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a b s t r a c t

Web applications have experienced a widespread adaptation owing to the agile Service Oriented Ar-
chitecture (SOA) reflecting the ever-changing software needs of users. Google Meet is one of the top
video conferencing applications, especially in the post-COVID19 era. Security and privacy concerns are
therefore critical. This paper presents an extensive digital forensic analysis of Google Meet running on
multiple browsers and software platforms including Google Chrome, Mozilla Firefox, and Microsoft Edge
browsers in Windows 10 and Linux. Artifacts, traces of potential evidence, are extracted from different
locations on a client's desktop, including the memory and browser. These include meeting records,
communication records, email addresses, profile pictures, history, downloads, bookmarks, cache, cookies,
etc. We explore how different Random Access Memory (RAM) sizes of client devices impact the
persistence and format of extracted memory artifacts. A memory artifact extraction tool is developed to
automate the extraction of artifacts identified via unstructured string analysis. Google Meet forensic
artifacts are critical in that they are potential digital evidence in relevant criminal investigations.
Additionally, they highlight that user data can be extracted despite implementing multiple privacy and
security mechanisms.
© 2022 The Author(s). Published by Elsevier Ltd on behalf of DFRWS This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Video conferencing applications such as Zoom, Microsoft Teams,
Cisco WebEx, and Google Meet have played a pivotal role in
achieving the novel work-from-home norm on account of COVID19.
According to a GetVoIP report, these applications had hundreds of
millions of active users in 2020 (Stone,). This worldwide prevalence
has attracted malicious agents' exploitation of security vulnerabil-
ities. Attacks include meeting bombing, distributingmalicious links
in chats, stolen meeting links, and host privileges’ transfer (Top
videoconferencing attacks,).

Unlike other video conferencing (desktop client) applications,
Google Meet is essentially a Web application. Web clients pose
unique challenges for forensic analysts since they depend on agile
SOA, which enables a dynamic Web infrastructure that deploys
Web services and applications on a need basis, reflecting changing

software requirements of users Akremi et al. (2020). This makes it
harder to implement security controls that work efficiently on
regular applications. Also, Web applications do not store client
application folder(s) on disk, which may contain potential forensic
artifacts. Browser data, “residual data generated on devices, can be
used as a proxy to data that is being stored in cloud environments,” but
it provides an incomplete understanding of artifacts pertinent to a
Web client Cloyd et al. (2018); Case and Richard (2017). Browser
cache stored on disk does not include meeting and communication
records, which hold primary forensic relevance as digital evidence
in investigations. Fortunately, these records can be carved from
memory, which is fundamental for the extraction of volatile data
that cannot be found on a disk/network or may exist in encrypted
form.

Memory forensics typically focused on detecting rootkits and
retrieving traces of malware (e.g., resident virus) from a system's
volatile memory, has seen increasing research and development in
techniques for extraction and analysis of userland application ar-
tifacts. Analysis of raw physical memory to extract application data* Corresponding author.

E-mail address: zkhalid.msis18seecs@seecs.edu.pk (Z. Khalid).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi

https://doi.org/10.1016/j.fsidi.2022.301448
2666-2817/© 2022 The Author(s). Published by Elsevier Ltd on behalf of DFRWS This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Forensic Science International: Digital Investigation 43 (2022) 301448

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:zkhalid.msis18seecs@seecs.edu.pk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2022.301448&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2022.301448
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2022.301448


structures optimally requires the application to be open-source
Schatz and Cohen (2017). Source code analysis makes it possible
to construct accurate high-level data structures. However, most
Windows and third-party applications like Zoom, MS Teams, Goo-
gle Meet, and Cisco WebEx are not open-source. This leads to
forensic analysts having to reverse engineer structures without
proprietary code.

Additionally, the heterogeneity of applications requires this task
to be performed individually for each applicationwhichmay lead to
a loss of time-cost relevance in most investigations. Consequently,
structured analysis of userland applications may not be possible.
Finally, string search to identify signatures of application data also
poses multiple challenges like manual identification of signatures
from hugememory dumps and incorporating changes in signatures
with continuous updates of applications (Case and Richard (2017)).
This is a daunting task to conduct andmaintain, but it is a viable last
resort. Once signatures are identified, operations can be automated
for efficiency.

This research aims to perform an extensive memory and
browser forensic analysis of the (closed-source) Google Meet Web
client. Three major contributions of this study are presented as
follows:

C An exhaustive (unstructured) memory forensic analysis of
Google Meet to extract artifacts that contribute to a holistic
meeting scenario and development of a memory artifact
extraction tool to automate string signature-based artifact
carving.

C Investigation of the impact of various client device RAM sizes
on extracted memory artifacts.

C Analysis of browser artifacts of Google Meet extracted from
Chrome, Firefox, and Edge.

2. Related work

Memory analysis for Web and desktop client artifacts. Barradas
et al. (2019) extracted communication records of various Web cli-
ents and mobile applications (including Facebook, Messenger,
Skype, Twitter, Outlook, Roundcube, Google Hangouts, WhatsApp,
Telegram, Trillian, and Gmail) from physical memory using string
analysis. According to reported results for Web clients, the latter 5
applications yielded no communication artifacts in Chrome. Simi-
larly, 7 and 5 applications out of 11 yielded no results in Firefox and
Edge. The experiments for Web clients were conducted in Virtual
Machines (VMs) with RAMs of only 1 GB, which is inherently
inadequate for real-world scenarios. The application data may
likely be swapped out of memory onto disk (pagefile.sys) when it
comes to devices with smaller RAMs of 1e4 GB, but this is unad-
dressed in the experiments and results of the paper. Today, client
devices have RAMs ranging from 8 to 32 GB, which means they
have significantly enhanced system load tolerances and application
string data is bound to persist inmemory and/or swap space. To this
end, we sought to test the hypothesis that RAM sizes may have
significant effects on the persistence and format of memory artifacts
which cannot be overlooked while conducting experiments.

Fern�andez-�Alvarez and Rodríguez (2022) employed the open-
source code of the Telegram desktop client to extract artifacts
prevalent in memory (user account information, communication
records, contacts, etc.). They recreated the Unified Modeling Lan-
guage (UML) diagram of Telegram using the source code, which
helped identify how application objects were stored in memory.
This gave an exact signature to search for, significantly eliminating
error and chance of false positives in the extracted artifacts. The
adopted methodology is an effective approach for investigations

involving open-source applications. However, it cannot be applied
to proprietary software.

Browser forensics. The client's browser is another source of
forensic artifacts in cases involving Web clients. Cloyd et al. (2018)
investigated residual data retained in a browser after a Facebook
Web browsing session. Public browser modes of Chrome, Firefox,
and Internet Explorer were reported to retain 46%, 61%, and 52% of
activities performed in test sessions, respectively.

Marrington et al. (2012) tested the portable browser mode of
Chrome (normal and privatemodes) to investigate whether privacy
claims regarding portable browsers were legitimate. The authors
extracted traces ofWeb browsing activity from the host's disk space
and warned that users trying to obscure their online activity using
portable browsers might not be using the most effective method.

Oh et al. (2011) emphasized that Web browser forensic analyses
usually comprise log parsing only. The authors suggested that ar-
tifacts are likely spread out in different locations and an integrated
analysis is necessary. Possible sources of evidence and different
kinds of analyses such as timeline analysis, search history analysis,
user activity analysis, and recovery of deleted information were
discussed.

Forensics of video conferencing applications. Forensic analysis of
video conferencing applications has been an active research topic
recently. Mahr et al. (2021) performed Zoom's in-depth disk space
forensic analysis. The authors explored client databases in the
Zoom data directory to extract artifacts such as contacts, chats,
email addresses, passwords, cache, and user/device configurations.
Structured Query Language (SQL) queries used to extract relevant
data from databases were also tabulated. In addition, preliminary
memory and network analyses were presented.

Nicoletti and Bernaschi (2019) presented case studies illus-
trating the relevance of artifacts extracted from the Voice over
Internet Protocol (VoIP) codec and protocols of Skype for Business.
Nicoletti and Bernaschi (2021) also studied Microsoft Teams for
disk space artifacts. The integration of Teams with Public Switched
Telephone Network (PSTN) was also explored from a forensics
perspective.

Bowling (2021) performed disk space forensic analysis of
Microsoft Teams in Android, iOS, and Windows, extracting SQLite
databases and analyzing the caching structure of Teams for
artifacts.

Khalid et al. (2021) performed forensic analysis of Cisco WebEx
in a Windows 10 Operating System (OS), investigating memory,
disk space, and network artifacts. They extracted user account in-
formation, communication artifacts, passwords, etc.

Recent research work by Azhar et al. (2021) detailed forensic
analysis of Microsoft Teams and Google Meet concerning disk
space, memory, and network. Their analysis of Google Meet dis-
cussed Volatility's pslist and netscan outputs of memory dumps and
History SQLite database on disk, therefore, we report no overlaps
between our research work.

3. Google Meet Web client

Google Meet is an on-the-go video conferencing Web client in
that the users can conduct quick meetings without downloading a
desktop application. It offers three meeting scenarios: (1) ‘Create a
meeting for later,’ (2) ‘Start an instant meeting,’ and (3) ‘Schedule in
Google Calendar’, as shown in Fig. 1. In addition, users may join
others' meetings by entering a code/nickname in the application
User Interface (UI) or joining via an invitation email. No records of
previous meetings and in-call messages are stored after the
meeting, according to a note displayed atop the in-call message box
in Google Meet: ‘Messages can only be seen by people in the call and
are deleted when the call ends.’ Only records of scheduled meetings
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via Google Calendar are kept on the Calendar itself. Other features
include screen sharing, captioning, and whiteboarding, which uses
another Google application called Jamboard.

Google Meet offers attractive features for users with privacy
concerns since it does not need to be downloaded and no meeting/
in-call records are seemingly kept. In our forensic analysis of the
Web client, we investigate whether communication records and
other artifacts can still be extracted from memory and browser
despite the privacy claims.

4. Experiments

Test environment. Three Windows 10 VMs with varying memory
sizes of 4 GB, 8 GB, and 12 GB were created as testbeds to perform
test activity, simulating the actions of a typical user of Google Meet.
A Gmail account with its corresponding Google Meet Web client
was set up in each VM. The test activity was performed on three
different browsers: Chrome, Firefox, and Edge. Test OSs included
Windows and Linux. To test on Linux, an additional VM of 8 GB
RAM was created.

Test activities. The experiments conducted for forensic analysis
of Google Meet Web client comprise test user activities which are
categorized into Test Activity Classes (TAC):

C TAC1: includes ‘Create a meeting for later’ and ‘Start an
instant meeting’. In both scenarios, user activities include
login, starting the meeting, exchange of 6 (3 sent and 3
received) in-call messages, screen share, closed captioning
on, whiteboard activity using Jamboard, and .pdf and .jpg
downloads of the activity.

C TAC2: includes the ‘Schedule in Google Calendar’ scenario.
User activities include login, scheduling the meeting using
Google Calendar, starting the meeting, exchange of 6 (3 sent
and 3 received) in-call messages, screen share, closed
captioning on, whiteboard activity using Jamboard, and .pdf
and .jpg downloads of the activity.

C TAC3: includes joining a meeting set up by another user. User
activities include login, joining the meeting, exchange of 6 (3
sent and 3 received) in-call messages, screen share, closed
captioning on, whiteboard activity using Jamboard, and .pdf
and .jpg downloads of the activity.

TACs were repeated in all created VMs. The VMs were restarted
each time to perform successive TACs. Test activities were per-
formed over a period of two months. Each TAC generated artifacts
that are categorized into Artifact Classes (AC):

C AC1 > Traces of Google Meet's usage

C AC2 > Meeting records
C AC3 > Communication records
C AC4 > Document/image downloads
C AC5 > Correspondence
C AC6 > Closed captioning transcripts

Launching Google Meet in a browser tab creates a process
named chrome.exe in memory. Memory pages allotted to the tab's
process are released when the browser/tab is closed. We tested
differences between extracted artifacts in both scenarios to explore
artifacts' persistence: (1) when the meeting had ended but the
browser/tab was still open and (2) after the browser/tab had been
closed. These scenarios were tested for each TAC.

Memory was captured by suspending the VM and duplicating
the .vmem file using AccessData Forensic Toolkit (FTK) Imager.
These captures were taken for the two scenarios discussed above
(for each TAC in every VM), i.e., the browser/tab open vs. closed
scenarios.

Browser forensic analysis was performed specifically for Win-
dows. Forensic images of the disk space were captured by imaging
the .vmdk file of the VMs.

Effects of RAM sizes on persistence and format of extracted memory
artifacts. To test our hypothesis that RAM sizes may have effects on
extracted application artifacts (discussed in Section “Related
work”), we conducted the same TACs on Windows VMs of varying
sizes, i.e., 4 GB, 8 GB, and 12 GB.

Page smearing. While greater RAM sizes offer better device
performance, they often lead to page smearing.1 In our experiments,
memory dumps were captured by suspending the VM and dupli-
cating .vmem file. This prevented smearing from occurring and
eliminated the issue in our analyses because the memory of the VM
was frozen and the dump was captured instantly Case and Richard
(2017).

In addition, acknowledging that not all investigations involve
VMs but actual client devices, we performed 5 TAC experiments on
a laptop host with 12 GBmemory to observe the effects of smearing
on extracted artifacts. We consider at least 1 of the 5 memory
dumps taken from the host device to be smeared, since smearing
generally occurs in systems with 8 GB RAM or more (or systems
under high load) and almost all memory captures contain some
degree of smear Case and Richard (2017).

Table 1 lists tools used for forensic analysis of Google Meet.

5. Memory forensics

Artifacts extracted via memory forensics contribute to a holistic
picture of a Google Meet meeting from all TACs. Our analysis
considered an artifact to be present in memory when it could be
tied to Google Meet or other Personally Identifiable Information
(PII) artifacts of the test account for attribution. If an artifact existed
without any identifier, it was of no use in the investigation.
Therefore, we considered such artifacts absent.

Running processes. Running processes (with execution time-
stamps) related to Google Meet were extracted from memory via
Volatility and identified as chrome.exe, firefox.exe, and msedge.exe
for each browser, respectively. Since every tab's process name is
generic, and not indicative of whether the process belongs to
Google Meet, a simple yarascan search was done using the ‘google
meet’ search term to identify the PID of Google Meet's chrome.exe,
firefox.exe, andmsedge.exe processes. Running process results apply

Fig. 1. Meeting options for Google Meet.

1 Page smearing is “an inconsistency that occurs in memory captures when the
acquired page tables reference physical pages whose contents changed during the
acquisition process” Case and Richard (2017).
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to all TACs.
Profile photos and favicon images. Thumbnails of the user account

avatars, interacted accounts, and other favicon images/logos related
to Google Meet were carved from the memory dump using Pho-
torec.2 While favicons were a sound trace of usage of Google Meet,
avatar thumbnails were not useful because they could not be
associated with Google Meet or other PII. At best, the extracted
profile avatars may provide a suspect list for the analyst to further
investigate. The extracted images suggested that Google Meet
stores profile images in unencrypted form (at least) in the memory
before communicating them through the network (in contrast to
the user account password, which was not found in memory in
plaintext). Profile photos and favicon image results apply to all
TACs.

Manual string analysis for extraction of meeting records. We per-
formed a manual string analysis of the memory dumps using
strings and grep tools. It is pertinent to note that results exhibited
homogeneous signatures throughout our test browsers (Chrome,
Firefox, Edge) and OSs (Windows, Linux). This confirmed that the
format of high-level string data related to a Web client in memory
depends on the application itself, independent of the browser/OS
used, as reported by Barradas et al. (2019). Extracted manual arti-
facts presented in the following apply to all test browsers and OSs.
Note that information related to an artifact (metadata) is repre-
sented in the roster notation of sets in this paper for a compre-
hensive yet compact presentation.

TAC1. The string signatures of artifacts pertaining to ‘Create a
meeting for later’ and ‘Start an instant meeting’ scenarios were

similar; therefore, they are represented by TAC1. A trace of usage
found for these scenarios in memory was Google Meet link file(s):
google meet.lnk.

AC1 > Trace of Google Meet's usage ¼ {.lnk file(s)}
Meeting records for TAC1 were extracted with meeting names,

email address of the test user, device ID, and timestamp of the
meeting, as shown in Fig. 2. The email address and device ID serve
as the PII of the test user.

AC2 > Meeting records ¼ {meeting name, email address, device
ID, timestamp}

From 4 GB to 8 GB memory dumps of TAC1, sent messages were
recovered (extracted information included the in-call message,
device ID, and timestamp), as shown in Fig. 3 However, received
messages were not found in memory for these RAM sizes.

For 12 GB memory dumps of TAC1, sent messages were recov-
ered in a format different than that of 4 GB and 8 GB dumps. All
messages sent by the test user were found collectively, in a single
page line in memory along with the associated metadata (Fig. 4).
This was in contrast to 4 GB and 8 GB dumps, where each of the sent
in-call messages existed separately (with their metadata). In
addition, received messages were also recovered in the 12 GB
dumps, as shown in Fig. 5.

This difference in persistence and format of artifacts extracted
from 4 GB, 8 GB, and 12 GB memory dumps confirmed our hy-
pothesis that the amount of RAM available largely affects the arti-
facts extracted. Therefore, researchers and analysts must be wary of
this in investigations.

AC3 > Communication records¼ {sent/received in-call message,
device ID, timestamp}

Document/image downloads via whiteboarding were identified
for TAC1 with the document/image name, the type of file (i.e., .pdf or

Table 1
Tools used for forensic analysis of Google Meet.

Tool Version Usage

Windows 10 VM 10 Test environment
Linux Debian 10.x Test environment
Google Meet Web client 2021.5.1.1 Video conferencing Web client to test for forensic artifacts
AccessData FTK Imager 4.5.0.3 Create forensic images of memory and disk
Volatility 2.6 Memory dump analysis
PhotoRec 7.2 Carve .jpeg images
Autopsy 4.19.1 Disk image analysis
Strings 2.53 Manual string search
DB Browser for SQLite 3.12.1 Browse application databases on disk space
Chromecacheview 2.27 View Google Meet cache
Chromecookiesview 1.66 View Google Meet cookies
DCode 5.5.21194.40 Timestamp decoding

Fig. 2. Meeting record for TAC1.

Fig. 3. Sent in-call message for 4 GB and 8 GB memory dumps of TAC1.

2 https://www.cgsecurity.org/wiki/PhotoRec.
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.png), size of the file, email address of the test user, Jamboard link
used to perform the whiteboard activity, and directory path of the
stored file.

AC4 > Document/image downloads ¼ {document name, type,
size, email address, directory path, Jamboard link}

The email addresses of other accounts the test user interacted
with were extracted in a format that proved that the corresponding
account was part of a Google Meet meeting. However, it could not
be tied to a specific meeting.

AC5 > Correspondence ¼ {email address}
Closed captioning transcripts were found in memory but

without any specific string signature/format.
AC6 > Closed captioning transcripts ¼ {}
TAC2. Artifacts extracted for TAC2 were majorly similar to TAC1,

as expected. However, the difference existed in AC2, i.e., the
extractedmeeting records where themeeting title of the scheduled
meeting, as set in Google Calendar, was also extracted.

AC2 > Meeting records ¼ {meeting title set in Google Calendar,
meeting name, email address, device ID, timestamp}

In addition, received in-call communication records for 12 GB
memory dumps of TAC2 were also extracted in a collective/chained
format as discussed for sent in-call messages of 12 GB dumps of
TAC1.

TAC3. The artifacts extracted for TAC3 (test user joining ameeting
set-up by another user) were less detailed in the case of certain ACs,
i.e., AC3 and AC4, compared to previous TACs. The remaining ACs of
TAC3 were similar to TAC1 and TAC2.

Communication records extracted for all RAM sizes were in the
format: l,1651046186694,null,["<message> "],1]]. This only
divulged the sent/received in-call message along with the time-
stamp. Sent in-call messages were also recovered in the form of
<div> HTML tag clippings: up today">what is up today< /
div> < /div> < /div> . However, lack of signatures for extraction
rendered this format useless.

AC3 > Communication records¼ {sent/received in-call message,
timestamp}

Information extracted related to AC4 (document/image down-
loads) was also comparatively limited, as shown below.

AC4 > Document/image downloads ¼ {document name, type,
directory path, Jamboard link}

Browser/tab open vs. closed. For memory dumps captured for all
TACs, we observed whether extractable artifacts persisted in
memory after the browser had been closed. Our analyses revealed
that all ACs were extractable with no difference except AC3
(communication records) and AC5 (correspondence). Some sent
and received in-call messages were absent and the interacted ac-
count's email address was absent after the browser was closed.
These results apply to all TACs.

Fig. 6 illustrates a holistic diagram of all forensic artifacts
pertinent to a Google Meet meeting. The diagram represents all
TACs in a general manner. While AC1 provides a trace of usage for
Google Meet, AC5 and AC6 cannot be tied to a meeting (directly) via
PII in any case.

Page smearing. Artifacts extracted from memory dumps of the
laptop host exhibited similar results as observed in .vmemmemory
dumps discussed in the previous section. Page smearing did not
majorly affect the extraction of memory artifacts in this case. This
was expected because manual analyses of string-based userland
applications’ artifacts are based on a signature-matching algorithm,
extracting artifacts if matched with a pre-defined signature. Once
signatures are identified in the research phase, the related artifacts
can generally be extracted fromwherever they exist in the memory
even when the process memory allocated to the subject process is
smeared.

If page smearing causes inconsistencies mid-page line, artifacts
may be extracted in clipped form. But this assumption was not
identified in any of the 5 memory dumps acquired from the laptop
host as the artifacts extracted were complete and consistent with
the ones extracted from .vmem memory dumps.

Memory artifact extraction tool. Our python-based proof of

Fig. 4. Sent in-call message for 12 GB memory dump of TAC1.

Fig. 5. Received in-call message for 12 GB memory dump of TAC1.

Fig. 6. Google Meet forensic artifacts.
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concept memory artifact extraction tool3 automates the extraction
of manual string artifacts pertaining to Google Meet, employing the
signatures identified in memory forensic analysis.

6. Browser forensics

Disk images captured after test user activity with Google Meet
were analyzed using Autopsy to extract forensic artifacts. Our target
artifacts in browser forensics included traces of the application's
usage, history, downloads, bookmarks, cache, cookies, and relevant
Uniform Resource Locators (URLs). Other artifacts such as associ-
ated profile pictures, email addresses, meeting links, and in-call
messages were also extracted and documented from the disk
image.

Traces of usage. Traces of Google Meet's usage from the browser
were detected using several artifacts. In the Web Applications folder
(AppDatanLocalnGooglenChromenUser DatanDefaultnWeb
Applicationsn[.*]), a folder containing the Google Meet icon and its
md5 hash was extracted. No other information was stored in the
folder; however, it is an indicator of the Web application's usage on
the client device. Subjectively, GoogleMeet was found in the icons of
the recently closed sites folder (AppDatanLocalnGooglenChromenUser
DatanDefaultnJumpListIconsRecentClosed) and in themost visited sites
folder (AppDatanLocalnGooglenCh-romenUser DatanDefaultn
JumpListIconsMostVisited) depending on the frequency of usage.
SQLite database Top Sites in AppDatanLocalnGooglenChromenUser
DatanDefault also listed Google Meet as one of the top sites the user
engaged with; also subjective.

IndexedDB-levelDB folder. The IndexedDB folder at AppDa-
tanLocalnGooglenChromenUser DatanDefaultnIndexedDB stores lev-
elDBs of Web applications used by the user. LevelDB is a novel key-
value structured database which stores session data related to a
Web application (Caithness,). Once Google Meet was used, a folder,
https_meet.google.com0_.indexeddb.leveldb, was created in the
IndexedDB directory. This is a solid trace of usage, unlike prior in-
dicators. After converting the IndexedDB-levelDB into a readable
format (.json4), an analysis of the structure's storage format
revealed that in the Google Meet levelDB, two object stores, namely
IndexedStorage and meet_store were classified. IndexedStorage
was found to be of no forensic relevance since it mainly logged
.woff2 font packages for the application. On the other hand, the
meet_store revealed meeting IDs of all the previously held and
joinedmeetings by the user, alongwith the GUID of the user. In case
the meeting was a scheduled meeting via Google Calendar, the
meeting title was consequently stored in the database as well, as
shown in Fig. 7. It is pertinent to note that the object store did not
store timestamps along with meeting IDs therefore the extent of
forensically relevant clues the Google Meet levelDB may divulge is
‘whether a suspect used Google Meet or not?’ and ‘was (s)he part of

a certain meeting or not?‘.
PII. The email address associated with the Google Meet account

was extracted from the Login Data and Web Data SQLite databases.
The avatar associated with Google Meet was extracted from App-
DatanLocalnGooglenChromenUser DatanDefaultnAccountsnAvatar
Images. Note that this is essentially the profile picture of the Google/
Gmail account associated with Google Meet. If more than one av-
atars exist, it indicates usage of more than one Google account in
which case attribution becomes trickier. This problem can be solved
using cache entries of avatars discussed later.

Communication records. In Google Meet, an attractive feature is
that the history of meetings and exchanged in-call messages is not
recorded anywhere on the Web application (apart from meetings
that are scheduled using Google Calendar, inwhich case it is possible
to track down the history (meeting names) of scheduled meetings
via Google Calendar). However, we identified logs in the Google
Chrome data directory that stored information related to meetings
conducted, including in-call messages exchanged. The Sessions
folder (AppDatanLocalnGooglenChromenUser DatanDefaultnSessions)
stored logs ofWeb applications, tabs, and sessions. From the [App_#]
logs, the Google Meet meeting links and in-call messages (following
the < chatTextInput> and < textarea> tags)were extracted. The in-
call messages extracted were scattered and fragmented, rendering
the extraction a highly manual task, but in cases where messages
play a pivotal role and capturing memory is not possible, parsing the
logs is an option.

Browser artifacts. Google Meet bookmark saved in the Chrome
browser was extracted from (AppDatanLocalnGooglenChromenUser
DatanDefaultnBookmarks) with a timestamp, ID, and name of the
bookmark.

The history of Google Meet meetings extracted from the History
SQLite database stored in AppDatanLocalnGooglenChromenUser
DatanDefaultnHistory contained not only the browsing history (with
timestamps, visit counts, and durations of visits) but also the
keyword search terms entered in the browser and downloads (with
names of files downloaded, sizes, start and end times of download,
referrer URLs from which they were downloaded, and paths to
folders they were saved in). Details regarding downloaded files
were also found in the Download Metadata file in AppDa-
tanLocalnGooglenChromenUser DatanDefaultnDownload Metadata.

In case a suspect deletes the browsing history directly from the
browser, it effectively clears all tables in the History database
except for the downloads, downloads_url_chains and url tables.

The cookies related to Google Meet were extracted from App-
DatanLocalnGooglenChromenUser DatanDefaultnNetworknCookies and
AppDatanLocalnGooglenChromenUser DatanDefaultnSafe Browsing
NetworknSafe Browsing Cookies with names, host keys, values, crea-
tion times, expiration times, and last accessed times.

The cache folder (AppDatanLocalnGooglenChromenUser Data-
nDefaultnCache) stored multiple Google Meet artifacts of forensic
relevance. Profile pictures of the user and accounts the user inter-
acted with were found in formats: [.*]-[.*]-[.*].jfif, photo.jpg.jfif, and
.png. The extracted profile pictures were associated with the

Fig. 7. Meet_store object with scheduled meeting link and title extracted via Google Meet IndexedDB-LevelDB.

3 https://github.com/farkhund/googlemeet.
4 https://github.com/lxndrblz/forensicsim.
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corresponding Google Meet URLs making them an effective attri-
bution artifact. Other icons in the cache included Google Meet logos.
‘join call’ and ‘leave call’ audio tunes were cached. Other links per-
taining to Jamboard sessions and Google Calendarwere also found in
the cache, given either application was used in correspondence to
Google Meet. A meeting scheduled via Google Calendar specifically
stored all the information in the cache regarding the meeting like
meeting/conference ID, name and description of the meeting, loca-
tion, creator and attendees' email addresses, start and end time-
stamps of meeting, time zones, call UID, and HTML link. The cache
also included application UIs with operator parameters, meeting
settings, and searches made using the browser. Some interesting

cache entries found were various location predictions of the user
during meetings that were conducted using maps by Google. The
server IP addresses, server names, last accessed timestamps, and
expiration timestamps of cached entries were also recovered. Note
that if a suspect manually deletes the cache from the data directory,
it effectively deletes all Google Meet cache artifacts.

Similar browser forensic analyses of Firefox and Edge were
performed. In the case of Firefox, the major source of artifacts was
the places SQLite database, which revealed the history (and met-
adata) of meetings conducted using Google Meet. It is pertinent to
note that Chrome and Edge are built on Chromium's same under-
lying technology. On the other hand, Firefox operates on the

Table 2
Directory paths for pertinent Google Chrome browser artifacts.

Artifacts Directory paths

History AppDatanLocalnGooglenChromenUser DatanDefaultnHistory
Bookmarks AppDatanLocalnGooglenChromenUser DatanDefaultnBookmarks
Cache AppDatanLocalnGooglenChromenUser DatanDefaultnCache
Cookies AppDatanLocalnGooglenChromenUser DatanDefaultnNetworknCookies, AppDatanLocalnGooglenChromenUser DatanDefaultnSafe Browsing

NetworknSafe Browsing Cookies
IndexedDB-

levelDB
AppDatanLocalnGooglenChromenUser DatanDefaultnIndexedDBnhttps_meet.google.com_0.indexeddb.leveldb

Downloads AppDatanLocalnGooglenChromenUser DatanDefaultnDownload Metadata
Profile picture AppDatanLocalnGooglenChromenUser DatanDefaultnAccountsnAvatar Images
Email address AppDatanLocalnGooglenChromenUser DatanDefaultnLogin Data
Browsing

sessions
AppDatanLocalnGooglenChromenUser DatanDefaultnSessions

Traces of usage AppDatanLocalnGooglenChromenUser DatanDefaultnWeb Applicationsn[.*], AppDatanLocalnGooglenChromenUser
DatanDefaultnJumpListIconsRecentClosed, AppDatanLocalnGooglenChromenUser DatanDefaultnJumpListIconsMostVisited,
AppDatanLocalnGooglenChromenUser DatanDefaultnTop Sites

Table 3
Directory paths for pertinent Mozilla Firefox browser artifacts.

Artifacts Directory paths

History AppDatanRoamingnMozillanFirefoxnProfilesn[#].default-releasenplaces, AppDatanRoamingnMozillanFirefoxnProfilesn[#].default-releasenformhistory
Bookmarks AppDatanRoamingnMozillanFirefoxnProfilesn[#].default-releasenplaces
Cache AppDatanLocalnMozillanFirefoxnProfilesn[#].default-releasencache2, AppDatanLocalnMozillanFirefoxnProfilesn[#].default-releasenjumpListCache
Cookies AppDatanRoamingnMozillanFirefoxnProfilesn[#].default-releasencookies
Downloads AppDatanRoamingnMozillanFirefoxnProfilesn[#].default-releasenstoragendefaultnhttpsþþþjamboard.google.com
Profile

picture
AppDatanLocalnMozillanFirefoxnProfilesn[#].default-releasenjumpListCache

Traces of
usage

AppDatanRoamingnMozillanFirefoxnProfilesn[#].default-releasenfavicons, AppDatanRoamingnMozillanFirefoxnProfilesn[#].default-
releasenstoragendefault, AppDatanRoamingnMozillanFirefoxnProfilesn[#].default-releasenAlternateServices, AppDatanRoamingnMozillanFirefoxnProfilesn
[#].default-releasenenumerate_devices, AppDatanRoamingnMozillanFirefoxnProfilesn[#].default-releasenSiteSecurityServiceState

Table 4
Directory paths for pertinent Microsoft Edge browser artifacts.

Artifacts Directory paths

History AppDatanLocalnMicrosoftnEdgenUser DatanDefaultnHistory
Bookmarks AppDatanLocalnMicrosoftnEdgenUser DatanDefaultnBookmarks
Cache AppDatanLocalnMicrosoftnEdgenUser DatanDefaultnCachenCache_Data
Cookies AppDatanLocalnMicrosoftnEdgenUser DatanDefaultnCookies, AppDatanLocalnMicrosoftnEdgenUser DatanDefaultnSafe Browsing Cookies
IndexedDB-

levelDB
AppDatanLocalnMicrosoftnEdgenUser DatanDefaultnIndexedDBnhttps_meet.google.com_0.indexeddb.leveldb, AppDatanLocalnMicrosoftnEdgenUser
DatanDefaultnLocal Storagenleveldb

Downloads AppDatanLocalnMicrosoftnEdgenUser DatanDefaultnHistory
Profile picture AppDatanLocalnMicrosoftnEdgenUser DatanDefaultnCachenCache_Data
Email address AppDatanLocalnMicrosoftnEdgenUser DatanDefaultnWeb Data
Browsing

sessions
AppDatanLocalnMicrosoftnEdgenUser DatanDefaultnSessions

Traces of usage AppDatanLocalnMicrosoftnEdgenUser DatanDefaultnJumpListIconsRecentClosed, AppDatanLocalnMicrosoftnEdgenUser DatanDefaultnService
WorkernDatabase, AppDatanLocalnMicrosoftnEdgenUser DatanDefaultnFavicons, AppDatanLocalnMicrosoftnEdgenUser DatanDefaultnNetwork Action
Predictor, AppDatanLocalnMicrosoftnEdgenUser DatanDefaultnShortcuts, AppDatanLocalnMicrosoftnEdgenUser DatanDefaultnTop Sites
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Quantum engine built specifically for the browser. This results in
Chrome and Edge having similar data directory structures.

Tables 2e4 detail the directory paths of every artifact found in
each browser's data directories. Evidently, Firefox does not have
some evidence sources such as an IndexedDB-levelDB folder owing
to its different browser engine and data directory structure.

7. Case study

A forensic analyst investigating a case of an insider attack tar-
geting confidential company data was able to acquire memory and
disk images of a suspect employee, Eve's laptop PC. In order to prove
Eve's communication linkwith Bob, whowas identified earlier to be
in contact with the insider, forensic images from Eve's device were
analyzed.

Google Meet, as one of the running applications on the device,
was further explored in the Chrome data directory. A record of Eve's
meetings (with IDs) conducted via Google Meet was recovered
from the application's levelDB. The meeting IDs were further
explored in the memory dumps. Timestamps of the meetings along
with sent and received in-call messages (also with timestamps)
were carved. Emails of accounts in correspondence with Eve were
also recovered. These artifacts correspond to AC2, AC3, and AC5:

AC2 > Meeting records ¼ {meeting name, email address, device
ID, timestamp}

AC3 > Communication records¼ {sent/received in-call message,
device ID, timestamp}

AC5 > Correspondence ¼ {email address}
While Bob's email address was extracted in AC5 (which proved

Eve was in contact with Bob through Google Meet), the specific in-
call messages received by Eve were only identifiable via the device
ID as PII. In order to prove the received messages were sent by Bob,
his email address (from AC5) and the device ID (from AC3) needed
to be linked. Fortunately, this information was cross-checked from
memory dumps taken from Bob's device (AC2 from Bob's device
tied both his email address and device ID together).

8. Conclusion and future work

Web applications are an efficient solution to the dynamic soft-
ware needs of today's users. However, this dynamic nature presents
challenges in the implementation of security controls, thereby
increasing the attack surface. Our research aimed to perform a
detailed forensic analysis of Google Meet to extract memory and
browser artifacts that may serve as evidence in a court of Law.

We conducted an in-depth memory forensic analysis of Google
Meet employing manual string analysis to extract traces of usage,
detailed meeting records, communication records, information
related to whiteboard activity downloads, and correspondence
emails. We also explored the effects of various client device RAM
sizes and page smearing on the extracted memory artifacts. In
addition, we developed a memory artifact extraction tool to auto-
mate the extraction of the string signature-based artifacts.

This study also presented an exhaustive browser forensic anal-
ysis of Google Meet on Google Chrome, Mozilla Firefox, and
Microsoft Edge extracting traces of usage, history, downloads,
bookmarks, cache, cookies, profile picture, email addresses,
meeting information, and in-call message logs related to the Web
application.

This work can be further extended in multiple directions. Other
OSs such asmacOS, Android, and iOSmay be tested for GoogleMeet

forensic artifacts. Other Web clients and video conferencing ap-
plications can be put to the test of forensic analysis to investigate
information they give away, being a pivotal element as evidence in
criminal investigations.
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