
Zayed University Zayed University 

ZU Scholars ZU Scholars 

All Works 

9-1-2022 

A GPU-based Machine Learning Approach for Detection of Botnet A GPU-based Machine Learning Approach for Detection of Botnet 

Attacks Attacks 

Michal Motylinski 
Liverpool John Moores University 

Áine MacDermott 
Zayed University 

Farkhund Iqbal 
Zayed University, farkhund.iqbal@zu.ac.ae 

Babar Shah 
Zayed University, babar.shah@zu.ac.ae 

Follow this and additional works at: https://zuscholars.zu.ac.ae/works 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Motylinski, Michal; MacDermott, Áine; Iqbal, Farkhund; and Shah, Babar, "A GPU-based Machine Learning 
Approach for Detection of Botnet Attacks" (2022). All Works. 5366. 
https://zuscholars.zu.ac.ae/works/5366 

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All 
Works by an authorized administrator of ZU Scholars. For more information, please contact scholars@zu.ac.ae. 

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/5366?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5366&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholars@zu.ac.ae


Computers & Security 123 (2022) 102918 

Contents lists available at ScienceDirect 

Computers & Security 

journal homepage: www.elsevier.com/locate/cose 

A GPU-based machine learning approach for detection of botnet 

attacks 

Michal Motylinski a , Áine MacDermott a , ∗, Farkhund Iqbal b , Babar Shah 

b 

a School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, UK 
b College of Technological Innovation, Zayed University, United Arab Emirates 

a r t i c l e i n f o 

Article history: 

Received 18 February 2022 

Revised 11 August 2022 

Accepted 10 September 2022 

Available online 14 September 2022 

Keywords: 

Internet of Things 

Machine learning 

Random forest 

Feature selection 

Attack detection 

Classification 

a b s t r a c t 

Rapid development and adaptation of the Internet of Things (IoT) has created new problems for secur- 

ing these interconnected devices and networks. There are hundreds of thousands of IoT devices with 

underlying security vulnerabilities, such as insufficient device authentication/authorisation making them 

vulnerable to malware infection. IoT botnets are designed to grow and compete with one another over 

unsecure devices and networks. Once infected, the device will monitor a Command-and-Control (C&C) 

server indicating the target of an attack via Distributed Denial of Service (DDoS) attack. These security 

issues, coupled with the continued growth of IoT, presents a much larger attack surface for attackers to 

exploit in their attempts to disrupt or gain unauthorized access to networks, systems, and data. Large 

datasets available online provide good benchmarks for the development of accurate solutions for botnet 

detection, however model training is often a time-consuming process. Interestingly, significant advance- 

ment of GPU technology allows shortening the time required to train such large and complex models. This 

paper presents a methodology for the pre-processing of the IoT-Bot dataset and classification of various 

attack types included. We include descriptions of pre-processing actions conducted to prepare data for 

training and a comparison of results achieved with GPU accelerated versions of Random Forest, k-Nearest 

Neighbour, Support Vector Machine (SVM) and Logistic Regression classifiers from the cuML library. Using 

our methodology, the best-trained models achieved at least 0.99 scores for accuracy, precision, recall and 

f1-score. Moreover, the application of feature selection and training models on GPU significantly reduced 

the training and estimation times. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

The Internet of Things (IoT) represents the seamless merging 

of the real and digital world, with new devices being created that 

store and pass around data. New frameworks, many interconnected 

devices, and a plethora of applications (allowing communication 

with said devices) make it difficult to develop and maintain ro- 

bust security solutions. The growing numbers of IoT devices make 

them a very attractive target for threat actors who aim to use them 

to access other devices and a form a larger network. According 

to Kaspersky’s Threat Report, “the IoT will become one of the main 

targets of cyber-attacks in the near future ” ( Kaspersky, 2022 ). Mali- 

cious software, or malware, arguably constitutes one of the most 

significant categories of threats to computer systems. With nearly 
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12,0 0 0 new instances of malware being created everyday detec- 

tion of such threats is one of the most essential problems that re- 

quire a solution ( G Data, 2022 ). With the number of malware fam- 

ilies targeting these IoT devices and systems is ever increasing, IoT 

botnets are designed to grow and compete with one another over 

unsecure devices. An IoT Botnet is also a collection of various IoT 

devices such as routers, wearables and embedded technologies in- 

fected with malware. Much of a botnet’s power comes from the 

number of devices that make it up. As such, this malware allows 

an attacker to control all the connected devices. There are three 

distinct architectures that characterize most botnets. In the central- 

ized network all bots connect to the Command-and-Control server 

(C&C). The main characteristic of this type is that automated com- 

mands are sent from C&C to the bots via IRC or HTTP channels. 

Direct communication means low latency of such architecture but 

also dependency on the C&C which if discovered will provide in- 

formation about all botnets in the network. The second type of ar- 

chitecture is a decentralized model which does not have a central 

https://doi.org/10.1016/j.cose.2022.102918 
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point of failure. In this setup each bot is both client and server 

and use peer to peer (P2P) communication protocols as a means of 

connecting with other machines. In the hybrid approach the com- 

promise between centralized and decentralized approach allows to 

keep relatively low latency and keep botnets secure from detec- 

tion by using P2P protocols for communication ( Miller et al., 2016 ). 

Early IoT malware families like Gafgyt and the original Mirai fam- 

ily leveraged default or weak passwords to attack devices. Whereas 

current versions of botnet have new functionalities, and propaga- 

tion methods utilise Tor proxy functions to provide the IP servers’ 

address. Botnets are mainly propagated through weak Telnet pass- 

words – a common issue on IoT devices – and through exploit- 

ing three vulnerabilities. The Gafgyt botnet actively targets vulner- 

able D-Link and IoT devices including remote code execution flaws 

(CVE-2019–16,920) in D-Link devices; a remote code execution vul- 

nerability in Liferay enterprise portal software (for which no CVE is 

available); and a flaw (CVE-2019-19,781) in Citrix Application De- 

livery Controllers ( Threatpost, 2021 ). 

The best strategy against IoT botnets is to secure against their 

threat, detect their presence in a timely manner, and ultimately 

limit their resources (by reducing the number of unsecure devices 

from which they could derive their power). Intrusion Detection 

Systems (IDS) are used to monitor network traffic and detection 

sign of intrusion. The detection may be according to the signatures 

of executable malwares or according to the signatures of malicious 

network traffic generated by malware. Signature-based approaches 

detect malicious packets by looking at specific patterns and sig- 

natures of the given threat. A major problem with this approach 

is that it requires frequent updates of the intruder’s database and 

is unable to detect unknown attacks. Anomaly-based detection 

focuses on learning trustworthy signatures (and behaviours) and 

uses this knowledge to pass only legitimate traffic. If an IDS detects 

an unusual pattern in analysed traffic, then the particular packets 

will be flagged. However, the main problem with this approach is 

that new legitimate traffic can also be flagged because the algo- 

rithm had not learned it yet, with an increasing amount of false 

positive alerts. Any action, like sweeping or probing, creates a sig- 

nal in the network anomaly-based IDS which can detect such ac- 

tions. 

Machine learning has become a vital technology for cybersecu- 

rity and threat detection ( Xin et al., 2018 ; Azwar et al., 2018 ). Ma- 

chine learning for intrusion detection can solve many challenges 

such as speed and computational time and develop accurate IDS. 

While the application of machine learning for classification or de- 

tection of attacks has been covered in many academic works, we 

have not yet seen an attempt to implement acceleration technolo- 

gies to boost the performance of the models and essentially create 

a more viable solution for environments where frequent retraining 

of the algorithm is necessary. There are various frameworks avail- 

able for an acceleration of the machine learning models. In this pa- 

per we will focus on the implementation of RAPIDS libraries such 

as cuDF and cuML. The aforementioned libraries allow the use of 

GPU for machine learning tasks which may provide increased per- 

formance due to significantly greater bandwidth and better com- 

putation capabilities of GPU over CPU ( Medium, 2021 ). Due to the 

difference in architecture between CPU (typically 4–8 cores) and 

GPU (hundreds of smaller cores) parallelization of tasks can be ap- 

plied when working on the latter. Using the CUDA platform for 

parallel programming, the general computing tasks can be drasti- 

cally sped up by breaking down one big task into hundreds of little 

chunks. 

Our research is focused on increasing the speed of the detection 

while sustaining an acceptable level of detection. Our methodology 

involves pre-processing, feature selection and application of GPU- 

accelerated machine learning models which results in an improve- 

ment over currently used methods. These methods are explained 

within our methodology section and comparison to related works 

is conducted within the Results section. Our approach differs from 

other works in the field as we decided to create new features from 

the existing dataset. Moreover, in contrast to other works, we de- 

cided to test fast computing algorithms and their impact on accu- 

racy, training, and prediction time of the models. 

The novel contributions of our work are as follows: 

- Application of GPU-based accelerated machine learning models, 

- Generation of new features and application of permutation im- 

portance method for feature selection and interpretability of 

models, 

- Improvement of both training and prediction times in compar- 

ison to other works in the field, 

- Retaining high accuracy and robustness of the models similar 

to previous academic works. 

The paper is organised as follows: In Section 2 we provide back- 

ground on attacks against IoT devices and related works utilising 

machine learning. In Section 3 we detail our methodology, and 

present results and discussion of our findings Section 4 . Future 

work and concluding remarks are presented in Section 5 . 

2. Related work 

Machine learning algorithms use historical data as an input to 

predict new output values. Machine learning can monitor systems 

and respond to changes in the behaviour, protecting against threats 

through pattern detection, real-time threat monitoring, vulnerabil- 

ity mapping and penetration testing. Machine learning methods 

have seen increased use in the last decades due to the rapid devel- 

opment of various technologies and the growing computing capa- 

bilities of computers. The introduction of GPU for machine learning 

has introduced new possibilities allowing researchers to solve is- 

sues that previous hardware could not handle due to expensive op- 

erations or significant time-consuming processes of model training. 

Machine learning models are known for great prediction capabili- 

ties and are used for a variety of classification, pattern recognition 

and detection tasks. 

The difference between cyber security and other fields is that 

the attackers and threat actors do not behave in a predictable or 

statistically consistent way. The goal of an attacker is to remain 

hidden and so all their activities are evasive. As such, an attack per- 

formed by one attacker may look completely different to the same 

attack performed by a different attacker. This means that many 

machine learning models cannot be widely used and that the mod- 

els and algorithms must be adapted to different conditions and be- 

havioural parameters. IDS play a crucial role in defending networks 

by monitoring traffic for malicious activities. 

The majority of the solutions tackling traffic detection prob- 

lems focus solely on the accuracy, however, training and predic- 

tion time is also important. Within this section we explore the so- 

lutions proposed for the classification of attacks using the IoT-Bot 

dataset UNSW Canberra (2022) and their parameters for detection. 

2.1. Current solutions 

Koroniotis et al. (2019) used the machine learning classifier 

Support Vector Machine (SVM) and two deep learning predictors 

Recurring Neural Network (RNN) and Long Short-Term Memory 

(LSTM). Their experiments were conducted on a 5% sample of data 

which contained around 3 million records. The authors derived 

new features from the existing data. Using a correlation coefficient, 

the researchers extracted the 10 best features that were used to 

train a model and compared against training on a full set of fea- 

tures. The SVM trained on all features achieved the best results 

with accuracy of 99 and 100% recall, however all predictors had a 
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very similar performance. The training time of SVM was 110 min. 

The results of this research show that while SVM and neural net- 

works have extremely high accuracy they are also very slow to 

train and require a significant amount of data. 

Oreški et al. (2020) used a different approach to the selec- 

tion of best features called ‘Search and Testing for Understandable 

Consistent Contrast’ (STUCCO). With this approach, the authors 

were able to select different features compared to the work of 

Koroniotis et al. (2019) . The authors implemented the SVM model 

to train on the input data. The model has achieved > 0.99 scores 

for accuracy, precision, recall and f1 score. 

In Shafiq et al. (2020a) , the authors proposed a novel method 

for feature selection called ‘CorrAUC’ and applied it to the Bot-IoT 

dataset. The new technique selected a set of five features that de- 

scribed the dataset well enough to be used for training. The ap- 

proach trained Decision Tree, SVM, Naive Bayes and Random For- 

est classifiers and compared their performance on a created test 

set. With the exception of Naive Bayes, all classifiers achieved high 

accuracy, specificity, sensitivity, and precision scores in most cases. 

The results indicate that Random Forest performance was slightly 

better, and the accuracy was above 99% which is similar to the pre- 

vious research, however, recall scores for data theft and keylogging 

theft were 0.50 and 0.89 accordingly. 

In their work, Javed et al. (2020) proposed the use of an Ad- 

aBoost classifier for the detection of botnet attacks. The authors 

used a publicly available "takata" dataset for their research. The 

applied method for feature extraction allowed for deriving a set of 

10 highly correlated features out of the initial list of 55 features. 

For comparison, the authors applied a decision tree, probabilistic 

neural network, and sequential minimal optimization algorithms. 

The evaluation results indicate that AdaBoost has the highest ac- 

curacy and robustness out of all four architectures tested. The pro- 

posed approach involves feature selection using the information 

gain method and then the implementation of the AdaBoost clas- 

sifier. 

Churcher et al. (2021) performed a comprehensive analysis 

of attack classification using many common algorithms from the 

scikit-learn library like KNN, SVM, Random Forest or Naïve Bayes. 

The researchers conducted 2 types of experiments a binary classifi- 

cation of malicious traffic and a multiclass classification of various 

attacks. Various weights were applied to the classifiers to change 

the bias towards classes. Random forest was the best performing 

algorithm for binary classification tasks while KNN and ANN mod- 

els had better performance classifying various attack types. Ran- 

dom Forest had perfect metric scores in a binary task and 0.95 

scores in a multiclass task. 

Shafiq et al. (2020b) tested various machine learning models in 

search of the most effective solution for IoT botnet detection. The 

IoT Botnet dataset from Koroniotis et al. (2019) has been used to 

conduct this research. The authors selected Naïve Bayes, BayesNet, 

Decision Tree, Random Forest and Random Tree and applied the 

Bijective Soft Set technique to choose the best classifier. The results 

of this research show that all algorithms have a high accuracy and 

recall rate of > 0.98. Taking into consideration the time required 

to train the algorithms in this research Native Bayes had the best 

performance. 

In Alsamiri and Alsubhi (2019) , the authors used IoT-Botnet 

pcap files to generate a new set of features by using the CI- 

CFlowMeter tool to extract flow-based features. The authors se- 

lected 13 generated features for the training of various models in- 

cluding Random Forest, k-Nearest Neighbour and Naive Bayes. The 

results presented in the work indicate that Random Forest has the 

best performance for most of the attack types (95% −100%) with 

KNN having slightly lower accuracy. In their work ( Garre et al., 

2021 ) proposed a novel approach for the detection of SSH bot- 

net infections. The authors generated their own dataset captur- 

Fig. 1. IDS machine learning model development pipeline. 

ing information from various honeypots deployed across the world. 

For traffic classification, four algorithms were used namely: Deci- 

sion Tree, Random Forest, SVM and Native Bayes. Experimental re- 

sults showed that Random Forest had better performance achiev- 

ing 95.7% accuracy and 93.9% recall scores. 

2.2. Summary of related work 

Our analysis of related works indicates that SVM is one of the 

most commonly used classifiers for its great accuracy in compar- 

ison to many other methods. Ensemble learning algorithms, how- 

ever, tend to perform better than SVM, especially Random Forest 

(RF) which became a state of the art in many domains in recent 

years ( Vakili et al., 2020 ; Sujatha and Mahalakshmi, 2020 ). The 

tests conducted on various datasets conclude that RF is not only 

more accurate than SVM in most cases but also requires signifi- 

cantly less training time and provides faster prediction. The speed 

of the algorithm training and prediction is important for their in- 

dustry use because the less time and resources it is necessary to 

develop a good model the sooner it can be deployed. It is ex- 

tremely important as machine learning models for IoT detection 

must be regularly updated to keep up with new threats which 

means frequent model retraining. 

3. Proposed methodology 

In this section, we provide our methodology used to develop a 

model capable of discriminating different types of attacks on IoT 

devices. The model development pipeline (presented in Fig. 1 ) be- 

gins from the data processing stage which involved acquisition of 

the dataset from a public repository and sampling a smaller set 

containing enough information to train the machine learning mod- 

els. As part of pre-processing, the data is split into appropriate sets 

for model training and evaluation. Next, an oversampling ratio is 

applied to parts of the data. One of the most important aspects of 

our approach is the creation of a new set of features that are de- 

rived in a feature engineering process. Then all of the features un- 

dergo a selection process which results in much smaller set of best 

features that are used to train the models. Following this stage is 

the hyperparameter configuration of the model. This involves the 
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Table 1 

Dataset attack class distribution. 

Attack category Subcategory Number of entries 

DDoS HTTP 19,738 

TCP 19,547,104 

UDP 18,964,396 

DoS HTTP 29,680 

TCP 12,315,619 

UDP 20,658,630 

Reconnaissance OS Fingerprint 1,433,189 

Service Scan 356,285 

Theft Data Exfiltration 114 

Keylogging 1464 

retraining and evaluation process which occurs until satisfying re- 

sults are achieved. Our approach involves implementation of GPU 

accelerated algorithms that allow significantly faster model train- 

ing and prediction. 

The remainder of this section will include methodology details 

and experiment design via description of the dataset used for our 

experiments, justification of feature selection, our approach to un- 

even class distribution, choice of classifiers and selection of metrics 

used for evaluation of the models. 

3.1. Dataset 

We have chosen the most recent iteration of IDS datasets from 

The University of New South Wales Canberra (UNSW) at the Aus- 

tralian Defence Force Academy – ‘ Bot-IoT’- UNSW Canberra (2022) . 

The data was created in a Cyber Range Lab in a realistic environ- 

ment ( Koroniotis et al., 2017, 2019; Koroniotis and Moustafa, 2020 ). 

From PCAP files, a set of features were extracted and saved in var- 

ious formats. We are using CSV files, with the overall size at 16.7 

GB (there are 72 million records in the dataset). 9063 of the entries 

represent normal traffic. This data is used for a binary classifica- 

tion of malicious and non-malicious traffic. Each entry is described 

as belonging to one of the main attack categories and further split 

into a subcategory. Table 1 presents the distribution of attacks ac- 

cording to category and subcategory. 

Dataset sample 

While the dataset authors ( UNSW Canberra, 2022 ) 

( Koroniotis et al., 2017 ) provided a pre-processed subset of 

data with nearly three million entries, the distribution of attack 

types is very unbalanced. We decided to create our own subset 

which consists of a more equal representation of all attack types. 

We concluded that 10 0,0 0 0 occurrences per attack would be 

sufficient to train an accurate solution. A fixed-size sample of ran- 

dom values was taken for every class if a number of occurrences 

exceeded the limit. 

Experiment environment 

In this experiment no physical setup is made to create a mali- 

cious traffic. Instead, a “Bot-IoT’ dataset - well known benchmark - 

is used to train and test the algorithms . The training of all mod- 

els was performed on AMD Ryzen 7 2700X Eight-Core Processor 

(4.15 GHz). It is important to note that every CPU based training 

used all processors for training which significantly improved the 

training time of the models. A single NVIDIA GeForce RTX 2080 

graphics card with 8GB of VRAM was used for the training of ac- 

celerated variants of machine learning algorithms. 

Feature selection 

To reduce training and prediction times, we removed features 

that had little or no impact on the prediction capabilities of the 

algorithms. This is achieved by implementing the permutation im- 

portance technique. The permutation feature importance provides 

feedback about which feature in a dataset had the least impor- 

tance. This is done by randomly shuffling feature value which 

causes a decrease in model score. The procedure breaks relation- 

ship between the feature and the target which shows how depen- 

dant the model is on the particular feature. The conducted tests 

showed that the best features obtained with this method work 

well with all estimators used in this study. Moreover, using the 

original set of features we have calculated new features to increase 

the robustness of the model. The results of this process are shown 

in the following subsections where we remark on class distribu- 

tion, estimators, and evaluation metrics. 

Class distribution 

Uneven distribution of classes is a very common issue in ma- 

chine learning. In fact, it is very difficult to find perfectly even 

datasets especially with thousands or millions of records. Depend- 

ing on the scale of irregularity this can be a serious problem, 

and in some cases lead to very poor results of prediction. While 

some classifiers like decision trees, logistic regression and SVM 

can work with imbalanced data, they will most likely fail when 

there is a high disproportion of classes. In order to tackle the prob- 

lem of imbalanced attributes two methods can be employed: over- 

sampling and under-sampling. Application of the former technique 

requires instances of the under-represented data to be copied. 

Under-sampling on the other hand can be applied by deleting in- 

stances of the major class. 

It is generally advised to use oversampling on small datasets 

and under-sampling when there is a lot of data so removal of val- 

ues will not have a negative impact on the model. As the pro- 

duced dataset sample was still imbalanced, we have decided to ap- 

ply oversampling to the minor class to eliminate the bias. We have 

chosen one of the most widely used methods called the Synthetic 

Minority Oversampling Technique (SMOTE). 

Algorithms used 

Based on previous academic research in the field and our own 

experience we have decided to use Random Forest (RF), SVM, 

Logistic Regression (LR) and k-Nearest Neighbour estimators. For 

our experiments, we have chosen GPU accelerated versions of the 

classifiers from the cuML library. While Scikit-learn implementa- 

tions are considered state-of-the-art and are used in most research 

works on IoT-bot detection they can only utilize CPU which train- 

ing, and prediction times are a major drawback. The GPU acceler- 

ated algorithms are still in development, thus many of the features 

included in the documentation are not yet supported. RAPIDS algo- 

rithms tend to perform worse than their scikit-learn counterparts 

on default settings, thus hyperparameter optimization was neces- 

sary to obtain satisfactory results ( cuML, 2022 ). 

RF is an ensemble learner that implements multiple weak 

learners (decision trees) using specific rules and then integrates 

results from all of them generating the final prediction. Each tree 

is trained on a random subset of features which breaks the cor- 

relation between them improving the prediction capability of the 

model. RF is considered as a state-of-the-art algorithm for its pre- 

diction accuracy tested on many different datasets as well as the 

very short time necessary to train the model ( Breiman, 2001 ; 

Zhang et al., 2017 ; Nanni et al., 2015 ). k-Nearest Neighbour (KNN) 

is a supervised machine learning algorithm that assumes that sim- 

ilar elements exist in close proximity. KNN can be used for both 

classification and regression problems. Classification is performed 

by looking at the closest neighbour to the chosen K value of the 

same class. As the name suggests the most important hyperpa- 

rameter in KNN is the number of neighbours (n_neighbors). Other 

parameters such as distance metrics and weights of neighbours 

4 
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Table 2 

Hyperparameter values for each algorithm. 

Algorithm Parameter Default Tuned 

Random Forrest (RF) max_depth 16 18 

n_bins 8 17 

k-Nearest Neighbour (KNN) N_neighbours 1 3 

Support Vector Machines (SVM) C 1 60 

Logistic Regression (LR) penalty l2 l1 

tol (tolerance) 1e-4 1e-5 

can also change the prediction significantly depending on the task 

and data composition. The KNN is a fast algorithm to train, how- 

ever, its major drawback is significantly slower estimation time 

( Altman, 1991 ). 

The SVM is also a very popular model which is often used to 

solve many classification problems. The most important parame- 

ter in SVM is the kernel which controls how the input variables 

are projected. SVM divides n_dimensional space into two distinct 

regions for output classes. The algorithm is trying to find a hy- 

perplane during training that best separates the output classes. In 

the case of binary problem hyperplane is a single line. SVM algo- 

rithm is commonly used for its high prediction rate, however, a 

major drawback of this method is training time which is signifi- 

cantly higher than RF or KNN ( Abdiansah and Wardoyo, 2015 ). 

Logistic regression (LR) is one of the most common models 

used for binary classification. LR is rarely used for intrusion de- 

tection tasks, however, its performance for binary problems is usu- 

ally on par with other state-of-the-art algorithms. LR hyperparam- 

eters can provide some improvement to the performance of the 

model. The regularisation (penalty) and C parameter usually have 

the greatest impact on the model performance ( Pohar et al., 2004 ). 

Initial training iterations were conducted using default param- 

eters; however, the results were poor, thus hyperparameter tun- 

ing was applied to all four models. For the RF model 2 parameters 

were tuned: max depth and number of bins. The former represents 

the depth of every tree which determines the number of splits. 

Generally, more splits allow the model to capture more informa- 

tion, however the convergence time increases. The cuML RF imple- 

ments a histogram-based method for split determination. The size 

of histograms can be tuned using number of bins parameter. This 

is especially useful for larger problems with highly skewed input 

data. The only hyperparameter tuned for KNN algorithm was the 

number of neighbours or K number which indicates the count of 

the nearest neighbours. In the case of SVM classifier tuning of C 

parameter provided the best results. The C parameter is a penalty 

that determines the influence of the misclassification on the deci- 

sion function. The higher the penalty enforces a smaller error mar- 

gin for decision function choosing hyperplane while lower value 

encourages a larger error margin for the cost of model’s accuracy. 

Two parameters were tuned for the LR namely penalty and tol- 

erance. The penalty type refers to the regularisation method that 

reduces parameters and simplifies the model to avoid overfitting. 

The tolerance value determines when to stop the training. Depend- 

ing on the task and input data larger values may cause algorithm 

to not converge. Table 2 presents the exact values of parameters 

chosen for each algorithm. 

3.2. Evaluation metrics 

To quantify the performance of the trained models the pre- 

dicted values are assessed using evaluation metrics. Various met- 

rics make different assumptions about the problem; thus, it is im- 

portant to validate the outcome using multiple metrics. In this case 

we have decided to apply standard set of evaluation metrics to 

each estimator: accuracy, precision, recall and F1-score. Values for 

each metric are calculated from the confusion matrix of predic- 

tions. The accuracy is the ratio of the number of correct predic- 

tions to the total number of samples. The formula for accuracy is 

presented in (1) . A True Positive (TP) is an outcome where the 

model correctly predicts the positive class. Similarly, a True Neg- 

ative (TN) is an outcome where the model correctly predicts the 

negative class. A False Positive (FP) is an outcome where the model 

incorrectly predicts the positive class. A False Negative (FN) is an 

outcome where the model incorrectly predicts the negative class. 

Accuracy works best when the number of samples belonging to 

each class is equal, thus under-sampling should positively impact 

the score. These metrics will be used when analysing the perfor- 

mance of our improved approach and comparing to related works. 

Accuracy = 

T P + T N 

T P + T N + F P + F N 

(1) 

Precision (2) is the number of ground TP results divided by 

number of predicted positive results. 

P recision = 

T P 

T P + F P 
(2) 

Recall (3) is the number of correct positive results divided by 

the number of all positive samples from the class. 

Recall = 

T P 

T P + F N 

(3) 

F1-score (4) is a mean between precision and recall that ranges 

between 0 and 1. F1-score indicates how robust the model is. 

F 1 = 2 ∗ P recision ∗ Recall 

P recision + Recall 
(4) 

Moreover, to test the speed of algorithms running on GPU the 

results are compared to the CPU counterparts from the scikit-learn 

library. The speed was measured in seconds and compiled results 

include mean speeds calculated from 10 training/test iterations per 

model. 

4. Results and discussion 

In this section, we present and discuss the results obtained in 

the conducted experiments. First, we cover the outcomes of a data 

processing pipeline developed for this project. Second, we discuss 

the results of binary detection of malicious traffic. Next, accuracy 

across all of the classes is presented. Finally, we discuss the im- 

pact of our project in comparison to other works covering the IoT 

botnet detection process. 

4.1. Data pre-processing 

During the pre-processing stage, we have created a small sub- 

set of data that provides enough information to the algorithms and 

shortens the training and prediction time. Because our research 

is focused on the binary classification of the traffic, we have de- 

cided that data will be derived according to the number of occur- 

rences per attack type. Unlike the method used by the authors of a 

dataset, we have saved all occurrences of minority classes (below 

10 0,0 0 0) to ensure a good representation of all attacks. As shown 

in Fig. 2 , the Keylogging, Data Exfiltration, DoS HTTP and DDoS 

HTTP classes are underrepresented in the dataset. The significant 

difference in the number of samples may introduce bias towards 

majority classes reducing accuracy of the algorithms. To tackle this 

issue, we have decided to adjust the class distribution by oversam- 

pling the minority classes. 

During our research we have applied various data splits to test 

their impact on the trained models. We have observed that an 

80:20 split of the data provided the best results. After the split, 

an oversampling was performed on the training set. As a result, 
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Fig. 2. Subset of attacks derived from the original dataset. 

Table 3 

Training sets utilised during research. 

Attack Normal Oversampled 

DDoS HTTP 15,790 80,000 

DDoS TCP 80,000 80,000 

DDoS UDP 80,000 80,000 

DoS HTTP 23,744 80,000 

DoS TCP 80,000 80,000 

DoS UDP 80,000 80,000 

Reconnaissance OS 80,000 80,000 

Reconnaissance Service Scan 80,000 80,000 

Theft Data Exfiltration 91 80,000 

Theft Keylogging 1171 80,000 

Normal traffic 7250 80,000 

additional records were added to the minority classes DDoS HTTP, 

DoS HTTP, and both ‘Theft attack’ types. This method evens out the 

class balance to 80,0 0 0 records per class. Table 3 presents the dis- 

tribution of samples across different classes used for training the 

model. 

Initial testing showed that the majority of the features do not 

impact the prediction capability of the models. As was mentioned 

in the methodology section, we have applied a feature importance 

algorithm to select a group of best features. Feature importance is 

defined as a decrease in model score when a feature is shuffled. 

The process of shuffling breaks the relationship between the target 

value and a feature, thus the drop in model score indicates how 

dependant the model is on the particular feature. 

Fig. 3 presents the eight best original features selected for the 

training of all models. The features that had little to no impact on 

the model were removed from the input set and the remaining fea- 

tures were used to derive the new data. 

To further increase the robustness of the models we have de- 

rived several features from the original values. Analysis showed 

that only the rate of packets to bytes had a meaningful impact 

on the algorithms, thus it was selected as one of the input val- 

ues. SVM has benefited the most from the addition of a newly de- 

rived feature having its recall and f1-score increased by 0.1 scores. 

Table 4 presents the full set of features used for the training of 

all algorithms. Each feature and a description of the associated at- 

tribute is conveyed. 

4.2. Binary malicious traffic detection 

The first stage of our experiments involved the detection of ma- 

licious traffic. For this purpose, all attack entries were combined 

under the malicious traffic label, while normal traffic remained 

as a second class. The results of this classification are shown in 

Table 4 

Training input features. 

Feature Description 

Pkts Total count of packets in transaction 

Bytes Total number of bytes in transaction 

State Transaction state 

Dur Record total duration 

Spkts Source-to-destination packet count 

Sbytes Source-to-destination byte count 

Sum Total duration of aggregated records 

Mean Average duration of aggregated records 

Pkts/Bytes Packets to bytes ratio 

Table 5 

Binary detection of malicious traffic. 

Algorithm Accuracy Precision Recall F1-score 

RF 0.9995 0.99668 0.98479 0.99066 

RF + SMOTE 0.99988 0.99857 0.99722 0.9979 

KNN 0.99978 0.99715 0.99472 0.99593 

KNN + SMOTE 0.98976 0.78658 0.99372 0.86145 

SVM 0.99742 0.98688 0.91629 0.94875 

SVM + SMOTE 0.99809 0.94285 0.99359 0.96681 

LR 0.98874 0.82808 0.68046 0.73217 

LR + SMOTE 0.95136 0.60798 0.96038 0.66429 

Table 5 . The performance metrics show that all models achieve a 

high level of accuracy. Moreover, implementation of oversampling 

visibly improves the results. This is especially visible in the case 

of the SVM classifier. Analysis of the evaluation metrics shows that 

RF and KNN performed significantly better achieving near 100% ac- 

curacy and sensitivity. This means that the results of these two 

models are significantly more robust. While the SVM also had high 

accuracy, it is lacking precision and recall (which indicates false 

classification and reduces the overall robustness of the model). The 

worst-performing algorithm was LR which evaluation shows a sig- 

nificant number of false positive predictions even after parameter 

tuning. 

It is also important to note that while both RF and KNN have 

very similar metric scores there are significant differences in the 

number of misclassified samples for both classes. Fig. 4 shows the 

confusion matrix of RF and KNN classifiers trained on an uneven 

data sample. The KNN performance is better, and the difference 

can be observed in a number of normal traffic misclassified sam- 

ples. The KNN is clearly more sensitive and as a result smaller por- 

tion of the traffic is being misclassified. 

Interestingly, training on the oversampled set generated very 

different results (shown in Fig. 5 ). Random Forest performance has 

increased, especially the classification capability of the benign traf- 
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Fig. 3. Importance of features used for model training. 

Fig. 4. Classification results for unbalanced set training. 

Fig. 5. Classification results for oversampled set training. 

fic which is now nearly 100% accurate. Fig. 5 shows that oversam- 

pling the training data possibly introduced some bias impacting 

the prediction capability of KNN. The performance of KNN has de- 

creased by a significant margin when we consider that the number 

of malicious traffic classified as benign has increased from 10 (as 

shown in Fig. 4 ) to 1347 ( Fig. 5 ). 

SVM tends to classify most of the traffic as malicious. This prob- 

lem can be solved by adding additional features to the training set. 

Note however, the purpose of this research was to test the predic- 

tion capability on the smallest possible number of features, thus 

allowing fast training and estimation. The LR model has the high- 

est number of misclassified traffic samples rendering it not a viable 

solution for an IDS. 

The training time of KNN is significantly shorter than any other 

algorithm, however, the prediction time is much slower. This is be- 

cause KNN does not generalize data in advance. While LR requires 

the least amount of time to make a prediction its accuracy and ro- 

bustness is way too low to consider it a good option. SVM training 

time is significantly longer than any other algorithm which does 

not make it a viable solution for IDS which must be frequently re- 

trained to include new threats. RF, while not the best in time met- 

rics, is clearly the best algorithm as it grants the best prediction 

capability within reasonable training and prediction times. 

We have compared both the training and prediction time of the 

algorithms running on GPU and CPU. As evident, the training times 

vary between different algorithms. The training of SVM is slow due 
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Fig. 6. Training time comparison on GPU and CPU. 

Fig. 7. The comparison of prediction time on GPU and CPU. 

to the significant number of samples chosen and a non-linear ker- 

nel used. Future tests may involve smaller input sets to test the 

performance changes. The remaining algorithms converge below 

two minutes on CPU and in less than five seconds with GPU accel- 

eration. Fig. 6 presents the results of a training time comparison 

which clearly show how much quicker the process of retraining 

can be when utilizing GPU. 

In Fig. 7 , we can see the estimation times for each algorithm 

trained. As we can observe, the KNN required a significantly longer 

estimation time because for every prediction it needs to scan all 

nearest neighbours in the completed training set. Again, a smaller 

training set would improve the prediction time however this might 

negatively impact the accuracy of the model. Another aspect worth 

noting is a significant improvement in estimation time when pre- 

dicting with SVM classifier utilizing GPU. Overall, the GPU acceler- 

ated models are significantly faster in both training and prediction 

which in some cases may be a crucial factor. 

4.3. Attack type detection 

The second task of our study was to perform binary classifi- 

cation of every attack separately. Table 6 presents the results of 

binary detection of the attacks. RF is clearly the most accurate al- 

gorithm, however, KNN and SVM achieve similar results in most 

cases. LR was again the worst performing algorithm even with dif- 

ferent parameter settings. The most important findings show that 

it was possible to achieve very high accuracy and robustness of 

the Random Forest classifier for all attack types. Implementation of 

oversampling reduced bias towards majority classes and as a result 

improved estimation of the models on the previously underrepre- 

sented attack types. 

Table 6 

Binary detection of individual attacks (F1-score only). 

Attack type RF KNN SVM LR 

DDoS HTTP 0.99939 0.99818 0.97920 0.91840 

DDoS TCP 1 0.99954 0.99985 0.99593 

DDoS UDP 0.99652 0.99894 0.99697 0.98567 

DoS HTTP 0.99982 0.99803 0.95575 0.87587 

DoS TCP 1 0.99939 1 0.99954 

DoS UDP 0.99894 0.99864 0.99864 0.98582 

OS Fingerprint 0.99939 0.99804 0.99474 0.85461 

Service Scan 0.99729 0.99758 0.99562 0.97313 

Data Exfiltration 1 0.96112 0.93174 0.63416 

Keylogging 0.99901 0.99604 0.99506 0.97142 

The application of algorithms on different benchmarks may 

provide interesting results and allow further improvements. Gen- 

eration of new features can also be the answer for better perfor- 

mance and reduction of bins used in GPU accelerated RF which 

significantly increased training and prediction time. In future work 

we plan to apply other models from the cuML library to test their 

performance and compare them to the CPU-based versions. 

4.4. Comparison with other works 

In comparison to other academic works in the field, our method 

not only reduced training but it also significantly reduced predic- 

tion time by utilizing GPU. Specifically, dimensionality reduction 

provided a further improvement to the speed of the training and 

the evaluation process. The choice of a custom set retained more 

samples of the minority classes reducing bias and in turn provided 

more data for the models. As a result, it was possible to retain high 

performance as was shown in the results section. 
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Table 7 

Comparison of algorithms performance. 

Metric Accuracy Recall Time (s) 

Best RF - GPU 0.99988 0.99722 0.45 

Best RF - CPU 0.99985 0.99666 16.24 

Best SVM - GPU 0.99742 0.91629 5.74 

Best SVM - CPU 0.99516 0.82839 710.06 

Koroniotis et al. (2019) SVM 0.88373 0.88371 1270 

Koroniotis et al. (2019) SVM all features 0.99988 1 6636.98 

Koroniotis et al. (2019) RNN 0.99740 0.99749 8035 

Koroniotis et al. (2019) RNN all features 0.97906 0.97908 6888.08 

Koroniotis et al. (2019) LSTM 0.99741 0.97908 10,482.19 

Koroniotis et al. (2019) LSTM all features 0.98057 0.98058 14,073.63 

Shafiq et al. (2020b) RF 0.9999 1.00. n/a 

Alsamiri and Alsubhi (2019) RF 0.98 0.98 27.0328 

We compared our improved GPU-based machine learning ap- 

proach for detection of botnet attacks with related works of 

Koroniotis et al. (2019) , ( Shafiq et al., 2020b ), and Alsamiri and 

Alsubhi (2019) . Specifically, we analysed and compared our algo- 

rithms in terms of accuracy, recall and time. The accuracy compar- 

ison looks at the portion of correctly classified samples, whereas 

recall is to do with the correctly identified positive classes from 

the actual malicious traffic. In Table 7 the comparison of malicious 

traffic detection with the results obtained by models of authors 

Koroniotis et al. (2019) , ( Shafiq et al., 2020b ), and Alsamiri and 

Alsubhi (2019) is presented. The former trained SVM classifier, 

RNN and LSTM networks use 5% of the original data and ten se- 

lected features. The authors of the second work implemented algo- 

rithms for selection of best features and tested the results by train- 

ing various models. The best performance was achieved using RF; 

thus, the results are included in the comparison. Alsamiri and Al- 

subhi (2019) generated eighty new features from the original pcap 

files and selected seven for model training. The RF algorithm ac- 

complished the best results having high accuracy and recall. 

The most significant improvement of our solution can be seen 

in the training time which application of accelerated machine 

learning algorithms decreased considerably. The accuracy and ro- 

bustness of our best algorithm are comparable to other authors 

results. In terms of accuracy developed models are outperformed 

slightly by Koroniotis et al. (2019) and their RNN architecture and 

( Shafiq et al., 2020b ) with their RF model. As can be observed, the 

training time of the GPU-based models is significantly shorter out- 

performing all other architectures by a large margin. 

The tested model’s performance is on par with other works 

results with significant time improvement. Faster training allows 

for more frequent retraining of the model and updates of the sys- 

tem. This is especially important in production where quick model 

deployment allows to save resources and well optimised training 

pipelines are essential. The accelerated versions of machine learn- 

ing algorithms also provide faster prediction which can be crucial 

in the fast identification of a threat. 

5. Conclusions and future work 

This paper presents our research into the application of GPU- 

based accelerated machine learning models. Four types of machine 

learning algorithms were compared in terms of accuracy, precision, 

recall, F1-score as well as computation time required to train the 

model and perform prediction. The experimental results show that 

the proposed data pre-processing and feature selection methods 

improve the training and prediction durations while maintaining 

the high performance of the estimators. The obtained results show 

accuracy and recall of the best trained model are 0.999 and 0.997, 

respectively. While ( Shafiq et al., 2020b ) obtained higher metrics 

score our models come close and have better performance or equal 

to other comparable works. The training time of the algorithms has 

been reduced at least 60 times (if comparing the RF implementa- 

tion to Alsamiri and Alsubhi, 2019 ) or more. The drastic decrease 

in training and prediction time makes the model more feasible 

for deployment in the industry allowing frequent retraining ses- 

sions and quick prediction service. Application of permutation im- 

portance together with oversampling proved vital for the final im- 

provement of both time and accuracy of the models. The final re- 

sults show the significance of the data processing methods applied. 

Appropriate selection of dataset, its discovery and implementation 

of feature engineering shows that our approach is promising and in 

future can be tested on other IoT botnet benchmarks. We offered 

improvements of both training and prediction times in compari- 

son to other works in the field, while retaining high accuracy and 

robustness of the models. 

It is important to emphasise the role of hardware for this 

project. The introduction of GPU for machine learning gives new 

possibilities allowing to solve issues that CPU cannot handle in a 

reasonable time. Knowing the performance of algorithms utilizing 

GPU the future work may involve training on larger set of data. 

Larger input may allow model to learn more information about 

the problem and as a result perform better. The future work can 

also involve the generation of a dataset with a larger number of 

minority class samples (DDoS HTTP, DDoS, TCP, DDoS UDP, DoS 

HTTP, DoS UDP, DoS TCP) to avoid the introduction of synthetic 

data which while helpful can never represent a real-life data. Other 

publicly available datasets could also be considered, however var- 

ious datasets consist different attacks which means abundance of 

some classes that were used in this research. In many cases PCAP 

files are often available, thus future research may involve extrac- 

tion of features that Koroniotis et al. (2019) used in the IoT-Botnet 

set. 
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