

tion of such threats is one of the most essential problems that re-

quire a solution (G Data, 2022). With the number of malware fam-

ilies targeting these IoT devices and systems is ever increasing, IoT

botnets are designed to grow and compete with one another over

unsecure devices. An IoT Botnet is also a collection of various IoT

devices such as routers, wearables and embedded technologies in-

fected with malware. Much of a botnet’s power comes from the

number of devices that make it up. As such, this malware allows

an attacker to control all the connected devices. There are three

distinct architectures that characterize most botnets. In the central-

ized network all bots connect to the Command-and-Control server

(C&C). The main characteristic of this type is that automated com-

mands are sent from C&C to the bots via IRC or HTTP channels.

Direct communication means low latency of such architecture but

also dependency on the C&C which if discovered will provide in-

formation about all botnets in the network. The second type of ar-

chitecture is a decentralized model which does not have a central

https://doi.org/10.1016/j.cose.2022.102918

0167-4048/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.cose.2022.102918
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.102918&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:a.m.macdermott@ljmu.ac.uk
https://doi.org/10.1016/j.cose.2022.102918
http://creativecommons.org/licenses/by-nc-nd/4.0/

M. Motylinski, Á. MacDermott, F. Iqbal et al. Computers & Security 123 (2022) 102918

point of failure. In this setup each bot is both client and server

and use peer to peer (P2P) communication protocols as a means of

connecting with other machines. In the hybrid approach the com-

promise between centralized and decentralized approach allows to

keep relatively low latency and keep botnets secure from detec-

tion by using P2P protocols for communication (Miller et al., 2016).

Early IoT malware families like Gafgyt and the original Mirai fam-

ily leveraged default or weak passwords to attack devices. Whereas

current versions of botnet have new functionalities, and propaga-

tion methods utilise Tor proxy functions to provide the IP servers’

address. Botnets are mainly propagated through weak Telnet pass-

words – a common issue on IoT devices – and through exploit-

ing three vulnerabilities. The Gafgyt botnet actively targets vulner-

able D-Link and IoT devices including remote code execution flaws

(CVE-2019–16,920) in D-Link devices; a remote code execution vul-

nerability in Liferay enterprise portal software (for which no CVE is

available); and a flaw (CVE-2019-19,781) in Citrix Application De-

livery Controllers (Threatpost, 2021).

The best strategy against IoT botnets is to secure against their

threat, detect their presence in a timely manner, and ultimately

limit their resources (by reducing the number of unsecure devices

from which they could derive their power). Intrusion Detection

Systems (IDS) are used to monitor network traffic and detection

sign of intrusion. The detection may be according to the signatures

of executable malwares or according to the signatures of malicious

network traffic generated by malware. Signature-based approaches

detect malicious packets by looking at specific patterns and sig-

natures of the given threat. A major problem with this approach

is that it requires frequent updates of the intruder’s database and

is unable to detect unknown attacks. Anomaly-based detection

focuses on learning trustworthy signatures (and behaviours) and

uses this knowledge to pass only legitimate traffic. If an IDS detects

an unusual pattern in analysed traffic, then the particular packets

will be flagged. However, the main problem with this approach is

that new legitimate traffic can also be flagged because the algo-

rithm had not learned it yet, with an increasing amount of false

positive alerts. Any action, like sweeping or probing, creates a sig-

nal in the network anomaly-based IDS which can detect such ac-

tions.

Machine learning has become a vital technology for cybersecu-

rity and threat detection (Xin et al., 2018 ; Azwar et al., 2018). Ma-

chine learning for intrusion detection can solve many challenges

such as speed and computational time and develop accurate IDS.

While the application of machine learning for classification or de-

tection of attacks has been covered in many academic works, we

have not yet seen an attempt to implement acceleration technolo-

gies to boost the performance of the models and essentially create

a more viable solution for environments where frequent retraining

of the algorithm is necessary. There are various frameworks avail-

able for an acceleration of the machine learning models. In this pa-

per we will focus on the implementation of RAPIDS libraries such

as cuDF and cuML. The aforementioned libraries allow the use of

GPU for machine learning tasks which may provide increased per-

formance due to significantly greater bandwidth and better com-

putation capabilities of GPU over CPU (Medium, 2021). Due to the

difference in architecture between CPU (typically 4–8 cores) and

GPU (hundreds of smaller cores) parallelization of tasks can be ap-

plied when working on the latter. Using the CUDA platform for

parallel programming, the general computing tasks can be drasti-

cally sped up by breaking down one big task into hundreds of little

chunks.

Our research is focused on increasing the speed of the detection

while sustaining an acceptable level of detection. Our methodology

involves pre-processing, feature selection and application of GPU-

accelerated machine learning models which results in an improve-

ment over currently used methods. These methods are explained

within our methodology section and comparison to related works

is conducted within the Results section. Our approach differs from

other works in the field as we decided to create new features from

the existing dataset. Moreover, in contrast to other works, we de-

cided to test fast computing algorithms and their impact on accu-

racy, training, and prediction time of the models.

The novel contributions of our work are as follows:

- Application of GPU-based accelerated machine learning models,

- Generation of new features and application of permutation im-

portance method for feature selection and interpretability of

models,

- Improvement of both training and prediction times in compar-

ison to other works in the field,

- Retaining high accuracy and robustness of the models similar

to previous academic works.

The paper is organised as follows: In Section 2 we provide back-

ground on attacks against IoT devices and related works utilising

machine learning. In Section 3 we detail our methodology, and

present results and discussion of our findings Section 4 . Future

work and concluding remarks are presented in Section 5 .

2. Related work

Machine learning algorithms use historical data as an input to

predict new output values. Machine learning can monitor systems

and respond to changes in the behaviour, protecting against threats

through pattern detection, real-time threat monitoring, vulnerabil-

ity mapping and penetration testing. Machine learning methods

have seen increased use in the last decades due to the rapid devel-

opment of various technologies and the growing computing capa-

bilities of computers. The introduction of GPU for machine learning

has introduced new possibilities allowing researchers to solve is-

sues that previous hardware could not handle due to expensive op-

erations or significant time-consuming processes of model training.

Machine learning models are known for great prediction capabili-

ties and are used for a variety of classification, pattern recognition

and detection tasks.

The difference between cyber security and other fields is that

the attackers and threat actors do not behave in a predictable or

statistically consistent way. The goal of an attacker is to remain

hidden and so all their activities are evasive. As such, an attack per-

formed by one attacker may look completely different to the same

attack performed by a different attacker. This means that many

machine learning models cannot be widely used and that the mod-

els and algorithms must be adapted to different conditions and be-

havioural parameters. IDS play a crucial role in defending networks

by monitoring traffic for malicious activities.

The majority of the solutions tackling traffic detection prob-

lems focus solely on the accuracy, however, training and predic-

tion time is also important. Within this section we explore the so-

lutions proposed for the classification of attacks using the IoT-Bot

dataset UNSW Canberra (2022) and their parameters for detection.

2.1. Current solutions

Koroniotis et al. (2019) used the machine learning classifier

Support Vector Machine (SVM) and two deep learning predictors

Recurring Neural Network (RNN) and Long Short-Term Memory

(LSTM). Their experiments were conducted on a 5% sample of data

which contained around 3 million records. The authors derived

new features from the existing data. Using a correlation coefficient,

the researchers extracted the 10 best features that were used to

train a model and compared against training on a full set of fea-

tures. The SVM trained on all features achieved the best results

with accuracy of 99 and 100% recall, however all predictors had a

2

M. Motylinski, Á. MacDermott, F. Iqbal et al. Computers & Security 123 (2022) 102918

very similar performance. The training time of SVM was 110 min.

The results of this research show that while SVM and neural net-

works have extremely high accuracy they are also very slow to

train and require a significant amount of data.

Oreški et al. (2020) used a different approach to the selec-

tion of best features called ‘Search and Testing for Understandable

Consistent Contrast’ (STUCCO). With this approach, the authors

were able to select different features compared to the work of

Koroniotis et al. (2019) . The authors implemented the SVM model

to train on the input data. The model has achieved > 0.99 scores

for accuracy, precision, recall and f1 score.

In Shafiq et al. (2020a) , the authors proposed a novel method

for feature selection called ‘CorrAUC’ and applied it to the Bot-IoT

dataset. The new technique selected a set of five features that de-

scribed the dataset well enough to be used for training. The ap-

proach trained Decision Tree, SVM, Naive Bayes and Random For-

est classifiers and compared their performance on a created test

set. With the exception of Naive Bayes, all classifiers achieved high

accuracy, specificity, sensitivity, and precision scores in most cases.

The results indicate that Random Forest performance was slightly

better, and the accuracy was above 99% which is similar to the pre-

vious research, however, recall scores for data theft and keylogging

theft were 0.50 and 0.89 accordingly.

In their work, Javed et al. (2020) proposed the use of an Ad-

aBoost classifier for the detection of botnet attacks. The authors

used a publicly available "takata" dataset for their research. The

applied method for feature extraction allowed for deriving a set of

10 highly correlated features out of the initial list of 55 features.

For comparison, the authors applied a decision tree, probabilistic

neural network, and sequential minimal optimization algorithms.

The evaluation results indicate that AdaBoost has the highest ac-

curacy and robustness out of all four architectures tested. The pro-

posed approach involves feature selection using the information

gain method and then the implementation of the AdaBoost clas-

sifier.

Churcher et al. (2021) performed a comprehensive analysis

of attack classification using many common algorithms from the

scikit-learn library like KNN, SVM, Random Forest or Naïve Bayes.

The researchers conducted 2 types of experiments a binary classifi-

cation of malicious traffic and a multiclass classification of various

attacks. Various weights were applied to the classifiers to change

the bias towards classes. Random forest was the best performing

algorithm for binary classification tasks while KNN and ANN mod-

els had better performance classifying various attack types. Ran-

dom Forest had perfect metric scores in a binary task and 0.95

scores in a multiclass task.

Shafiq et al. (2020b) tested various machine learning models in

search of the most effective solution for IoT botnet detection. The

IoT Botnet dataset from Koroniotis et al. (2019) has been used to

conduct this research. The authors selected Naïve Bayes, BayesNet,

Decision Tree, Random Forest and Random Tree and applied the

Bijective Soft Set technique to choose the best classifier. The results

of this research show that all algorithms have a high accuracy and

recall rate of > 0.98. Taking into consideration the time required

to train the algorithms in this research Native Bayes had the best

performance.

In Alsamiri and Alsubhi (2019) , the authors used IoT-Botnet

pcap files to generate a new set of features by using the CI-

CFlowMeter tool to extract flow-based features. The authors se-

lected 13 generated features for the training of various models in-

cluding Random Forest, k-Nearest Neighbour and Naive Bayes. The

results presented in the work indicate that Random Forest has the

best performance for most of the attack types (95% −100%) with

KNN having slightly lower accuracy. In their work (Garre et al.,

2021) proposed a novel approach for the detection of SSH bot-

net infections. The authors generated their own dataset captur-

Fig. 1. IDS machine learning model development pipeline.

ing information from various honeypots deployed across the world.

For traffic classification, four algorithms were used namely: Deci-

sion Tree, Random Forest, SVM and Native Bayes. Experimental re-

sults showed that Random Forest had better performance achiev-

ing 95.7% accuracy and 93.9% recall scores.

2.2. Summary of related work

Our analysis of related works indicates that SVM is one of the

most commonly used classifiers for its great accuracy in compar-

ison to many other methods. Ensemble learning algorithms, how-

ever, tend to perform better than SVM, especially Random Forest

(RF) which became a state of the art in many domains in recent

years (Vakili et al., 2020 ; Sujatha and Mahalakshmi, 2020). The

tests conducted on various datasets conclude that RF is not only

more accurate than SVM in most cases but also requires signifi-

cantly less training time and provides faster prediction. The speed

of the algorithm training and prediction is important for their in-

dustry use because the less time and resources it is necessary to

develop a good model the sooner it can be deployed. It is ex-

tremely important as machine learning models for IoT detection

must be regularly updated to keep up with new threats which

means frequent model retraining.

3. Proposed methodology

In this section, we provide our methodology used to develop a

model capable of discriminating different types of attacks on IoT

devices. The model development pipeline (presented in Fig. 1) be-

gins from the data processing stage which involved acquisition of

the dataset from a public repository and sampling a smaller set

containing enough information to train the machine learning mod-

els. As part of pre-processing, the data is split into appropriate sets

for model training and evaluation. Next, an oversampling ratio is

applied to parts of the data. One of the most important aspects of

our approach is the creation of a new set of features that are de-

rived in a feature engineering process. Then all of the features un-

dergo a selection process which results in much smaller set of best

features that are used to train the models. Following this stage is

the hyperparameter configuration of the model. This involves the

3

M. Motylinski, Á. MacDermott, F. Iqbal et al. Computers & Security 123 (2022) 102918

Table 1

Dataset attack class distribution.

Attack category Subcategory Number of entries

DDoS HTTP 19,738

TCP 19,547,104

UDP 18,964,396

DoS HTTP 29,680

TCP 12,315,619

UDP 20,658,630

Reconnaissance OS Fingerprint 1,433,189

Service Scan 356,285

Theft Data Exfiltration 114

Keylogging 1464

retraining and evaluation process which occurs until satisfying re-

sults are achieved. Our approach involves implementation of GPU

accelerated algorithms that allow significantly faster model train-

ing and prediction.

The remainder of this section will include methodology details

and experiment design via description of the dataset used for our

experiments, justification of feature selection, our approach to un-

even class distribution, choice of classifiers and selection of metrics

used for evaluation of the models.

3.1. Dataset

We have chosen the most recent iteration of IDS datasets from

The University of New South Wales Canberra (UNSW) at the Aus-

tralian Defence Force Academy – ‘ Bot-IoT’- UNSW Canberra (2022) .

The data was created in a Cyber Range Lab in a realistic environ-

ment (Koroniotis et al., 2017, 2019; Koroniotis and Moustafa, 2020).

From PCAP files, a set of features were extracted and saved in var-

ious formats. We are using CSV files, with the overall size at 16.7

GB (there are 72 million records in the dataset). 9063 of the entries

represent normal traffic. This data is used for a binary classifica-

tion of malicious and non-malicious traffic. Each entry is described

as belonging to one of the main attack categories and further split

into a subcategory. Table 1 presents the distribution of attacks ac-

cording to category and subcategory.

Dataset sample

While the dataset authors (UNSW Canberra, 2022)

(Koroniotis et al., 2017) provided a pre-processed subset of

data with nearly three million entries, the distribution of attack

types is very unbalanced. We decided to create our own subset

which consists of a more equal representation of all attack types.

We concluded that 10 0,0 0 0 occurrences per attack would be

sufficient to train an accurate solution. A fixed-size sample of ran-

dom values was taken for every class if a number of occurrences

exceeded the limit.

Experiment environment

In this experiment no physical setup is made to create a mali-

cious traffic. Instead, a “Bot-IoT’ dataset - well known benchmark -

is used to train and test the algorithms . The training of all mod-

els was performed on AMD Ryzen 7 2700X Eight-Core Processor

(4.15 GHz). It is important to note that every CPU based training

used all processors for training which significantly improved the

training time of the models. A single NVIDIA GeForce RTX 2080

graphics card with 8GB of VRAM was used for the training of ac-

celerated variants of machine learning algorithms.

Feature selection

To reduce training and prediction times, we removed features

that had little or no impact on the prediction capabilities of the

algorithms. This is achieved by implementing the permutation im-

portance technique. The permutation feature importance provides

feedback about which feature in a dataset had the least impor-

tance. This is done by randomly shuffling feature value which

causes a decrease in model score. The procedure breaks relation-

ship between the feature and the target which shows how depen-

dant the model is on the particular feature. The conducted tests

showed that the best features obtained with this method work

well with all estimators used in this study. Moreover, using the

original set of features we have calculated new features to increase

the robustness of the model. The results of this process are shown

in the following subsections where we remark on class distribu-

tion, estimators, and evaluation metrics.

Class distribution

Uneven distribution of classes is a very common issue in ma-

chine learning. In fact, it is very difficult to find perfectly even

datasets especially with thousands or millions of records. Depend-

ing on the scale of irregularity this can be a serious problem,

and in some cases lead to very poor results of prediction. While

some classifiers like decision trees, logistic regression and SVM

can work with imbalanced data, they will most likely fail when

there is a high disproportion of classes. In order to tackle the prob-

lem of imbalanced attributes two methods can be employed: over-

sampling and under-sampling. Application of the former technique

requires instances of the under-represented data to be copied.

Under-sampling on the other hand can be applied by deleting in-

stances of the major class.

It is generally advised to use oversampling on small datasets

and under-sampling when there is a lot of data so removal of val-

ues will not have a negative impact on the model. As the pro-

duced dataset sample was still imbalanced, we have decided to ap-

ply oversampling to the minor class to eliminate the bias. We have

chosen one of the most widely used methods called the Synthetic

Minority Oversampling Technique (SMOTE).

Algorithms used

Based on previous academic research in the field and our own

experience we have decided to use Random Forest (RF), SVM,

Logistic Regression (LR) and k-Nearest Neighbour estimators. For

our experiments, we have chosen GPU accelerated versions of the

classifiers from the cuML library. While Scikit-learn implementa-

tions are considered state-of-the-art and are used in most research

works on IoT-bot detection they can only utilize CPU which train-

ing, and prediction times are a major drawback. The GPU acceler-

ated algorithms are still in development, thus many of the features

included in the documentation are not yet supported. RAPIDS algo-

rithms tend to perform worse than their scikit-learn counterparts

on default settings, thus hyperparameter optimization was neces-

sary to obtain satisfactory results (cuML, 2022).

RF is an ensemble learner that implements multiple weak

learners (decision trees) using specific rules and then integrates

results from all of them generating the final prediction. Each tree

is trained on a random subset of features which breaks the cor-

relation between them improving the prediction capability of the

model. RF is considered as a state-of-the-art algorithm for its pre-

diction accuracy tested on many different datasets as well as the

very short time necessary to train the model (Breiman, 2001 ;

Zhang et al., 2017 ; Nanni et al., 2015). k-Nearest Neighbour (KNN)

is a supervised machine learning algorithm that assumes that sim-

ilar elements exist in close proximity. KNN can be used for both

classification and regression problems. Classification is performed

by looking at the closest neighbour to the chosen K value of the

same class. As the name suggests the most important hyperpa-

rameter in KNN is the number of neighbours (n_neighbors). Other

parameters such as distance metrics and weights of neighbours

4

M. Motylinski, Á. MacDermott, F. Iqbal et al. Computers & Security 123 (2022) 102918

Table 2

Hyperparameter values for each algorithm.

Algorithm Parameter Default Tuned

Random Forrest (RF) max_depth 16 18

n_bins 8 17

k-Nearest Neighbour (KNN) N_neighbours 1 3

Support Vector Machines (SVM) C 1 60

Logistic Regression (LR) penalty l2 l1

tol (tolerance) 1e-4 1e-5

can also change the prediction significantly depending on the task

and data composition. The KNN is a fast algorithm to train, how-

ever, its major drawback is significantly slower estimation time

(Altman, 1991).

The SVM is also a very popular model which is often used to

solve many classification problems. The most important parame-

ter in SVM is the kernel which controls how the input variables

are projected. SVM divides n_dimensional space into two distinct

regions for output classes. The algorithm is trying to find a hy-

perplane during training that best separates the output classes. In

the case of binary problem hyperplane is a single line. SVM algo-

rithm is commonly used for its high prediction rate, however, a

major drawback of this method is training time which is signifi-

cantly higher than RF or KNN (Abdiansah and Wardoyo, 2015).

Logistic regression (LR) is one of the most common models

used for binary classification. LR is rarely used for intrusion de-

tection tasks, however, its performance for binary problems is usu-

ally on par with other state-of-the-art algorithms. LR hyperparam-

eters can provide some improvement to the performance of the

model. The regularisation (penalty) and C parameter usually have

the greatest impact on the model performance (Pohar et al., 2004).

Initial training iterations were conducted using default param-

eters; however, the results were poor, thus hyperparameter tun-

ing was applied to all four models. For the RF model 2 parameters

were tuned: max depth and number of bins. The former represents

the depth of every tree which determines the number of splits.

Generally, more splits allow the model to capture more informa-

tion, however the convergence time increases. The cuML RF imple-

ments a histogram-based method for split determination. The size

of histograms can be tuned using number of bins parameter. This

is especially useful for larger problems with highly skewed input

data. The only hyperparameter tuned for KNN algorithm was the

number of neighbours or K number which indicates the count of

the nearest neighbours. In the case of SVM classifier tuning of C

parameter provided the best results. The C parameter is a penalty

that determines the influence of the misclassification on the deci-

sion function. The higher the penalty enforces a smaller error mar-

gin for decision function choosing hyperplane while lower value

encourages a larger error margin for the cost of model’s accuracy.

Two parameters were tuned for the LR namely penalty and tol-

erance. The penalty type refers to the regularisation method that

reduces parameters and simplifies the model to avoid overfitting.

The tolerance value determines when to stop the training. Depend-

ing on the task and input data larger values may cause algorithm

to not converge. Table 2 presents the exact values of parameters

chosen for each algorithm.

3.2. Evaluation metrics

To quantify the performance of the trained models the pre-

dicted values are assessed using evaluation metrics. Various met-

rics make different assumptions about the problem; thus, it is im-

portant to validate the outcome using multiple metrics. In this case

we have decided to apply standard set of evaluation metrics to

each estimator: accuracy, precision, recall and F1-score. Values for

each metric are calculated from the confusion matrix of predic-

tions. The accuracy is the ratio of the number of correct predic-

tions to the total number of samples. The formula for accuracy is

presented in (1) . A True Positive (TP) is an outcome where the

model correctly predicts the positive class. Similarly, a True Neg-

ative (TN) is an outcome where the model correctly predicts the

negative class. A False Positive (FP) is an outcome where the model

incorrectly predicts the positive class. A False Negative (FN) is an

outcome where the model incorrectly predicts the negative class.

Accuracy works best when the number of samples belonging to

each class is equal, thus under-sampling should positively impact

the score. These metrics will be used when analysing the perfor-

mance of our improved approach and comparing to related works.

Accuracy =

T P + T N

T P + T N + F P + F N

(1)

Precision (2) is the number of ground TP results divided by

number of predicted positive results.

P recision =

T P

T P + F P
(2)

Recall (3) is the number of correct positive results divided by

the number of all positive samples from the class.

Recall =

T P

T P + F N

(3)

F1-score (4) is a mean between precision and recall that ranges

between 0 and 1. F1-score indicates how robust the model is.

F 1 = 2 ∗ P recision ∗ Recall

P recision + Recall
(4)

Moreover, to test the speed of algorithms running on GPU the

results are compared to the CPU counterparts from the scikit-learn

library. The speed was measured in seconds and compiled results

include mean speeds calculated from 10 training/test iterations per

model.

4. Results and discussion

In this section, we present and discuss the results obtained in

the conducted experiments. First, we cover the outcomes of a data

processing pipeline developed for this project. Second, we discuss

the results of binary detection of malicious traffic. Next, accuracy

across all of the classes is presented. Finally, we discuss the im-

pact of our project in comparison to other works covering the IoT

botnet detection process.

4.1. Data pre-processing

During the pre-processing stage, we have created a small sub-

set of data that provides enough information to the algorithms and

shortens the training and prediction time. Because our research

is focused on the binary classification of the traffic, we have de-

cided that data will be derived according to the number of occur-

rences per attack type. Unlike the method used by the authors of a

dataset, we have saved all occurrences of minority classes (below

10 0,0 0 0) to ensure a good representation of all attacks. As shown

in Fig. 2 , the Keylogging, Data Exfiltration, DoS HTTP and DDoS

HTTP classes are underrepresented in the dataset. The significant

difference in the number of samples may introduce bias towards

majority classes reducing accuracy of the algorithms. To tackle this

issue, we have decided to adjust the class distribution by oversam-

pling the minority classes.

During our research we have applied various data splits to test

their impact on the trained models. We have observed that an

80:20 split of the data provided the best results. After the split,

an oversampling was performed on the training set. As a result,

5

M. Motylinski, Á. MacDermott, F. Iqbal et al. Computers & Security 123 (2022) 102918

Fig. 2. Subset of attacks derived from the original dataset.

Table 3

Training sets utilised during research.

Attack Normal Oversampled

DDoS HTTP 15,790 80,000

DDoS TCP 80,000 80,000

DDoS UDP 80,000 80,000

DoS HTTP 23,744 80,000

DoS TCP 80,000 80,000

DoS UDP 80,000 80,000

Reconnaissance OS 80,000 80,000

Reconnaissance Service Scan 80,000 80,000

Theft Data Exfiltration 91 80,000

Theft Keylogging 1171 80,000

Normal traffic 7250 80,000

additional records were added to the minority classes DDoS HTTP,

DoS HTTP, and both ‘Theft attack’ types. This method evens out the

class balance to 80,0 0 0 records per class. Table 3 presents the dis-

tribution of samples across different classes used for training the

model.

Initial testing showed that the majority of the features do not

impact the prediction capability of the models. As was mentioned

in the methodology section, we have applied a feature importance

algorithm to select a group of best features. Feature importance is

defined as a decrease in model score when a feature is shuffled.

The process of shuffling breaks the relationship between the target

value and a feature, thus the drop in model score indicates how

dependant the model is on the particular feature.

Fig. 3 presents the eight best original features selected for the

training of all models. The features that had little to no impact on

the model were removed from the input set and the remaining fea-

tures were used to derive the new data.

To further increase the robustness of the models we have de-

rived several features from the original values. Analysis showed

that only the rate of packets to bytes had a meaningful impact

on the algorithms, thus it was selected as one of the input val-

ues. SVM has benefited the most from the addition of a newly de-

rived feature having its recall and f1-score increased by 0.1 scores.

Table 4 presents the full set of features used for the training of

all algorithms. Each feature and a description of the associated at-

tribute is conveyed.

4.2. Binary malicious traffic detection

The first stage of our experiments involved the detection of ma-

licious traffic. For this purpose, all attack entries were combined

under the malicious traffic label, while normal traffic remained

as a second class. The results of this classification are shown in

Table 4

Training input features.

Feature Description

Pkts Total count of packets in transaction

Bytes Total number of bytes in transaction

State Transaction state

Dur Record total duration

Spkts Source-to-destination packet count

Sbytes Source-to-destination byte count

Sum Total duration of aggregated records

Mean Average duration of aggregated records

Pkts/Bytes Packets to bytes ratio

Table 5

Binary detection of malicious traffic.

Algorithm Accuracy Precision Recall F1-score

RF 0.9995 0.99668 0.98479 0.99066

RF + SMOTE 0.99988 0.99857 0.99722 0.9979

KNN 0.99978 0.99715 0.99472 0.99593

KNN + SMOTE 0.98976 0.78658 0.99372 0.86145

SVM 0.99742 0.98688 0.91629 0.94875

SVM + SMOTE 0.99809 0.94285 0.99359 0.96681

LR 0.98874 0.82808 0.68046 0.73217

LR + SMOTE 0.95136 0.60798 0.96038 0.66429

Table 5 . The performance metrics show that all models achieve a

high level of accuracy. Moreover, implementation of oversampling

visibly improves the results. This is especially visible in the case

of the SVM classifier. Analysis of the evaluation metrics shows that

RF and KNN performed significantly better achieving near 100% ac-

curacy and sensitivity. This means that the results of these two

models are significantly more robust. While the SVM also had high

accuracy, it is lacking precision and recall (which indicates false

classification and reduces the overall robustness of the model). The

worst-performing algorithm was LR which evaluation shows a sig-

nificant number of false positive predictions even after parameter

tuning.

It is also important to note that while both RF and KNN have

very similar metric scores there are significant differences in the

number of misclassified samples for both classes. Fig. 4 shows the

confusion matrix of RF and KNN classifiers trained on an uneven

data sample. The KNN performance is better, and the difference

can be observed in a number of normal traffic misclassified sam-

ples. The KNN is clearly more sensitive and as a result smaller por-

tion of the traffic is being misclassified.

Interestingly, training on the oversampled set generated very

different results (shown in Fig. 5). Random Forest performance has

increased, especially the classification capability of the benign traf-

6

M. Motylinski, Á. MacDermott, F. Iqbal et al. Computers & Security 123 (2022) 102918

Fig. 3. Importance of features used for model training.

Fig. 4. Classification results for unbalanced set training.

Fig. 5. Classification results for oversampled set training.

fic which is now nearly 100% accurate. Fig. 5 shows that oversam-

pling the training data possibly introduced some bias impacting

the prediction capability of KNN. The performance of KNN has de-

creased by a significant margin when we consider that the number

of malicious traffic classified as benign has increased from 10 (as

shown in Fig. 4) to 1347 (Fig. 5).

SVM tends to classify most of the traffic as malicious. This prob-

lem can be solved by adding additional features to the training set.

Note however, the purpose of this research was to test the predic-

tion capability on the smallest possible number of features, thus

allowing fast training and estimation. The LR model has the high-

est number of misclassified traffic samples rendering it not a viable

solution for an IDS.

The training time of KNN is significantly shorter than any other

algorithm, however, the prediction time is much slower. This is be-

cause KNN does not generalize data in advance. While LR requires

the least amount of time to make a prediction its accuracy and ro-

bustness is way too low to consider it a good option. SVM training

time is significantly longer than any other algorithm which does

not make it a viable solution for IDS which must be frequently re-

trained to include new threats. RF, while not the best in time met-

rics, is clearly the best algorithm as it grants the best prediction

capability within reasonable training and prediction times.

We have compared both the training and prediction time of the

algorithms running on GPU and CPU. As evident, the training times

vary between different algorithms. The training of SVM is slow due

7

M. Motylinski, Á. MacDermott, F. Iqbal et al. Computers & Security 123 (2022) 102918

Fig. 6. Training time comparison on GPU and CPU.

Fig. 7. The comparison of prediction time on GPU and CPU.

to the significant number of samples chosen and a non-linear ker-

nel used. Future tests may involve smaller input sets to test the

performance changes. The remaining algorithms converge below

two minutes on CPU and in less than five seconds with GPU accel-

eration. Fig. 6 presents the results of a training time comparison

which clearly show how much quicker the process of retraining

can be when utilizing GPU.

In Fig. 7 , we can see the estimation times for each algorithm

trained. As we can observe, the KNN required a significantly longer

estimation time because for every prediction it needs to scan all

nearest neighbours in the completed training set. Again, a smaller

training set would improve the prediction time however this might

negatively impact the accuracy of the model. Another aspect worth

noting is a significant improvement in estimation time when pre-

dicting with SVM classifier utilizing GPU. Overall, the GPU acceler-

ated models are significantly faster in both training and prediction

which in some cases may be a crucial factor.

4.3. Attack type detection

The second task of our study was to perform binary classifi-

cation of every attack separately. Table 6 presents the results of

binary detection of the attacks. RF is clearly the most accurate al-

gorithm, however, KNN and SVM achieve similar results in most

cases. LR was again the worst performing algorithm even with dif-

ferent parameter settings. The most important findings show that

it was possible to achieve very high accuracy and robustness of

the Random Forest classifier for all attack types. Implementation of

oversampling reduced bias towards majority classes and as a result

improved estimation of the models on the previously underrepre-

sented attack types.

Table 6

Binary detection of individual attacks (F1-score only).

Attack type RF KNN SVM LR

DDoS HTTP 0.99939 0.99818 0.97920 0.91840

DDoS TCP 1 0.99954 0.99985 0.99593

DDoS UDP 0.99652 0.99894 0.99697 0.98567

DoS HTTP 0.99982 0.99803 0.95575 0.87587

DoS TCP 1 0.99939 1 0.99954

DoS UDP 0.99894 0.99864 0.99864 0.98582

OS Fingerprint 0.99939 0.99804 0.99474 0.85461

Service Scan 0.99729 0.99758 0.99562 0.97313

Data Exfiltration 1 0.96112 0.93174 0.63416

Keylogging 0.99901 0.99604 0.99506 0.97142

The application of algorithms on different benchmarks may

provide interesting results and allow further improvements. Gen-

eration of new features can also be the answer for better perfor-

mance and reduction of bins used in GPU accelerated RF which

significantly increased training and prediction time. In future work

we plan to apply other models from the cuML library to test their

performance and compare them to the CPU-based versions.

4.4. Comparison with other works

In comparison to other academic works in the field, our method

not only reduced training but it also significantly reduced predic-

tion time by utilizing GPU. Specifically, dimensionality reduction

provided a further improvement to the speed of the training and

the evaluation process. The choice of a custom set retained more

samples of the minority classes reducing bias and in turn provided

more data for the models. As a result, it was possible to retain high

performance as was shown in the results section.

8

M. Motylinski, Á. MacDermott, F. Iqbal et al. Computers & Security 123 (2022) 102918

Table 7

Comparison of algorithms performance.

Metric Accuracy Recall Time (s)

Best RF - GPU 0.99988 0.99722 0.45

Best RF - CPU 0.99985 0.99666 16.24

Best SVM - GPU 0.99742 0.91629 5.74

Best SVM - CPU 0.99516 0.82839 710.06

Koroniotis et al. (2019) SVM 0.88373 0.88371 1270

Koroniotis et al. (2019) SVM all features 0.99988 1 6636.98

Koroniotis et al. (2019) RNN 0.99740 0.99749 8035

Koroniotis et al. (2019) RNN all features 0.97906 0.97908 6888.08

Koroniotis et al. (2019) LSTM 0.99741 0.97908 10,482.19

Koroniotis et al. (2019) LSTM all features 0.98057 0.98058 14,073.63

Shafiq et al. (2020b) RF 0.9999 1.00. n/a

Alsamiri and Alsubhi (2019) RF 0.98 0.98 27.0328

We compared our improved GPU-based machine learning ap-

proach for detection of botnet attacks with related works of

Koroniotis et al. (2019) , (Shafiq et al., 2020b), and Alsamiri and

Alsubhi (2019) . Specifically, we analysed and compared our algo-

rithms in terms of accuracy, recall and time. The accuracy compar-

ison looks at the portion of correctly classified samples, whereas

recall is to do with the correctly identified positive classes from

the actual malicious traffic. In Table 7 the comparison of malicious

traffic detection with the results obtained by models of authors

Koroniotis et al. (2019) , (Shafiq et al., 2020b), and Alsamiri and

Alsubhi (2019) is presented. The former trained SVM classifier,

RNN and LSTM networks use 5% of the original data and ten se-

lected features. The authors of the second work implemented algo-

rithms for selection of best features and tested the results by train-

ing various models. The best performance was achieved using RF;

thus, the results are included in the comparison. Alsamiri and Al-

subhi (2019) generated eighty new features from the original pcap

files and selected seven for model training. The RF algorithm ac-

complished the best results having high accuracy and recall.

The most significant improvement of our solution can be seen

in the training time which application of accelerated machine

learning algorithms decreased considerably. The accuracy and ro-

bustness of our best algorithm are comparable to other authors

results. In terms of accuracy developed models are outperformed

slightly by Koroniotis et al. (2019) and their RNN architecture and

(Shafiq et al., 2020b) with their RF model. As can be observed, the

training time of the GPU-based models is significantly shorter out-

performing all other architectures by a large margin.

The tested model’s performance is on par with other works

results with significant time improvement. Faster training allows

for more frequent retraining of the model and updates of the sys-

tem. This is especially important in production where quick model

deployment allows to save resources and well optimised training

pipelines are essential. The accelerated versions of machine learn-

ing algorithms also provide faster prediction which can be crucial

in the fast identification of a threat.

5. Conclusions and future work

This paper presents our research into the application of GPU-

based accelerated machine learning models. Four types of machine

learning algorithms were compared in terms of accuracy, precision,

recall, F1-score as well as computation time required to train the

model and perform prediction. The experimental results show that

the proposed data pre-processing and feature selection methods

improve the training and prediction durations while maintaining

the high performance of the estimators. The obtained results show

accuracy and recall of the best trained model are 0.999 and 0.997,

respectively. While (Shafiq et al., 2020b) obtained higher metrics

score our models come close and have better performance or equal

to other comparable works. The training time of the algorithms has

been reduced at least 60 times (if comparing the RF implementa-

tion to Alsamiri and Alsubhi, 2019) or more. The drastic decrease

in training and prediction time makes the model more feasible

for deployment in the industry allowing frequent retraining ses-

sions and quick prediction service. Application of permutation im-

portance together with oversampling proved vital for the final im-

provement of both time and accuracy of the models. The final re-

sults show the significance of the data processing methods applied.

Appropriate selection of dataset, its discovery and implementation

of feature engineering shows that our approach is promising and in

future can be tested on other IoT botnet benchmarks. We offered

improvements of both training and prediction times in compari-

son to other works in the field, while retaining high accuracy and

robustness of the models.

It is important to emphasise the role of hardware for this

project. The introduction of GPU for machine learning gives new

possibilities allowing to solve issues that CPU cannot handle in a

reasonable time. Knowing the performance of algorithms utilizing

GPU the future work may involve training on larger set of data.

Larger input may allow model to learn more information about

the problem and as a result perform better. The future work can

also involve the generation of a dataset with a larger number of

minority class samples (DDoS HTTP, DDoS, TCP, DDoS UDP, DoS

HTTP, DoS UDP, DoS TCP) to avoid the introduction of synthetic

data which while helpful can never represent a real-life data. Other

publicly available datasets could also be considered, however var-

ious datasets consist different attacks which means abundance of

some classes that were used in this research. In many cases PCAP

files are often available, thus future research may involve extrac-

tion of features that Koroniotis et al. (2019) used in the IoT-Botnet

set.

Funding

This work was supported by research incentive funds (R20090)

and Provost Research Fellowship Grant (R20093), Zayed university,

United Arab Emirates.

Declaration of Competing Interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

CRediT authorship contribution statement

Michal Motylinski: Conceptualization, Data curation, Methodol-

ogy, Resources, Formal analysis, Writing – original draft, Writing –

review & editing. Áine MacDermott: Conceptualization, Data cura-

tion, Resources, Methodology, Project administration, Supervision,

Writing – original draft, Writing – review & editing. Farkhund

Iqbal: Conceptualization, Project administration, Supervision, Fund-

ing acquisition, Writing – review & editing. Babar Shah: Concep-

tualization, Project administration, Funding acquisition, Writing –

review & editing.

Data availability

We have used a public dataset and referenced it within the paper.

References

Abdiansah, A., Wardoyo, R., 2015. Time complexity analysis of support vector ma-
chines (SVM) in LibSVM. Int. J. Comput. Appl. 128 (3), 28–34 .

Alsamiri, J., Alsubhi, K., 2019. Internet of Things cyber-attacks detection using
machine learning. Int. J. Adv. Comput. Sci. Appl 10 (12), 627–634. Available:

www.ijacsa.thesai.org .

9

http://refhub.elsevier.com/S0167-4048(22)00310-8/sbref0001
http://www.ijacsa.thesai.org

M. Motylinski, Á. MacDermott, F. Iqbal et al. Computers & Security 123 (2022) 102918

Altman, N.S., 1991. BU-1065MA An Introduction to Kernel and Nearest Neighbor
Nonparametric Regression An Introduction to Kernel and Nearest Neighbor Non-

parametric Regression. Cornell University 1991 .
Azwar, H., Murtaz, M., Siddique, M., Rehman, S., 2018. Intrusion detection in se-

cure network for cybersecurity systems using machine learning and data min-
ing. In: Proceedings of the IEEE 5th International Conference on Engineering

Technologies and Applied Sciences (ICETAS). IEEE, pp. 1–9. doi: 10.1109/ICETAS.
2018.8629197 .

Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32. doi: 10.1023/A:

1010933404324 .
Churcher, A., Ullah, R., Ahmad, J., Masood, F., Gogate, M., Alqahtani, F.,

Buchanan, W.J., 2021. An experimental analysis of attack classification using ma-
chine learning in iot networks. Sensors 21 (2), 446. doi: 10.3390/s21020446 .

cuML (2022). Welcome to cuML’s documentation! — Cuml 21.06.00 documenta-
tion. Retrieved from https://docs.rapids.ai/api/cuml/stable/ . Accessed August 08,

2022.

Garre, J.T.M., Pérez, M.G., Ruiz-Martínez, A.R., 2021. A novel machine learning-based
approach for the detection of SSH botnet infection. Future Gener. Comput. Syst.

115, 387–396. doi: 10.1016/j.future.2020.09.004 .
G Data. (2022) Cyber-attacks on Android devices on the rise. Retrieved from

https://www.gdatasoftware.com/blog/2018/11/31255- cyber- attacks- on- android-
devices- on- the- rise Accessed August 09, 2022.

Kaspersky. (2022) Top 7 mobile security threats in 2021. Retrieved from https://www.

kaspersky.com/resource-center/threats/top-seven-mobile-security-threats-
smart- phones- tablets- and- mobile- internet- devices- what- the- future- has- in-

store?campaign=tcid _ admitad _ 6ab325772c71d0e99b5c5a2683dc3a2e _ 240682 _
x4&ADDITIONAL _ reseller=tcid _ adm . Accessed June 30, 2022.

Koroniotis, N., Moustafa, N., Sitnikova, E., Turnbull, B., 2019. Towards the develop-
ment of realistic botnet dataset in the internet of things for network forensic

analytics: Bot-IoT dataset. Future Gener. Comput. Syst. 100, 779–796 .

Koroniotis, N., Moustafa, N., Sitnikova, E., Slay, J., 2017. Towards developing network
forensic mechanism for botnet activities in the IoT based on machine learning

techniques. In: Proceedings of the International Conference on Mobile Networks
and Management. Springer, Cham, pp. 30–44 .

Koroniotis, N., Moustafa, N., 2020. “Enhancing network forensics with particle
swarm and deep learning: the particle deep framework.” 8, 209802-209834,

arXiv preprint arXiv: 20 05.0 0722 .

Javed, A.R., Jalil, Z., Moqurrab, S.A., Abbas, S., Liu, X., 2020. Ensemble Adaboost clas-
sifier for accurate and fast detection of botnet attacks in connected vehicles.

Trans. Emerg. Telecommun. Technol. 2020. doi: 10.1002/ett.4088 .
Medium (2021). Do we really need GPU for deep learning? - CPU vs GPU .

Retrieved from https://medium.com/@shachishah.ce/do- we- really- need- gpu-
for- deep- learning- 47042c02efe2 . Accessed June 17, 2021.

Miller, S., Busby-Earle, C., 2016. The role of machine learning in botnet detection. In:

Proceedings of the 11th International Conference for Internet Technology and
Secured Transactions (ICITST), pp. 359–364. doi: 10.1109/ICITST.2016.7856730 .

Nanni, L., Brahnam, S., Ghidoni, S., Lumini, A., 2015. Toward a general-purpose het-
erogeneous ensemble for pattern classification. Comput. Intell. Neurosci. 2015.

doi: 10.1155/2015/909123 .
Oreški, D., Andro ̌cec, D., 2020. Genetic algorithm and artificial neural network for

network forensic analytics. In: Proceedings of the 43rd International Conven-
tion on Information, Communication and Electronic Technology (MIPRO). IEEE,

pp. 1200–1205. doi: 10.23919/MIPRO48935.2020.9245140 .

Pohar, M., Blas, M., Turk, S., 2004. Comparison of logistic regression and linear dis-
criminant analysis: a simulation study. Metodol. Zv. 1 (1), 143 .

Shafiq, M., Tian, Z., Bashir, A.K., Du, X., Guizani, M., 2020a. CorrAUC: a malicious bot-
IoT traffic detection method in IoT network using machine-learning techniques.

IEEE Int. Things J. 8 (5), 3242–3254. doi: 10.1109/jiot.2020.3002255 .
Shafiq, M., Tian, Z., Sun, Y., Du, X., Guizani, M., 2020b. Selection of effective ma-

chine learning algorithm and Bot-IoT attacks traffic identification for internet

of things in smart city. Futur. Gener. Comput. Syst. 107, 433–442. doi: 10.1016/j.
future.2020.02.017 .

Sujatha, P., Mahalakshmi, K., 2020. Performance evaluation of supervised machine
learning algorithms in prediction of heart disease. In: Proceedings of the IEEE

International Conference for Innovation in Technology (INOCON). IEEE, pp. 1–7.
doi: 10.1109/INOCON50539.2020.9298354 .

Threatpost. (2022) D- link, IoT devices under attack by Tor-based Gafgyt variant. Re-
trieved from https://threatpost.com/d- link- iot- tor- gafgyt- variant/164529/ . Ac-

cessed July 28, 2022.
UNSW Canberra (2022) The Bot-IoT dataset . Retrieved from https://research.unsw.

edu.au/projects/bot-iot-dataset . Accessed June 08, 2022.
Vakili, M., Ghamsari, M., & Rezaei, M. (2020). Performance analysis and compari-

son of machine and deep learning algorithms for IoT data classification. arXiv

preprint arXiv: 2001.09636 .
Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Wang, C., 2018. Machine learning and

deep learning methods for cybersecurity. IEEE Access 6, 35365–35381. doi: 10.
1109/ACCESS.2018.2836950 .

Zhang, C., Liu, C., Zhang, X., Almpanidis, G., 2017. An up-to-date comparison of state-
of-the-art classification algorithms. Expert Syst. Appl. 82, 128–150. doi: 10.1016/

j.eswa.2017.04.003 .

Mr Michał Motyli ński is a data scientist working in collaboration between the

School of Computer Science and Mathematics at Liverpool John Moores University
(LJMU) and Zayed University, UAE. Michal has an MSc Artificial Intelligence (Ma-

chine Learning) graded distinction from Liverpool John Moores University (2022),
and a first-class BSc (Hons) in Computer Forensics. He is currently interested in re-

search centred around the application of machine learning for digital forensics and
cybersecurity.

Dr Áine MacDermott is a Senior Lecturer in the School of Computer Science and
Mathematics at Liverpool John Moores University (LJMU) in the UK. Additionally,

Dr MacDermott is an Adjunct Professor in the Faculty of Business and IT, at On-
tario Tech University, Canada. This role is in recognition of Áine’s knowledge, skills

and expertise in digital forensics and cyber security. At LJMU, Áine teaches on both
the Computer Forensics and Computer Security programmes. She obtained her PhD

in Network Security from LJMU in 2017, and a BSc (Hons) in Computer Forensics

in 2011. Áine is also member of Research Centre for Critical Infrastructure Com-
puter Technology and Protection (PROTECT) at LJMU, with research interests includ-

ing the Internet of Things, collaborative intrusion detection in interconnected net-
works, digital forensics, and machine learning.

Dr Farkhund Iqbal holds the position of Associate Professor and Director Advanced
Cyber Forensics Research Laboratory in the College of Technological Innovation, Za-

yed University, United Arab Emirates. He is leading Cybersecurity and Digital Foren-

sics (CAD) research group in center for Smart Cities and Intelligent Systems, Zayed
University. He holds a Master (2005) and a Ph.D. degree (2011) from Concordia

University, Canada. He is using Artificial Intelligence, Machine Learning and Data
Analytics for problem-solving in health care, cybersecurity, and cybercrime inves-

tigation in smart and safe city domain. He has published more than 100 papers
in high ranked journals and conferences. He is an Affiliate Professor in the School

of Information Studies, McGill University, Canada, and an Adjunct Professor in the

Faculty of Business and IT, University of Ontario Institute of Technology, Canada.
He has served as a chair and TPC member of several IEEE/ACM conferences and

is the reviewer for several high-rank journals. He also chairs Cyberbercrime Inves-
tigation and Digital Forensics workshop and Computing in Companion Robots and

Smart Toys Symposium in the Hawaii International Conference on System Sciences
(HICSS).

Dr. Babar Shah is an Associate Professor at the College of Technological Innova-

tion, Zayed University, UAE. Dr. Babar received MS degree (2007) from University
of Derby, UK and PhD (2014) from Gyeongsang National University, South Korea.

Dr. Babar professional services includes but are not limited to - Guest Editorships,
University Services, Workshops Chair, Technical Program Committee Member, and

reviewer for several international journals and conferences. His research work is
associated with interdisciplinary field of Network Sciences, Health Informatics, In-

formation Systems, Machine and Deep Learning.

10

http://refhub.elsevier.com/S0167-4048(22)00310-8/sbref0003
https://doi.org/10.1109/ICETAS.2018.8629197
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3390/s21020446
https://docs.rapids.ai/api/cuml/stable/
https://doi.org/10.1016/j.future.2020.09.004
https://www.gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-the-rise
https://www.kaspersky.com/resource-center/threats/top-seven-mobile-security-threats-smart-phones-tablets-and-mobile-internet-devices-what-the-future-has-in-store?campaign=tcid_admitad_6ab325772c71d0e99b5c5a2683dc3a2e_240682_x4&ADDITIONAL_reseller=tcid_adm
http://refhub.elsevier.com/S0167-4048(22)00310-8/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00310-8/sbref0013
arxiv:/2005.00722
https://doi.org/10.1002/ett.4088
https://medium.com/@shachishah.ce/do-we-really-need-gpu-for-deep-learning-47042c02efe2
https://doi.org/10.1109/ICITST.2016.7856730
https://doi.org/10.1155/2015/909123
https://doi.org/10.23919/MIPRO48935.2020.9245140
http://refhub.elsevier.com/S0167-4048(22)00310-8/sbref0022
https://doi.org/10.1109/jiot.2020.3002255
https://doi.org/10.1016/j.future.2020.02.017
https://doi.org/10.1109/INOCON50539.2020.9298354
https://threatpost.com/d-link-iot-tor-gafgyt-variant/164529/
https://research.unsw.edu.au/projects/bot-iot-dataset
arxiv:/2001.09636
https://doi.org/10.1109/ACCESS.2018.2836950
https://doi.org/10.1016/j.eswa.2017.04.003

	A GPU-based Machine Learning Approach for Detection of Botnet Attacks
	Recommended Citation

	A GPU-based machine learning approach for detection of botnet attacks
	1 Introduction
	2 Related work
	2.1 Current solutions
	2.2 Summary of related work

	3 Proposed methodology
	3.1 Dataset
	Dataset sample
	Experiment environment
	Feature selection
	Class distribution
	Algorithms used

	3.2 Evaluation metrics

	4 Results and discussion
	4.1 Data pre-processing
	4.2 Binary malicious traffic detection
	4.3 Attack type detection
	4.4 Comparison with other works

	5 Conclusions and future work
	Funding
	Declaration of Competing Interest
	CRediT authorship contribution statement
	References

