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Highlights:

• An environmentally friendly MAX phase etching methodology was established
• Sodium hydroxide produced magnetic layered M.Ti2CTx nanostructure
• M.Ti2C-AIII exhibited exceptional Sr2+ and Cs+ removal capacities of 376 and 142.88 mg/g
• Highly efficient magnetic nanostructures permitted selective radionuclide removal

Abstract: MAX phases are the parent materials used for the formation of MXenes, and are generally
obtained by etching using the highly corrosive acid HF. To develop a more environmentally friendly
approach for the synthesis of MXenes, in this work, titanium aluminum carbide MAX phase (Ti2AlC)
was fabricated and etched using NaOH. Further, magnetic properties were induced during the etching
process in a single-step etching process that led to the formation of a magnetic composite. By carefully
controlling etching conditions such as etching agent concentration and time, different structures
could be produced (denoted as M.Ti2CTx). Magnetic nanostructures with unique physico-chemical
characteristics, including a large number of binding sites, were utilized to adsorb radionuclide Sr2+

and Cs+ cations from different matrices, including deionized, tap, and seawater. The produced
adsorbents were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray
energy dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The synthesized
materials were found to be very stable in the aqueous phase, compared with corrosive acid-etched
MXenes, acquiring a distinctive structure with oxygen-containing functional moieties. Sr2+ and
Cs+ removal efficiencies of M.Ti2CTx were assessed via conventional batch adsorption experiments.
M.Ti2CTx-AIII showed the highest adsorption performance among other M.Ti2CTx phases, with
maximum adsorption capacities of 376.05 and 142.88 mg/g for Sr2+ and Cs+, respectively, which are
among the highest adsorption capacities reported for comparable adsorbents such as graphene oxide
and MXenes. Moreover, in seawater, the removal efficiencies for Sr2+ and Cs+ were greater than 93%
and 31%, respectively. Analysis of the removal mechanism validates the electrostatic interactions
between M.Ti2C-AIII and radionuclides.

Keywords: MAX phase; magnetic nanostructure; radionuclide; alkalization; radioactive waste;
water treatment

1. Introduction

Nuclear energy is a prevalent, sustainable, cost-effective, and green source of en-
ergy [1]. Nevertheless, the environmental effect of producing nuclear power through
nuclear fission reactions is an unsettled matter. Spent nuclear fuel that consists of a large
amount of waste full of toxic radioisotopes poses a huge environmental challenge [2].
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Nuclear catastrophes including Chernobyl and Fukushima have caused considerable harm
to water bodies [2]. Radioactive strontium (two isotopes: 90Sr and 89Sr) and cesium (137Cs)
are the most predominant nuclear fission products [3], generated by the nuclear fission
of larger isotopes including uranium (235U) [3,4]. Radioactive 90Sr and 137Cs are major
contributors to radiotoxicity in nuclear waste that could be discharged into water bodies.
The isotopes 90Sr and 137Cs have half-lives of approximately 29 and 30.17 years, and emit
strong beta- and gamma-rays, respectively. In addition to the emission of these extremely
harmful rays, high solubility and chemical reactivity of both 90Sr and 137Cs could cause
accidental release, and consequently, their occurrence in seawater and/or wastewater is a
subject of great concern and needs to be tackled immediately and effectively [5,6].

Several demonstrative methodologies have been adopted over previous decades
to clean radioactive 90Sr- and 137Cs-contaminated wastewater including solvent extrac-
tion, chemical precipitation, electrodialysis, membrane filtration, coagulation, and adsorp-
tion [7–9]. Nevertheless, the adsorption process has dominance over other approaches
for targeted adsorption in water bodies since it is harmless with no secondary pollution.
Furthermore, the adsorption process is especially suited for the removal of trace radionu-
clides in the presence of other ions such as Na+, K+, Ca2+, and Mg2+ [10]. In the adsorption
process, the most important factor is the design and synthesis of appropriate adsorbents
that are economical, chemically stable, more selective, and easier to prepare.

In recent years, the application of different engineered micro/nanomaterials in the
adsorption of Cs and Sr has been extensively studied [11–13]. In particular, two-dimensional
(2D) nanomaterials, such as graphene oxide (GO) and layered double hydroxides (LDHs) [14],
are considered effective adsorbents for radionuclides Sr and Cs, due to their outstanding
adsorption efficiencies. Nevertheless, there are continuous attempts to synthesize better
materials with very high adsorption capacities, higher selectivity, and the ability to adsorb
radionuclides from different aqueous matrices. However, these materials, including ti-
tanosilicate zeolites, functionalized silica monoliths, mesoporous silica, organic ligands, and
their nanocomposites/derivatives, are expensive or ineffective in treating large amounts
of nuclear liquid waste, especially in the presence of high concentrations of co-existing
cations [15–19].

Since 2011, a new family of 2D materials, generally known as MXenes and compris-
ing of transition metal carbides, nitrides, and carbonitrides, are being synthesized, and
these are analogous to GO nanosheets [20,21]. These are described by the general formula
Mn+1XnTx and fabricated by A layer etching from MAX phases (Mn+1AXn, where M rep-
resents early transition metals, A represents the group IIIA elements, X could be carbon,
nitrogen, or both in the periodic table of elements, and n could be 1, 2, 3, or 4) [22,23]. These
2D-layered structures have remarkable physico-chemical and mechanical characteristics
and demonstrate hydrophilic behavior and oxygenated terminal groups that are imme-
diately available as sorption sites [24–26]. Consequently, such intriguing features make
them ideal adsorbents for radionuclide-contaminated water remediation [25,27]. Many
different MXenes have been prepared and utilized for different applications. However,
the production of MXenes from MAX phases requires an etchant such as HF to remove
the A layer from layered Mn+1AXn geometry to produce 2D Mn+1Xn (MXene). Conse-
quently, nearly all MXenes, including titanium carbide Ti2C (2:1 phase), are produced using
toxic and dangerous HF [28–30]. HF is not an environmental-friendly etchant and causes
severe environmental issues [31]. Therefore, it is necessary to replace HF with a more
environmentally friendly approach.

Magnetic materials such as Fe2O3 and Fe3O4 nanoparticles have potential applications
in water treatment [32]. Strongly magnetic materials can offer an easy and efficient approach
for their separation after the adsorption of contaminants [33,34]. After application, the
magnetic adsorbent can be recovered and reused in industrial processes. Therefore, if
the exfoliated MAX phases could be made magnetic, this will facilitate separation and
regeneration with a complimentary increase in the stability of the materials. In this work, we
have fabricated nanostructured materials by exfoliating Ti2AlC (211) using hydrothermal
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treatment, and the magnetic property was induced during the exfoliation process due
to the formation of a Fe3O4-based composite. The produced magnetic materials were
characterized and utilized for radionuclide Sr2+ and Cs+ removal, and the adsorption
efficiencies in different matrices including seawater were evaluated.

2. Materials and Methods
2.1. Synthesis of M.Ti2CTx

To synthesize the magnetic M.Ti2CTx nanostructures, 0.25 g FeSO4·7H2O was dis-
solved in 40 mL deionized water in a 100 mL beaker. Afterward, a certain amount of NaOH
was inserted into the solution, and the solution was stirred to produce a homogenous
suspension. A 0.2 g measure of Ti2AlC MAX phase was then added to the solution and
reacted for 1 h at room temperature. The synthesis method of the Ti2AlC MAX phase is
reported in our previous work [35]. The prepared suspension was filled into a Teflon-lined
stainless autoclave and treated at 200 ◦C in an oven. After 12 h of hydrothermal treatment,
the prepared material was washed repeatedly with DI water and ethanol. The obtained
blackish/grayish residues were collected and dried at 60 ◦C overnight in a vacuum oven.
The synthesis protocol was varied to optimize the process and achieve materials with high
adsorption capacities for radionuclides.

As a reference material, Fe3O4 magnetic particles and Alk-Ti2Csheet were also syn-
thesized using the same procedure used for M.Ti2CTx-AIII. However, for Fe3O4 synthesis
the Ti2AlC MAX phase was not added during synthesis. For Alk-Ti2Csheet fabrication,
the Ti2AlC MAX phase was exfoliated in 5 M NaOH at 200 ◦C for 12 h in the absence
of FeSO4.7H2O.

2.2. Characterization

The surface morphology and structure of the Ti2AlC MAX phases and as-synthesized
M.Ti2C-AIII powders were analyzed using a field emission scanning electron microscope
(SEM, S-4800, HITACHI, Tokyo, Japan). The samples were gold-coated with a Balzers’
sputtering device prior to analysis with SEM. The X-ray powder diffraction spectra of the
synthesized materials were recorded using Rigaku D/MAX 2500PC powder XRD (Rigaku,
Tokyo, Japan) in a scan range of 2–80◦. The accelerating voltage and current were set at
40 kV and 200 mA, respectively, with a monochromatic Cu Kα radiation of wavelength
(λ = 1.5405 Å). A superconducting quantum interference device magnetometer (Quantum
Design, San Diego, CA, USA) was used for the magnetic characterization of Fe3O4 and
the final nanostructure. Inductively coupled plasma optical emission/mass spectrometry
(ICP-MS, Perkin Elmer, Waltham, MA, USA) was used to analyze the strontium and cesium
ion concentrations in the solutions. The surface area and pore size analyses were conducted
using a Brunauer–Emmett–Teller (BET) analyzer and Barrett−Joyner−Halen (BJH) method,
respectively. The BJH method was applied using a Micromeritics ASAP-2020 analyzer
with a nitrogen gas adsorption–desorption isotherm at 77 K to determine the pore size
distribution. XPS spectra of as-prepared magnetic composites were measured using a
scanning X-ray micrograph (SXM: ULVAC-PHI II, Quantera, Kanagawa, Japan). For XPS
spectra after Cs and Sr adsorption, the sample was prepared by inserting 10 mg of as-
prepared M.Ti2C-AIII into a binary solution containing 5 ppm of both Sr2+ and Cs+. After a
12 h reaction, the adsorbent was separated, washed, and dried in an oven at 50 ◦C under
vacuum conditions.

2.3. Adsorption Experiments

To evaluate the radionuclides removal capabilities of the synthesized structures, ad-
sorption testing was performed in batch experiments with specific pH and adsorbent
amounts. The adsorbent was then removed and filtered, and the remaining concentrations
of Sr2+ and Cs+ were estimated using inductively coupled plasma optical emission spec-
troscopy (ICP-OES, Perkin Elmer, Waltham, MA, USA) and ICP-MS, as appropriate. The
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absolute adsorption capacity and adsorption efficiency of the cations were calculated using
the following Equations (1) and (2):

Qe =
(Co − Ce)× V

m
(1)

Q(%) =
(Co − Ce)

V
× 100 (2)

where Co is the initial concentration in ppm, and Ce is the final concentration of Sr2+ and
Cs+, respectively; V is the volume of solution in liter, m is the mass of the adsorbent (g);
and Qe is the adsorption capacity of the cations.

Experiments were performed to assess the influence of pH on both Cs+ and Sr2+

adsorption in a pH range 2.0–9.0. Batch experiments were carried out using different
concentrations (10–1000 mg/L) at room temperature and pH of 6 for 6 h of contact time.
Pseudo-first-order and pseudo-second-order kinetics were applied. Furthermore, the
Langmuir and Freundlich isotherm models were used to analyze the data. A comparison of
adsorption capacities was made for different types of adsorbents. In comparison with the
newly synthesized M.Ti2CTx, a certain amount of identically adsorbent including graphene
oxide (GO), Ti3C2Tx MXene, or Fe3O4 was introduced into 15 mL of 10 ppm pollutant
solution. The experiments were performed under optimized experimental conditions.
Samples were taken at different time intervals, diluted 10-fold, and analyzed using ICP-MS.

To validate the usefulness of the synthesized materials for radioactive ions adsorption,
10 mg M.Ti2CTxAIII adsorbent was introduced into different matrices, e.g., distilled water,
tap water, and seawater. The seawater was simulated using 10,400 ppm Na+, 390 ppm K+,
1270 ppm Mg2+, and 405 ppm Ca2+ ions. The aliquot was drawn after 24 h reaction and
analyzed using ICP-MS to determine the residual amount.

3. Results and Discussions
3.1. Characterization of M.Ti2CTx-AIII

Ti2AlC MAX phase was successfully fabricated by high temperature (1350 ◦C) sintering
of Al and TiC in a 1:2 ratio [36]. Further, the hydrothermal alkalization of Ti2AlC powder
resulted in different types of magnetic structures. In a one-step hydrothermal treatment
method, magnetic properties were induced during the alkalization process. To achieve
the best magnetic properties and a well-exfoliated structure, synthesis conditions such as
NaOH concentration (5–15 M), and treatment time (12–48 h) were varied; however, the
temperature was kept unchanged at 200 ◦C). The obtained magnetic structures using the
different synthesis conditions are shown in Table 1.

Table 1. M.Ti2CTx hybrid nanostructures synthesized using Ti2AlC and FeSO4.7H2O at different
NaOH concentrations, temperatures, and times.

No. Material Code Synthesis Conditions

1 M.Ti2CTx-AI Synthesized at 5 M NaOH, 200 ◦C for 12 h
2 M.Ti2CTx-AII Synthesized at 5 M NaOH, 200 ◦C for 24 h
3 M.Ti2CTx-AIII Synthesized at 5 M NaOH, 200 ◦C for 48 h
4 M.Ti2CTx-BI Synthesized at 10 M NaOH, 200 ◦C for 12 h
5 M.Ti2CTx-BII Synthesized at 10 M NaOH, 200 ◦C for 24 h
6 M.Ti2CTx-BIII Synthesized at 10 M NaOH, 200 ◦C for 48 h
7 M.Ti2CTx-CI Synthesized at 15 M NaOH, 200 ◦C for 12 h
8 M.Ti2CTx-CII Synthesized at 15 M NaOH, 200 ◦C for 24 h
9 M.Ti2CTx-CIII Synthesized at 15 M NaOH, 200 ◦C for 48 h
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The synthesized magnetic structures were used for radioactive cations Sr2+ and Cs+

removal from water and the results revealed that M.Ti2CTx-AIII showed the highest removal
efficiencies for both Sr2+ and Cs+ ions. M.Ti2CTx-AIII was synthesized by the hydrothermal
treatment of Ti2AlC in the presence of 5 molar sodium hydroxide and FeSO4 at 200 ◦C
for 48 h. Scanning electron microscopy showed different morphologies for the different
exfoliated phases.

Figure 1a shows the SEM images of the layered Ti2AlC MAX phase. After hydrother-
mal treatment, Ti2AlC changed into 2D sheet-like structures as shown in Figure 1b,c. The
growth of the nanostructure depends on the synthesis conditions; changes in the alkalinity
and synthesis time led to different structures of the final product. For the synthesis of
M.Ti2CTx-AIII, 5 M NaOH and 250 mg of FeSO4·7H2O was sufficient to remove the layers of
Al from Ti2AlC and induce maximum magnetization as corroborated by energy-dispersive
X-ray spectroscopy (EDS) analysis and magnetic field-dependent magnetic measurements.
Micron-sized Fe3O4 particles with octahedron geometry were also observed in SEM images
confirming the formation of a composite material (Figure 1d). A higher concentration of
NaOH (10–15 M) could not create any definitive structural shape and further caused a de-
crease in the observed magnetization. Further, EDS measurements established the complete
elimination of the Al layers from Ti2AlC as shown in Table S1; consequently, the newly
developed structures were named M.Ti2CTx, where Tx characterizes the surface functional
groups such as –Na, –OH, and –O, and the presence of all elements in the EDS graph
(Figure 1e,f) [35]. Additionally, the elemental mapping in SEM-EDS analysis (Figure 1e)
of the samples after Sr2+ and Cs+ adsorption (Sr2+@M.Ti2CTx-AIII or Cs+@M.Ti2CTx-AIII)
presented a uniform distribution of all characteristic elements, including the presence of
significant amounts of Sr2+ and Cs+.
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Figure 1. SEM image of (a) Ti2AlC MAX phase, and (b,c) magnetic M.Ti2CTx-AIII nanostructures at
different magnification, (d) Fe3O4 magnetite, (e) elemental mapping of magnetic M.Ti2CTx-AIII after
Sr2+ and Cs+ adsorption (Sr2+, Cs+@ M.Ti2CTx-AIII), and (f) EDS elemental mapping of Sr2+, Cs+@
M.Ti2CTx-AIII.

Based on the initial assessments of radioactive cation removal by materials and mor-
phology examined by SEM data analysis, we selected only M.Ti2CTx-AIII for further charac-
teristic analyses. In comparison with other exfoliated structures, M.Ti2CTx-AIII exhibited
higher adsorption capacity for both Sr2+ and Cs+; thus, M.Ti2CTx-AIII was selected for
further physio-chemical characteristics studies. The XRD pattern of M.Ti2CTx-AIII indicated
the perseverance of crystalline structures after exfoliation at 200 ◦C and treatment with
5 M sodium hydroxide. After exfoliation, the intensity of the characteristic peak in Ti2AlC
(2θ = 39.26◦) decreased (red color spectrum Figure 2a). Furthermore, the peak at 2θ = 12.90◦

moved to 2θ = 9.98◦ in M.Ti2CTx-AIII (Figure 2a). Fe3O4 was synthesized for reference,
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and the XRD pattern of Fe3O4 is shown in blue color in Figure 2a. Fe3O4 was synthesized
thorough hydrothermal treatment using 5 M NaOH at 200 ◦C for 48 h. The representative
peaks in the XRD pattern, 2θ = 35◦, 30◦, 39◦, 57◦, and 18.07◦ match with available literature
and PDF reference code 01-089-0688. Further, the peak at 2θ = ~18◦ strongly suggests the
octahedron morphology of Fe3O4 nanoparticles [37]. Therefore, the peaks at 2θ = ~18◦

and ~35◦ in M.Ti2CTx-AIII (green color spectrum in Figure 2a) represent the emergence of
magnetic Fe3O4 nanoparticles during the exfoliation process. The produced M.Ti2CTx-AIII
exhibited ferrimagnetic behavior, as evidenced by the magnetic field-dependent magne-
tization measurements. A characteristic magnetic hysteresis loop is shown in Figure 2b.
At room temperature, M.Ti2CTx-AIII showed a saturation magnetization of 10.69 emu/g,
which is expectedly lower than that of pure Fe3O4 (52.02 emu/g). The reduction in mag-
netization is understandable as non-magnetic Ti2CTx is present in large amounts in the
magnetic composite M.Ti2CTx-AIII.
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Figure 2. (a) XRD diffraction pattern of different phases of the fabricated materials and (b) magnetic
field-dependent magnetization curves of M.Ti2CTx-AIII along with that of the Fe3O4 reference.

The Brunauer–Emmett–Teller (BET) surface area of Ti2AlC MAX phase and M.Ti2CTx-
AIII were measured, and the results showed a sudden increase in the surface area from
0.618 to 29.33 m2/g for the parent MAX phase and M.Ti2CTx-AIII composite, respectively
(Figure S1a). An unexpected and noteworthy rise in surface area in the after-exfoliation
samples was potentially due to the elimination of Al layers and the formation of sheet-like
structure in M.Ti2CTx-AIII. Furthermore, in a Barrett–Joyner–Halenda (BJH) plot the mean
pore diameter of M.Ti2CTx-AIII was 32.04 nm (Figure S1b).

X-ray photoelectron spectroscopy (XPS) additionally revealed the formation of
M.Ti2CTx-AIII and changes in all the elements states (Table S3). The complete spectra
of M.Ti2CTx-AIII showed the presence of representative elements including Ti 2p, O 1s,
C 1s, Fe 2p, and Na 1s (bottom spectrum in Figure 3). Furthermore, after adsorption of
the radionuclides, peaks corresponding to Sr 3d and Cs 3d emerged in the M.Ti2CTx-AIII
samples (blue color spectrum in Figure 3). The chemical changes that occurred in the
different phases of adsorbent authenticate the successful syntheses of desired materials
and loading of radionuclides onto materials. Furthermore, in regional peak fitting analysis
of Sr 3d, two de-convoluted peaks were found at binding energies of 133.71 and 135.5 eV,
which can be designated as Sr 3d5/2 and Sr 3d3/2 (Figure S2). Moreover, we have observed
a radical decrease in Na 1s peak intensity after Sr2+ adsorption onto M.Ti2CTx-AIII, which
could be due to the ion exchange of Sr2+ with Na ions (Figure S3). Further, there was a
decrease in peak intensity and peak shifting in C 1s after adsorption of Sr2+ and Cs+ onto
M.Ti2CTx-AIII (Figure S4). Further, in regional XPS data recording, we could not find the Cs
1s peak and this could be due to the presence of a comparatively small amount of Cs+ in the
M.Ti2CTx-AIII. However, a signal of Cs 3d was found at around 690 eV. Furthermore, SEM-
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EDS analysis of the Cs-laden M.Ti2CTx-AIII sample exhibited the presence of a significant
amount of Cs in it (1.52 Wt.%). Further details are given in Table S2.
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Figure 3. X-ray photoelectron spectroscopy of M.Ti2CTx-AIII before and after adsorption of radionuclides.

3.2. Radionuclide Adsorption
3.2.1. Adsorptive Behavior of M.Ti2CTx

The presence of radioactive nuclides such as Sr2+ and Cs+ in wastewater is a major
risk and serious threat to humans and other living organisms. Therefore, before disposal,
the removal of Cs+ and Sr2+ from nuclear waste is very crucial. This work aims to examine
the adsorptive performance of the synthesized magnetic adsorbent for Cs+ and Sr2+. The
synthesized magnetic M.Ti2CTx exhibited higher porosity, magnetic behavior, and the
presence of surface functional groups such as -Na, -OH, -O, and FeO. Structures with
these properties could be used in the purification of water contaminated with heavy metal
ions, especially cationic radionuclide removal from water. Therefore, the synthesized
materials were tested against Sr2+ and Cs+ in batch adsorption tests, and the results are
displayed in Table 2. The radionuclide adsorption from solution at certain concentrations
(12.811 and 10.911 ppm for Cs+ and Sr2+, respectively) was determined for eight different
materials in batch adsorption tests. The adsorbent named M.Ti2CTx-AIII exhibited the
highest efficiency for Cs+ and Sr2+. The maximum removal efficiency for Cs+ was 79.43%,
which was higher than all other magnetite materials. Furthermore, in the case of Sr2+,
all synthesized nanostructures exhibited excellent removal efficiency and M.Ti2CTx-AIII
exhibited more than 99% removal. The nanostructure showed a higher affinity for divalent
cations Sr2+ with the highest removal efficiency between 96 and 99% as compared to
monovalent radionuclides Cs+, which was between ~2 and 80%.
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Table 2. Sr2+ and Cs+ removal by various M.Ti2CTx nanostructures.

Type of
Adsorbent

Cs+ Concentration (ppm) Removal
(%)

Sr2+ Concentration (ppm) Removal
(%)Initial Final Initial Final

M.Ti2CTx-AI 12.181 3.290 72.99 10.911 0.006 99.94
M.Ti2CTx-AII 12.181 3.022 75.19 10.911 0.011 99.89
M.Ti2CTx-AIII 12.181 2.505 79.43 10.911 0.009 99.91
M.Ti2CTx-BI 12.181 4.857 60.12 10.911 0.007 99.93
M.Ti2CTx-BII 12.181 8.643 29.05 10.911 0.022 99.79
M.Ti2CTx-BIII 12.181 9.484 22.14 10.911 0.022 99.80
M.Ti2CTx-CI 12.181 9.752 19.94 10.911 0.048 99.56

M.Ti2CTx-CIII 12.181 12.017 1.35 10.911 0.434 96.02

3.2.2. Comparison with Other Materials

The M.Ti2CTx-AIII nanostructure synthesized in this work was compared with other
similar benchmark adsorbents, including 2D GO, 2D Ti3C2Tx MXene, Fe3O4, and Alk-
Ti2Csheet. The synthesis method for Ti3C2Tx MXene is presented in our previous study [38].
The 2D GO nanosheets used in this work were produced by a modified Hummer’s
method [39] and further details are also provided in our previous work [37]. The syn-
thesis method for the reference Fe3O4 is also provided before in the material synthesis
section. Alk-Ti2Csheet nanosheets were synthesized following the same procedure used for
M.Ti2CTx-AIII synthesis under different synthesis conditions. Alk-Ti2Csheet can be synthe-
sized by treating 200 mg of Ti2AlC MAX phase in 5 M NaOH at 200 ◦C for 12 h [35]. In
a comparison adsorption test, the M.Ti2CTx-AIII showed the highest removal efficiency
for Sr2+ (99.60%) as compared to Fe3O4, GO, and Ti3C2Tx MXene, which was 18.44, 94.70,
and 16.60%, respectively (Figure 4a). For Cs+ removal, M.Ti2CTx-AIII also performed well
among all other completive materials except Alk-Ti2Csheet. The Cs+ removal efficiency was
73.40, 10.47, 33.68, and 37.49% for M.Ti2CTx-AIII, Fe3O4, GO, and Ti3C2Tx MXene, respec-
tively (Figure 4b). Alk-Ti2Csheet showed excellent adsorption efficiency for both Cs+ and
Sr2+ (93.77%, and 99.68%, respectively) as compared to M.Ti2CTx-AIII. The main reason for
higher removal efficacy is the well-exfoliated and well-defined structure of Alk-Ti2Csheet.
Alk-Ti2Csheet was synthesized in only NaOH-solution in the absence of iron sulphate and
thus the exfoliation was more efficient, and a comparatively shorter time was required
for the Al layer to be etched out from the Ti2AlC phase. The well-defined structure and
functional groups played important roles in a greater number of nuclides cations becoming
entrapped and being captured. However, without magnetic properties, it was very difficult
to remove Alk-Ti2Csheet from the water after contact with radionuclides. On the other hand,
M.Ti2CTx-AIII offers easy separation by using an external magnet after the adsorption
experiment. Therefore, M.Ti2CTx-AIII could be a better alternative option for the easy
separation of radionuclide-loaded nanomaterials, and thus the discharge of nanoparticles
into the environment can be circumvented. The stated results showed that M.Ti2CTx-AIII
has comparatively higher binding abilities against Sr2+ and Cs+ as compared to other
benchmark materials. A comparison between the fabricated M.Ti2CTx-AIII and previously
reported materials is illustrated in Table 3.
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Table 3. Comparison between M.Ti2CTx-AIII and other benchmark materials for maximum adsorption
capacity of Sr2+ and Cs+ adsorption.

Adsorbent Radionuclide Adsorption
Capacity (mg/g) Effective pH References
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343.48
93.42

7
6 [40]

OMt/alginate Sr2+ 42.41 6–11 [41]
PB-MHBs-3 Cs+ 41.15 7 [10]

MgAl-LDH/GO Sr2+ 213.35 4–10 [42]
PB/Fe3O4/GO Cs+ 55.56 7 [43]

PB + CNTs Cs+ 142.85 4–8 [44]
RAFT-IIP Sr2+ 145.77 6–8 [45]

BaSO4/rGO Sr2+ 129.37 7–11 [46]
RGO/WO3 Sr2+ 149.56 4–11 [47]

GO Sr2+ 140 6
[48]

GO-EDTA Sr2+ 158 6

Magnetic Nb-CST Sr2+

Cs+
14.38
11.18

9
4 [49]

M.Ti2CTx-AIII
Sr2+
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376.05
142.88
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6 This work
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3.2.3. Effect of Solution pH

The pH of a solution usually plays a crucial role in the adsorption of metal ion
contaminants in liquid phase, as the removal is a pH-dependent process. Therefore, the
influence of the solution’s pH on Sr2+ and Cs+ was assessed in this work. The adsorption
efficiency of M.Ti2CTx-AIII for Sr2+ and Cs+ was performed at various pH values ranging
from pH = 2 to 9. The findings revealed that at pH = 2, both Sr2+ and Cs+ adsorption were as
low as 60.58 and 16.40%, respectively, but increased significantly at pH values ranging from
3 to 9 to 99.97 and 60.0%, respectively (Figure 4c). The increase in removal affinity evidently
demonstrated the influence of Sr2+ and Cs+ ionic form and also the surface characteristics
of the M.Ti2CTx-AIII material used. M.Ti2CTx-AIII demonstrated low removal efficiency
at lower pH of the solution, where the surface charges on M.Ti2CTx-AIII were reduced,
perhaps due to the competition of positive charges and M+ ions [25]. Hydroxyl group
protonation on M.Ti2CTx-AIII is possibly a cause for this, as it produces repulsive forces in
highly acidic media with very low pH. These results strongly indicate that the adsorption
of Sr2+ and Cs+ ions onto M.Ti2CTx-AIII is a pH-dependent phenomenon.

3.2.4. Effect of Contact Time

The synthesized M.Ti2CTx-AIII nanostructures demonstrated exceptional adsorption
behavior with fast sorption kinetics for Sr2+ and Cs+ ions. For the adsorption kinetics test,
a binary solution containing Sr2+ and Cs+ ions was prepared, and a certain amount of
M.Ti2CTx-AIII was introduced into the solution and agitated for 12 h. The results showed
that >97% of total Sr2+ (8.55 ppm) was adsorbed in just 15 min and adsorption equilibrium
was achieved in 1 h. In the case of Cs+, the adsorption process was also fast, as, in the
first 15 min, ~68% Cs+ (7.91 ppm) was adsorbed and achieved equilibrium state in 1 h.
Further, sorption kinetics models such as the Lagergren-pseudo-first order and second-
order adsorption kinetics models were applied on obtained sets of data to obtain insight
about fast kinetics and possible interaction mechanism between solid–liquid phases of the
adsorbent and adsorbate (Figure 5a,b). Among the applied kinetic models of adsorption, the
pseudo-second-order kinetic model fitted very well with the data sets of Sr2+@M.Ti2CTx-
AIII and Cs+@M.Ti2CTx-AIII as compared to the pseudo-first-order model. This rapid
adsorption of radionuclide ions may be due to the large surface area and porosity and
highly occupied empty binding sites on the M.Ti2CTx-AIII [50]. Moreover, the calculated
equation parameters were close to the experimental results and validated the process of
adsorption. The adsorption capacity (Qt) calculated by second-order kinetics for Sr2+ and
Cs+ was 12.78 and 9.15 mg/g, respectively, which was close to the experimental adsorption
density of 12.77 and 8.99 mg/g, respectively. Additionally, the regression coefficient value
(R2) was 1.0 and 0.999 for Sr2+ and Cs+, respectively. Thus, the above results obtained from
the kinetic test indicated that the adsorption of both Sr2+ and Cs+ onto M.Ti2CTx-AIII was a
chemical interaction with a rate-limiting step.
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Figure 5. Adsorption kinetics: pseudo-second-order kinetics graphs of (a) Sr2+@M.Ti2CTx-AIII and
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(d) Cs+ adsorbed by M.Ti2CTx-AIII.

3.2.5. Adsorption Isotherm

Adsorption isotherm models were further assessed to obtain an understanding of
the adsorption of radionuclides. Separate sets of adsorption experiments were performed
for each nuclide’s cations at different initial concentrations. The maximum adsorption
densities of M.Ti2CTx-AIII for Sr2+ and Cs+ at saturation point were 357.60 and 140.42 mg/g,
respectively. Adsorption isotherm models, such as Langmuir and Freundlich isotherms,
were applied to the experimentally obtained data (Table 4). The Langmuir isotherm model
with higher regression coefficient (R2) values fitted well as compared to the Freundlich
isotherm model (Figure 5c,d). The Langmuir isotherm model, with calculated maximum
adsorption capacities of 376.05 and 142.88 mg/g for Sr2+ and Cs+, respectively, indicate
that the radionuclides were adsorbed as a monolayer on M.Ti2CTx-AIII. The adsorption
capacities calculated from the Langmuir isotherm were close to the obtained experimental
values (Table 4).

Table 4. Langmuir and Freundlich adsorption isotherm parameters for Sr2+ and Cs+ adsorption on
M.Ti2CTx-AIII.

Isotherm Model Parameters
Values

Sr2+@M.Ti2CTx-AIII Cs+@M.Ti2CTx-AIII

Langmuir
(Qe = QmKaCe/1 + KaCe)

qmax (mg/g) 376.05 142.88
kL 0.056 0.077
R2 0.976 0.987

Freundlich
(Qe = KFCe

(1/n))

kF (mg/g) 84.29 35.46
1/n 0.240 1.029
R2 0.882 0.892
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3.2.6. Practical Application of Alk-Ti2Csheet

In nuclear power plants, management of nuclear waste is imperative. Therefore, the
capability of the synthesized magnetic nanostructures for nuclear waste treatment was
evaluated to establish their efficacy. Accordingly, the adsorption of Cs+ and Sr2+ cations in
DI, tap, and seawater, filled with coexisting ions, was analyzed. The competing ions, such
as Ca2+, Mg2+, K+, and Na+, were inserted, with concentrations similar to the matrices.
The removal efficiencies in tap water and simulated seawater were very good compared
to the control experiments. The results obtained from the experiments are illustrated in
Table 5. The adsorption of Sr2+ and Cs+ was performed in both single and binary (Sr2+ +
Cs+) solution, Sr2+ exhibiting excellent removal efficiency in all matrices. The Cs+ removal
efficiency was lower than that of Sr2+; furthermore, in DI water, the adsorption efficiency
was ~93% but reduced to ~70 and ~31% in tap and seawater, respectively. The removal
efficiencies were lower in seawater, which is due to the presence of competitive cations
in simulated seawater. The higher concentration of Mg2+ and Ca2+ could be responsible
for the decrease in Sr2+, and Na+ and K+ might influence the Cs+ adsorption. The results
showed a higher affinity for divalent cations over single-valent cations, as we experienced
in previous experimental tests. Overall, the results established remarkable adsorption
efficiency of M.Ti2CTx-AIII.

Table 5. Radionuclide Sr2+ and Cs+ removal in various matrices using the synthesized magnetic
adsorbent.

Radionuclide Parameters

Matrices

Single-Element Solution (Binary Solution: Sr2+ + Cs+)

Deionized
Water

Tap
Water

Simulated
Seawater

Deionized
Water

Tap
Water

Simulated
Seawater

Sr2+@
M.Ti2CTx-AIII

Initial Conc. (µg/L) 1100.23 1100.23 1100.23 1005 1005 1005
Final Conc. (µg/L) 12.37 1.59 86.21 15.09 1.53 105.08

Removal (Conc. (µg/g) 1087.87 1098.64 1014.02 989.91 1003.47 899.92
Removal (%) 98.88 99.86 92.16 98.50 99.85 89.54

Cs+@
M.Ti2CTx-AIII

Initial Conc. (µg/L) 1042.67 1042.67 1042.67 998.87 998.87 998.87
Final Conc. (µg/L) 58.04 310.85 717.071 61.41 323.91 886.75

Removal (Conc. (µg/g) 984.63 731.81 325.59 938.52 674.96 112.12
Removal (%) 94.43 70.19 31.23 93.85 67.57 11.22

4. Conclusions

In this work, we have performed etching of the Ti2AlC phase using a green hydrother-
mal alkalization process to etch out the Al layer. The magnetic properties were successfully
incorporated during A-layer etching. The resulting M.Ti2CTx-AIII exhibited sheet-like
morphology with abundant surface-terminal groups. The said characteristics and unique
morphology marked it as an outstanding material for Sr2+ and Cs+ adsorption. M.Ti2CTx-
AIII was able to adsorb Sr2+ and Cs+ swiftly and efficiently in numerous matrices with
very high removal efficiencies, including deionized, tap, and seawater. In the selective
removal test, the fast and excellent adsorption capacity of Cs+ and Sr2+ in seawater (325.59
and 1014.02 µg/g, respectively) validates the potential of the synthesized material for
practical applications. The radionuclide Sr2+ and Cs+ removal procedure was dependent
on the pH of the solution, monolayer adsorption process, and rate-limiting parameters,
and the maximum adsorption capacities of M.Ti2CTx-AIII was 376.05 and 142.88 mg/g for
Sr2+ and Cs+, respectively. These findings suggest that the etching of Ti2AlC by adopting
fluoride-free procedure might be an unconventional but feasible approach to preparing
nanomaterials for environmental applications. This research also advances the use of
innovative 2D nanomaterials to address radioactive waste remediation challenges.
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analysis of Sr 3d in M.Ti2CTx.AIII after radionuclides adsorption; Figure S3. The XPS peak fitting
analysis of Na 1s (a) before and (b) after radionuclides adsorption in M.Ti2CTx.AIII; Figure S4. The XPS
peak fitting analysis of O 1s and C 1s before (a,c) and after (b,d) radionuclides adsorption, respectively,
in M.Ti2CTx.AIII; Table S1. Elemental composition of M.Ti2CTx.AIII measured in SEM-EDS analysis;
Table S2. Elemental composition of M.Ti2CTx.AIII after Sr2+ and Cs+ adsorption, measured in SEM-
EDS analysis; Table S3. Elemental composition (Atomic%) of as-prepared M.Ti2CTx.AIII and after
Sr2+ and Cs+ adsorption, measured in XPS analysis.
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