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Plants contribute significantly to the global food supply. Various Plant diseases

can result in production losses, which can be avoided by maintaining vigilance.

However, manually monitoring plant diseases by agriculture experts and

botanists is time-consuming, challenging and error-prone. To reduce the risk

of disease severity, machine vision technology (i.e., artificial intelligence) can

play a significant role. In the alternative method, the severity of the disease can

be diminished through computer technologies and the cooperation of

humans. These methods can also eliminate the disadvantages of manual

observation. In this work, we proposed a solution to detect tomato plant

disease using a deep leaning-based system utilizing the plant leaves image

data. We utilized an architecture for deep learning based on a recently

developed convolutional neural network that is trained over 18,161

segmented and non-segmented tomato leaf images—using a supervised

learning approach to detect and recognize various tomato diseases using the

Inception Net model in the research work. For the detection and segmentation

of disease-affected regions, two state-of-the-art semantic segmentation

models, i.e., U-Net and Modified U-Net, are utilized in this work. The plant

leaf pixels are binary and classified by the model as Region of Interest (ROI) and

background. There is also an examination of the presentation of binary

arrangement (healthy and diseased leaves), six-level classification (healthy

and other ailing leaf groups), and ten-level classification (healthy and other

types of ailing leaves) models. The Modified U-net segmentation model

outperforms the simple U-net segmentation model by 98.66 percent, 98.5

IoU score, and 98.73 percent on the dice. InceptionNet1 achieves 99.95%

accuracy for binary classification problems and 99.12% for classifying six

segmented class images; InceptionNet outperformed the Modified U-net

model to achieve higher accuracy. The experimental results of our proposed
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method for classifying plant diseases demonstrate that it outperforms the

methods currently available in the literature.

KEYWORDS

plant disease detection, deep learning, U-Net CNN, inception-net, object detection
and recognition

Introduction

We have been domesticating animals and cultivating crops

for centuries. Agriculture enabled all of this to be possible. Food

insecurity is the primary cause of plant infections (Chowdhury,

et al., 2020; Global Network Against Food Crisis, 2022). It is also

one of the reasons why humanity faces grave problems. One

study indicates that plant diseases account for approximately 16

percent of global harvest yield losses. The global pest and disease

losses for wheat and soybean are anticipated to be approximately

50 percent and 26 to 29 percent, respectivel (Prospects and

Situation, 2022). The classifications of plant pathogens include

fungi, fungus-like species, bacteria, viruses, virus-like organisms,

nematodes, protozoa, algae, and parasitic plants. Artificial

intelligence and machine vision have benefited numerous

applications, including power forecasting from non-depletable

assets (Khandakar et al., 2019; Touati et al., 2020) and

biomedical uses (M. H. Chowdhury et al., 2019; Chowdhury

et al., 2020). Artificial intelligence is beneficial. It has been

utilized globally for the identification of lung-based diseases.

In addition, this method has accumulated predictive applications

for the virus (Chowdhury et al., 2021). Using these comparative

trend-setting innovations, early-stage plant diseases can be

identified. AI and computer vision are advantageous for the

detection and analysis of plant infections. As physically

inspecting plants and detecting diseases is a very laborious and

tiring process, there is a chance of error. Consequently, the use of

these techniques is very advantageous because they are not

particularly taxing, they do not require a great deal of labour,

and they reduce the likelihood of error. Sidharth et al. (Chouhan

et al., 2018) utilized a distributed premise work organization

(BRBFNN) with an accuracy of 83.07 percent. This network is

used to improve bacterial searching to identify and organize

plant diseases1. The convolutional neural network is a well-

known neural organization that has been successfully applied to

a variety of computer vision tasks (Lecun and Haffner, 1999).

Different CNN structures have been utilized by analysts to

classify and distinguish evidence of plant diseases. For

instance, “Sunayana et al. compared various CNN structures

for recognizing potato and mango leaf infection, with AlexNet

achieving 98.33 percent accuracy and shallow CNN models

achieving 90.85 percent accuracy (Arya and Singh, 2019)”.

“Using the mean of the VGG16 model, Guan et al. predicted

the disease severity of apple plants with a precision rate of 90.40

percent. They utilized a LeNet model (Wang, 2017; Arya and

Singh, 2019) Jihen et al. employed a model known as LeNet. This

model was used to identify healthy and diseased banana leaves

with a 99.72 percent accuracy rate (Amara, et al., 2017).

Tomato is one of the most commonly consumed fruits on a

daily basis. As tomatoes are utilized in condiments such as

ketchup, sauce, and puree, their global utilization rate is high. It

constitutes approximately fifteen percent (15%) of all vegetables

and fruits, with an annual per capita consumption of twenty

kilograms. An individual in Europe consumes approximately

thirty-one (31) kilograms of tomatoes per year. In North

America, this percentage is relatively high. A person consumes

approximately forty-two (42) kilograms of tomatoes annually

(Laranjeira et al., 2022). The high demand for tomatoes

necessitates the development of early detection technologies

for viruses, bacterial, and viral contaminations. Several studies

have been conducted using technologies based on artificial

intelligence. These technologies are used to increase tomato

plants’ resistance to disease. “Manpreet et al. characterized

seven tomato diseases with a 98.8 percent degree of accuracy

(Gizem Irmak and Saygili, 2020)”. The Residual Network was

utilized to classify and characterize these diseases. This residual

network is built utilizing the CNN architecture. This network is

generally known as ResNet. Rahman et al. (Rahman et al., 2019)

projected a network with 99.25 percent accuracy. This network is

utilized to determine how to distinguish bacterial spots, late

blight, and segregation spots from tomato leaf images. Fuentes

et al. (Fuentes et al., 2017) employed three distinct types of

detectors. These detectors were used to differentiate ten diseases

from images of tomato leaf. A convolutional neural network is

one type of detector. This network is comprised of faster regions.

The second detector is a network of convolutions. The third

detector is a multi-box finder with a single shot (SSD).

These indicators are coupled with a variety of deep component

extractor variants. The Tomato Leaf Disease Detection (ToLeD)

model, proposed by Agarwal et al. is CNN-based technology for

classifying ten infections from images of tomato leaf with an

accuracy of 91.2%. Durmus et al. (Durmus, et al., 2017) classified

ten infections from images of tomato leaves with 95.5% accuracy

using the Alex Net and Squeeze Net algorithms. Although

Shoaib et al. 10.3389/fpls.2022.1031748

Frontiers in Plant Science frontiersin.org02

https://doi.org/10.3389/fpls.2022.1031748
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


infection grouping and identification of plant leaves are

extensively studied in tomatoes, few studies include segmented

leaf images from their specific environments. The function also

occurred in other plant leaves; however, no studies have

segmented images of leaves from their specific case. Since

lighting conditions can drastically alter an image’s accuracy,

improved segmentation techniques could help AI models focus

on the area of interest rather than the setting.

U-net derives its moniker from its U-shaped network design. It

is an architecture for cutting-edge image segmentation technology

based on deep learning. U-net is designed to aid in the segmentation

of biomedical images (Navab et al., 2015). In addition, unlike

conventional CNN models, U-net includes convolutional layers

for up-sampling or recombining feature maps into complete

images. The experimental results of research articles (Rahman

et al., 2020) demonstrated promising segmentation performance.

The segmentation results are summarized using the cutting-edge U-

Net model (Navab et al., 2015). In contrast, Inception Net is a

modernized network. In addition, the Inception Net network is

classification-based network used to predict the health condition of

the crop using the tomato leaf data (Louis, 2013). The main

contribution of the proposed model can be summarized as:

1) Different U-net versions were explored to choose the

optimum segmentation model by comparing the

segmented model mask with the images of ground

truth masks.

2) This study used three different classification methods: A

comparison of different CNN architecture for

classification tasks involving binary and multiclass

classification of tomato diseases. Several experiments

were carried out with various CNN architectures. (a)

Binary classification of healthy and ill leaves on a scale of

one to ten. (b) Two-level classification of healthy leaves

and four levels of categorization for ill leaves (five levels

total). (c) A ten-level categorization of healthy

individuals, as well as nine illness categories. A

twofold characterization of solid and infected leaves, a

five-level order of sound, four unhealthy leaves, a ten-

level grouping of solid, and nine disease classes.

3) The results achieved in this study outperform the most

current state-of-the-art studies in this field in terms of

accuracy and precision.

The remaining paper is organized as follows: The first

section contains a detailed introduction, a review of literature,

and the study’s motivation. Various kinds of pathogens that

attacked plants are described in Section no. 2. Section 3 contains

information about the study’s methodology and techniques,

including a description of the dataset, pre-processing

techniques, and experimental details. In section no. 4, the

study’s findings are reported, including discussion in section

no. 5 in Section 4, and then in the 6th section.

Literature review

Convolutional neural networks deep

Tan et al. (Louis, 2013) introduced the Inception Net CNN

model. We performed transfer learning for the detection of

various tomato plant leaf diseases. The developer, Inception Net

CNN model, ensured that the model is balance in all aspects, i.e.,

width, resolution, and depth. Moreover, the developers of

Inception Net were the first to find the connection b/w all of

the three dimensions, while other CNN ranging techniques use

the single-dimensional ranking factor.

The writers used the MnasNet network (Sevilla et al., 2022) to

create their baseline architecture, prioritizing model accuracy and

FLOPA using a neural network architecture to search multi-

objects. Next, they built the InceptionNet2, which was the same

as MnasNet but with only one difference, i.e., more extensive than

the Inception Net network. It happened because Inception Net’s

FLOPS target is higher. Its crucial building block is the mobile

reverse bottleneck MBConv (Sandler et al., 2018), including

squeezing and excitation optimization (Hu et al., 2020). Finally,

we employed a composite way, that composition method is based

on InceptionNet1, which employs compound coefficients s to

scale. Using this scale, the neural network width, depth and

dimensions can be detected. All of these three criteria are

detected uniformly using the Equation below:

x   ≥   1,   y   ≥   1,   z  

≥   1                                                                                                    

We use a, b and c, as the following constant variables that

can be recognized with the help of an efficient grid scan. The

alpha value is the constant coefficient declared by a user, which

adjusts the number of possessions utilized for scaling up the

model. The values a, b, and c determine how these additional

resources can be assigned to the neural network’s width,

dimension, and depth. Here are some constants a, b, and c

that may be discovered by quickly scanning the grid. As shown

in the following Equation, the parameters for network width,

depth, and resolution are defined by the variables a through c.

The parameter may set the parameter for model scaling,

represented by the parameter for model scaling.

It creates a family of Inception Net (1 to 2) by scaling up the

reference point of the system and setting the constants as a, b, and

c while scaling up the network reference point with various a, b,

and c networks in Table 1. The accuracy of 97.1 percent achieved

by InceptionNet1 on ImageNet is in the top five, even though on

inference it is 6.1 times quicker and 8.4 times smaller than the

finest existing ConvNets such as SENet (Hu et al., 2020) and

Gpipe (Huang et al., 2019).

The InceptionNet1, InceptionNet3 and InceptionNet2

algorithms were utilized while constructing our design; A GAP

layer was added to the network’s last layer to increase accuracy
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while also reducing overfitting. We added a thick layer Ensuing

GAP, with a 1024x1024 resolution and a 25% loss. Followed by

another Dense layer. A SoftMax layer is then applied to produce

the likelihood estimate points for identifying leaf diseases of

tomato, which is the final step to begin with Inception Net as a

baseline; we scale it up in two steps using our compound

scaling method:

The first step is to fix = one, assuming twice as many

resources are available. The InceptionNet2 finest values for

are, in particular, a,b,c at 1.2,1.1,1.15 respectively with a = 1.2

being the best overall.

Second, we fix the values of constants as a, b and c and utilize

Equation (1) to scale up the baseline variety of network values to

get InceptionNet2 through InceptionNet1.

In some instances, looking for the three variables near a big

model, for example, can provide even better results. Still, the cost

of the search becomes prohibitively expensive for larger models.

The First step in addressing this issue is performing a single

search on a tiny baseline network and scaling all other models in

the second step with the same scaling coefficients as the small

baseline network.

Segmentation

In U-net architecture, many segmentation designs may be

built. This research compared two versions of the unique U-Net

(Navab et al., 2015) and two distinct versions of the Modified U-

Net (Navab, 2020) to see which version performed the best. You

can see how the original U-Net design, the Improved U-Net

design, and the Modified U-Net design are displayed in Figures 1,

2. When considering the U-net, the first thing to bear in mind is

that it comprises two pathways: one that expands while

contracting and another that contracts while extending. An

unpadded convolution (or convolution with padding) is

performed many times along the contracting route. Each

iteration consists of a ReLU followed by a pooling operation

with stride 2 for down sampling. In the latter stages of the

expanding path, the third convolution is followed by a ReLU.

The up-sampled feature map is combined with the contracting

path’s feature map, which is doubled, and two 3 x 3 convolutions,

followed by a ReLU in the contracting approach. Every stage of the

network takes into account 23 convolutional layers.

This research used a modified U-Net (Manjunath and

Kwadiki, 2022) model, which includes some modest changes

to its decoding component. U-Net refers to a route that provides

for four encoding blocks and four decoding blocks, after which

there is a second route that expands the first route by adding four

encoding blocks and four decoding blocks. The decoding block

of the new U-Net design uses three convolutional layers rather

than two, which results in a substantial improvement in

decoding block performance. Every block in every encoded

picture has two 3x3 convolutional layers, and then the layers

are repeated for each encoded image. During the up-sampling

phase, the algorithm processes a more extensive set of images in

the training set. Then, two three-by-three convolutional layers,

one concatenation layer, and another three-by-three

convolutional layer come into play. Convolutional layers also

conduct batch normalization and ReLU activation. A 1 x 1

convolution is performed at each pixel on the SoftMax result

from the previous layer. By allowing the final layer to

differentiate between background and object pixels, this feature

increases image quality. At the layer level of abstraction, this

classification is carried out.

Visualization techniques

CNNs are showing a greater interest in internal mechanics.

Therefore, visualization approaches have been developed to aid in

their understanding. Visualization methods help in the knowledge

of CNN decision-making processes. Additionally, this makes the

model more understandable to people, helping increase the faith

in the findings of neural networks. Recently, “Score-CAM (Chen

and Zhong, 2022) was employed in this investigation because of

its good output, such as Smooth Grad (Smilkov et al., 2017), Grad-

CAM (Selvaraju et al., 2020), Grad-CAM++ (Chattopadhay et al.,

2018), and Score-CAM (Wang et al., 2020).” The weight for each

TABLE 1 Parameters of Inception Nerual Network.

Stage Operator Image dimesnion No of channels No of layers

1 Convolutional [3x3] 224x224 32 1

2 MobileConv 1, [3x3] 112x112 16 1

3 MobileConv 6, [3x3] 112x112 24 2

4 MobileConv 6, [3x3] 56x56 40 2

5 MobileConv 6, [3x3] 28x28 80 3

6 MobileConv 6, [5x5] 14x14 112 3

7 MobileConv 6, [5x5] 14x14 192 4

8 MobileConv 6, [3x3] 7x7 320 1

9 Convolitonal [1x1], Pooling and Fully Connected 7x7 1280 1
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activation map is based on the target class’s forward passing score,

and the outcome is the product of weights and activation maps.

After calculating the forward passing score for each activation

map, Score-CAM removes the requirement for gradients. In

Figure 2, the leaf areas were in control of CNN decision-

making, as seen by the heat map. The statement above can

assist consumers in understanding how the network makes

decisions, which increases end-user confidence.

Pathogens of tomato leaves

Septoria leaf spot, Early blight,target spot, and molds of leaf

are only a few of the plant diseases caused by a fungus that exists.

Fungi may infect plants in a change of ways via seeds and soil.

The pathogenic fungus can spread across plants via animals,

human contact, equipment, and soil contamination. An

infection of the plant’s leaves by a fungal pathogen is the cause

of initial blight tomato plants disease. All terms used to describe

this condition are fruit rot, stem lesion, Collar rot and. When

fighting early blight, cultural control, which includes fungicidal

pesticides and good soil and nutrient management, is essential.

Septoria leaf spot is caused by a fungus that grows on tomato

plants and produces tomatines enzyme, which causes the

breakdown of steroidal glycoalkaloids in the tomato plant to

occur. Known as spot disease, it is a fungal disease that affects

tomato plants and manifests itself as necrosis lesions with a color

displayed as mild brown in the center. Defoliation occurs early in

A

B

FIGURE 1

(A) Original Baseline U-Net Architecture, (B) Modified improved U-net Deep Neural Network Architecture Livne et al., 2019.
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the course of progressive lesions (Pernezny et al., 2018;

Abdulridha et al., 2020).

When the goal location is struck, it causes immediate harm

to the fruit. This illness, called the fungal disease, develops upon

moist leaves remain for a lengthy period. Bacteria is also a type

plant pathogen. Bites, trimming, and cuts allow insects to

penetrate plants. The availability, humidity, Temperature,

nutrient meteorological conditions, ventilation, and soil

conditions are crucial for bacterial development and plant

harm. Bacterial spot is a disease caused by bacteria (Louws

et al., 2001; Qiao et al., 2020). Plants can spread illness because of

mold growth. Mold Plant causes the late blight in tomato and

potato plants stems and leaf tips might have dark, irregular

blemishes. The Tomato Yellow Leaf Cur (TYLC) virus causes

illness in tomatoes. This virus has infected the plant and is

transmitted by an insect. However, tomato plants bear damaged

leaves and are divided into ten different classifications. In

research 2, several groups of unhealthy and stable leaf

photographs were categorized.

Some investigations show that plants of beans, peppers,

eggplant and tobacco can also be harmed by virus. The current

priority is to combat yellow leaf curl disease due to the illness’s

extensive geographical range. Tomato Mosaic Virus is also a type

pathogen which impacts the tomato plants (Ghanim et al., 1998;

Ghanim and Czosnek, 2000; Choi et al., 2020; He et al., 2020). This

virus is prevalent everywhere, affecting several plants, including

tomatoes. Necrotic blemishes and twisted and fern-like stems define

ToMV infection (Broadbent, 1976; Xu et al., 2021).

Methodology

The proposed framework is summarized in the given below

Figure 3. The dataset used in this research-based project comes

from the village of plant benchmark dataset (Hughes and

Salathe, 2015; SpMohanty, 2018); the dataset consists of the

leaf and their segmented mask images. As discussed in the above

sections, this work is performed using three different

classification strategies i.e.

(1) the binary classification that only classifies the leaves

into healthy and non-healthy classes.

(2) the experiment was performed on five unhealthy and

one class of healthy segmented images of leaves.

The paper also investigates the most effective segmentation

network for background leaf segmentation is the U-net

segmentation model. The segmented tomato leaf pictures are

then utilized to verify the cam imagining, which has been proved

trustworthy in several applications.

Overview of the dataset

The proposed models are evaluated using the Plant Villag

dataset consisting of 18161 images and segmented binary mask

images (Hughes and Salathe, 2015). The Plant Village is

benchmark and widely used dataset utilized for the training

and validation of the classification and segmentation model.

This dataset was additionally used to prepare a division and

order model for tomato leaves. The images from the dataset were

divided into ten classifications where only one class is healthy

while all others are from the unhealthy class. The entirety of the

pictures was separated into ten classes, one of which was strong

and the other nine were damage (e.g., bacterial smear, early leaf

mold, leaf shape, leaf mold, and yellow leaf curl infection and the

nine undesirable classifications were additionally partitioned

FIGURE 2

Sisualization of tomato leaf images using the Score-CAM tool, demonstrating affected regions where CNN classifier makes the majority of its
decisions.
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into five subgroups (i.e., microscopic organisms, infections,

growths, molds, and parasites). Figure 4 shows some examples

of segmented tomato leaf and mask leaf pictures for the healthy

and unhealthy classes. Table 2 additionally incorporates a point-

by-point depiction of the number of images in the dataset, which

is valuable for the arrangement work debated in the more

prominent aspect of the accompanying area.

Dataset image preprocessing

Image normalization and rescaling
The image input size for various CNN architectures for

segmentation and classification Varies. All the images from the

dataset for training a U-net model were resized to 256x256x3,

while for InceptionNet (1, 2, and 3), the images were resized

299x299x3. CNN networks have input picture size necessities

that should be met. All the images in the dataset were

normalized using the z-score normalization, where the value

of z-score was computed from the standard deviation (SD) and

mean of the training images dataset.

Image augmentation
As the dataset is imbalanced and doesn’t have equivalent

images in various classes, training with an unequal dataset may

lead to models’ overfitting or underfitting issues. The number of

pictures in all the classes is kept equal by augmenting (increasing

the quantity of image data) the images. An equal number of

images in all the programs (balance dataset) can train a reliable

model to provide better performance accuracy (M. H.

Chowdhury et al., 2019; Chowdhury et al., 2020; Rahman

et al., 2020; Rahman et al., 2020; Tahir et al., 2022).

Three types of augmentation are applied to the image data,

i.e., image rotation, image translation, and image scaling, to

create a balanced dataset using data augmentation. To apply

rotation to the training images, the images were rotated in a

clockwise and anti-clockwise direction with an angle from 5 to

15 degrees. The scaling of images is zooming in or zooming out

of an image; in our case, the scaling up and scaling down

percentage is 2.5 to 10. The translation of an image is the

processing of changing the location of objects in an image; the

leaf region is translated horizontally and vertically by a

percentage of 5-15.

FIGURE 3

Proposed Tomato Plants leaf diseases Classification Model.
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Experiments

Leaf segmentation
To determine and select the best leaf segmentation model,

various U-net segmentation models are trained. K-Fold cross-

validation method is applied to split up the data into trainset and

a test set. The value of K is 5, which means that each model will

be trained five times and validated five times; in each fold, 80% of

the data (leaf and segmented mask images) will be used for

training the model while the remaining will be used for model

validation. (Table 3).

The trainset and test set class distribution are equal. As we

know that each fold consists of 80% of the data for model

training. So out of 80%, 90% of the data is going for model

training, while the remaining 10% will be used for model

validation which will assist the model in avoiding the

overfitting issue. In this research, three state-of-the-art loss

functions, i.e., Binary Cross-Entropy Mean-Squared Error loss

and Negative Log-Likelihood, are performed to choose the

optimal act evaluation metrics used to select the best

segmentation model for tomato leaves.

Moreover, a proposed model training stunting condition is

reported in some updated research work. If there is no

improvement in the validation loss for the first five epochs, the

model training should be immediately stopped (Chowdhury et

al., 2020; Rahman et al., 2020; Tahir et al., 2022).

Classification of tomato leaf diseases
This research study explored a deep learning-based system

that used a newly built convolutional neural net called Inception

Net to categorize segmented tomato leaf disease pictures to

improve disease detection accuracy. Three distinct types of

picture categorization tests were conducted as part of this study.

As shown in Table 4, the images utilized in the analyses for

training multiple classification models using the segmented leaf

images were taken from different sources. Table 5 contains a

summary of the experiment’s parameters, as well as the results of

the study into picture classification and segmentation techniques.

Inception-V1.
InceptionNet is a collection of deep neural networks that

were developed using the Inception module. The initial edition

of this series, Googlenett, is a 22-layer deep network. The

Inception module is built on the idea that neurons with a

shared objective (such as feature extraction) should learn

together. In the bulk of early iterations of convolutional

architecture, the main focus was on adjusting the size of the

kernel to obtain the most relevant features. In contrast,

InceptionNet’s architecture emphasises parallel processing as

well as the simultaneous extraction of a number of different

feature maps. This is the trait that most distinguishes

InceptionNet from all other picture categorization models

currently available.

TABLE 2 Total amount of healty and disease affected tomato leaves images in the Plant Village Dataset.

Types Normal Bacteri Mold Virus Fungal Mite

Classes Healty
(1589)

Bacterial Patches
(2131)

Intense Mold
(1922)

Curling and Crisping Yellow
(5362)

Fungal Pathogens (998) Tetranychus urticae Koch
(1681)Septoria lycopersici (1769)

Pathogenic virus (Mosaic) (381) Corynespora cassiicola(1399)

Crushed Dry Leaf (Mould)
(949)

FIGURE 4

Some random samples of tomatoes leaf images from the benchmar Plant Village Dataset.
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Inception-(V2 and V3)
Inception v2 and Inception v3 are presented in the same

paper. There exists an initial architecture inception-V1 where

inception-V-2 and V-3 are widely used in the literature as

transfer learning methods to solve various problems. For the

Inception part of the network, we have 3 standard modules of

35×35 filter size, each with 288 filters in a layer. This is reduced

to a 17 × 17 grid with 768 filters using a grid reduction

technique. In inception-V3, the decomposed 5 initial modules,

as shown, are reduced to an 8 × 8 × 1280 grid using the grid

reduction technique. A grid reduction technique is used to

reduce this to an 8 × 8 × 1280 grid. The inception-V3 model

consists of two coarsest 8 × 8 levels of the Inception module, and

each block has a tandem output filter bank size of 2048. The

detailed architecture of the network, including the size of the

filter banks in the Inception module, is given in the base research

paper (Szegedy et al., 2014).

The intuition is that the neural network performs better

when the convolution does not significantly change the input

dimensionality. Too much dimensionality reduction may lead to

information loss, called a “representation bottleneck”. Using

intelligent decomposition methods, convolution can be made

more efficient in terms of computational complexity. To increase

the computational speed, the 5x5 convolution is decomposed

into two 3x3 convolution operations. Although this may seem

counterintuitive, the cost of a 5x5 convolution is 2.78 times that

of a 3x3 convolution. Therefore, stacking two 3x3 convolutions

can improve performance.

This translation was created with the assistance of the

DeepL.com Translator (free version)

All of the experiments were performed on an Intel-based

corei7 9th generation CPU with a RAM of 64 GB and NVIDIA

RTX 2080Ti 11GB GDDR6 GPU using the python 3.7 popular

deep learning framework the PyTorch library.

Performance matrix: Segmentation of tomato leaves: The

proposed les ion segmentat ion model performance

evaluation metrics are listed below (2)– (4).

Accuracy =  
tp + tn

tp + fp + fn + tn
2

IoU =  
tp

tp + fn + fp
3

TABLE 4 Quantitative analysis of proposed classifiers experimental work.

Classification Types No of images Segmented and non-segmented images

Training images Validation images Testing images

Binary Class Healthy 1519 1095x10 = 10950 121 303

Affected 16750 12075 1340 3350

Multi-Class(6 Classes) Healthy 1519 1093 121 303

Fungi 5115 3682 409 1023

Mold 1898 1366 151 379

Virus 5744 4135 459 1148

Bacteria 2154 1550 172 430

Mite 1839 1324 147 367

Different classes(Ten classes) Healthy 1519 1093 121 303

Early Blight 1050 756 84 210

Target spot 1454 1046 116 290

Septoria leaf spot 1721 1239 137 344

Bacterial spot 2177 1567 174 435

Leaf Mold 902 649 72 180

Late Bright Mold 1960 1411 156 392

Tomato yallow leaf curl virus 5307 3821 424 1061

tomato mosic virus 373 268 29 74

TABLE 3 Details of benchmark dataset used for proposed model performance evaluation.

Dataset name No. of image and their ground truth mask of tomato
leaves

Size of training
set

Size of validation
set

Size of testing
set

Plant Village tomato leaf
images

18159 13082 1447 3628

Shoaib et al. 10.3389/fpls.2022.1031748

Frontiers in Plant Science frontiersin.org09

https://doi.org/10.3389/fpls.2022.1031748
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Dice  Cofficent   =  
2*tpð Þ

2*tp + fn + fpð Þ 4

Classification of segmented tomato leaves: The leaf

classification performance evaluation metrics are listed below

(5)– (9).

Accuracy =  
tp + tn

tp + fp + fn + tn
5

Sensitivity =  
tp

tp + fn
6

Specificity =  
tn

tn + fp
7

f1 − Score =  
2*tpð Þ

2*tp + fn + fpð Þ 8

In the False Positive and False Negative measurements,

you can see the photos of healthy and sick tomato leaves

mistakenly identified. The True positive rate (TPR) indicates

the number of adequately detected healthy leaf pictures.

Although the True negative rate (TN) denotes the number

of properly identified diseased leaf pictures, the actual

percentage of healthy leaves represented is the Healthy

Le a f Vo lume Index (HVI ) . Add i t i ona l l y , image

segmentation and classification models are compared using

Equation No. 9, which depicts the time required to test a

single picture.

T = t00 − t 0 9

Where to denotes when a segmentation or classification

model starts to process the image I while t’’ denotes the

completion time when an image I am segmented or classified.

Results

This section details the performance evaluation of different

neural network architectures (Segmentation & Classification) in

various experiments.

Tomato leaf segmentation

To segment the tomato leaf pictures, two different deep

learning-based segmentation models are employed. Namely, The

U-net (Navab et al., 2015) and Modified U-net (Navab, 2020) are

two neural networks that are trained and verified using pictures

of tomato leaves.

Table 6 illustrates the presentation of two advanced

segmentation deep learning designs tested against one another

using various loss functions to demonstrate how effectively they

compete against one another (NLL, MSE, and BCE). Notably,

the Improved U-net with NLL loss function may have surpassed

the unique U-net in terms of the quantity and quality of

segments created for the ROI (leaf region) across all images

instead of the original U-net.

A modified U-net design with a negative log-likelihood loss

function was used to segment leaves into leaf regions. The

following parameters were computed: validation loss,

validation accuracy, IoU, and dice. The results for the

Modified U-net model with Negative Log-Likelihood loss

function were 0.0076, 98.66, 98.5, and 98.73 for the four

variables. Example test leaf images from the Plant Village

dataset are shown in Figure 5 with their ground truth masks.

Segmented ROI images were produced using the Modified U-net

model with a Negative Log-Likelihood loss function, which was

trained on the Plant Village dataset and is displayed in Figure 6.

Classification of tomota plant disease

In this work, three separate tests were done using pictures of

segmented tomato leaves, each with a different outcome. Using

three distinct Inception Net families, the performance of

segmented leaf pictures classified using three other

classification techniques such as InceptionNet1, InceptionNet2,

and InceptionNet3 is compared in Table 7. Pre-trained models

perform exceptionally well in identifying healthy and diseased

tomato leaf pictures, as shown in Figure 7, in problems with two

classes, six classes, and ten classes, respectively. In addition,

when non-segmented pictures were used, the results

were superior.

TABLE 5 List of Hypermaters, loss and optimizer used for training classification and segmentation models.

Parameters Segmentation model Classification model

Batch size 32 64

Learning Rate (Initial) 0.0001 0.0001

Epochs 45 50

Shuffle Each Iteration Yes Yes

Stopping criteria 5 10

Loss function Negative Log Likelihood Loss/MSE CELoss

Optimizer SGDM SGDM
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Aside from ten-class problems, where InceptionNet3

performed marginally better than InceptionNet1 compared to

other training models, InceptionNet1 outperformed other

trained models when utilizing leaf pictures segmented of two,

six, and ten-class issues and without it. We conducted extensive

testing on several versions of Inception Net. They observed that

when the depth, breadth, and resolution of the network are

raised, the performance of the network increases. Because the

depth, breadth, and resolution of the network are scaled as the

Inception Net model grows in depth, width, and resolution,

the testing time (T) grows. In contrast, when the classification

scheme grows more complex, the performance of Inception

Net’s scaled version does not appear to increase substantially.

A two-class and a six-class problem with InceptionNet1

outperforms the competition in segmenting tomato leaf images,

achieving a 99.95 percent accuracy, 99.95 percent specificity, and

99.77 percent specificity for two-class 99.12 percent, 99.11

percent, and 99.81 percent specificity for three-class problems.

For its part, InceptionNet3 achieved the highest accuracy,

sensitivity, and specificity scores in the ten-class test, with

99.999% accuracy, 99.44 percent sensitivity, and specificity

scores in the ten-class test, respectively. Figure 5 illustrates

TABLE 6 Quantitative results analysis of U-Net and Modified U-Net over benchmark dataset.

Loss function Network Validation loss Validation accuracy Intersection Over Union Dice Inference time

NLog Original U-net 0.0177 96.33 95.43 96.51 13.10

CELoss Original U-net 0.0167 96.49 95.89 96.42 12.65

Mean Square Original U-net 0.0135 96.62 96.33 97.76 12.41

NLog Improved U-net 0.0067 98.88 98.65 98.91 11.20

CELoss Improved U-net 0.015 97.91 97.77 96.93 11.01

Mean Square Improved U-net 0.069 98.21 98.12 98.54 10.98

FIGURE 5

Original Tomota Leaf Images, Ground Truth Mask and Segmented Leaf using Modified U-Net CNN Model.
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that increasing the number of parameters in a network result in

marginally better performance for 2, 6, and 10 class issues. On

the other hand, deep networks can give a more significant

performance gain for problems with two and six classes,

respectively. Figure 6 depicts the Images of segmented tomato

leaves used to create Receiver Operating Characteristic (ROC)

curves for problems involving two-class, six-class, and ten-class

difficulties. This section shows how the receiver working features

curves for second class, sixth class, and tenth class issues utilizing

segmented tomato leaf pictures look.

A B

C

FIGURE 6

Working feature curves for (A) binary segmented leaf classification, (B) sixth class segmented leaf classification, and (C) tenth class classification
of the segmented leaf.

TABLE 7 Performance analysis of Modified U-Net with InceptionNet CNN models.

No. Classes CNN Model Performance Analysis on 90 CI

Overall Average

accuracy Precision Sensitivity F1 score Specificity Inference time

Class 2 InceptionNet-1 99.74 ± 0.03 99.79 ± 0.03 99.71 ± 0.06 99.77 ± 0.05 99.77 ± 0.06 22.19

InceptionNet-2 99.92 ± 0.01 99.94 ± 0.01 99.92 ± 0.01 99.92 ± 0.08 98.76 ± 0.4 29.71

InceptionNet-3 99.87 ± 0.08 99.91 ± 0.08 99.87 ± 0.04 99.89 ± 0.03 99. 81± 0.05 39.45

Class 6 InceptionNet-1 97.12 ± 0.9 97.18 ± 0.9 97.12 ± 0.9 97.14 ± 0.23 99.51 ± 0.9 25.77

InceptionNet-2 98.76 ± 0.18 98.79± 0.5 98.75 ± 0.3 98.76 ± 0.18 99.69 ± 0.06 42.05

InceptionNet-3 99.32 ± 0.14 99.4 ± 0.19 99.28 ± 0.16 99.35 ± 0.26 99.83 ± 0.08 52.66

Class 10 InceptionNet-1 99.61 ± 0.06 98.72 ± 0.6 98.70 ± 0.8 98.70 ± 0.3 99.85 ± 0.07 44.54

InceptionNet-2 99.90 ± 0.4 99.91 ± 0.3 99.89 ± 04. 99.90 ± 0.30 99.96 ± 0.08 53.63

3 99.79 ± 0.08 99.23 ± 0.33 99.65 ± 0.14 99.44 ± 0.21 99.89 ± 0.05 59.85

Shoaib et al. 10.3389/fpls.2022.1031748

Frontiers in Plant Science frontiersin.org12

https://doi.org/10.3389/fpls.2022.1031748
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


The Design with NLL loss function produced masks (2nd

left), segmented leaf with matching segmentation (2nd right),

and ground truth images of tomato leaves are shown in

Figure 5. (right).

To categorize tomato leaf diseases, segmented and original

leaf pictures to get the findings shown in Table 7. Italicized

outcomes denote the most favorable outcomes).

For the best performing networks depicts the confusion

matrix when applying tomato leaf pictures to different

classification tasks. Of the six out of 16,570 unhealthy tomato

leaf pictures that were correctly classified as healthy, the network

with the most outstanding performance, InceptionNet1,

accurately categorized them. however, the network with the

worst performance, InceptionNet1, incorrectly classified 1591

of them as unhealthy.

Six different classes of unhealthy tomato leaf images, which

consisted of one healthy class and five distinct unhealthy classes,

were identified in the six-class issue. While only three

misclassified images were found in the six-class issue, 1591

healthy tomato leaf images were found in the healthy tomato

leaf category. Only one tomato leaf was misclassified in the six-

class problem, which consisted of healthy and unhealthy classes

of one hundred and ninety-nine different types. There were

16,570 images of diseased tomato leaves to choose from in the

six-class assignment. A study discovered that the best network

for the ten-class problem was InceptionNet3, which had only

four misclassifications of healthy imageries and 105

misclassifications of unhealthy images in healthy tomato

leaf images.

Cam-Score ROI visualization

The dependability of trained networks was evaluated in this

study through visualization tools based on five distinct score-

CAM categories; it was determined that they were either healthy

or sick. The 10-class problem was solved using temperature

maps created from tomato leaf segmented pictures. Figure 8

depicts the unique tomato leaf samples and the temperature

maps created on segmented tomato leaf segments. Figure 8

illustrates how the networks learn from the leaf pictures in the

segmented leaf, which increases the reliability of the network’s

decisions. Doing so contributes to disproving the notion that

CNN makes choices based on irrelevant variables and is

A

B

C

FIGURE 7

Image classification using compound scaling CNN-based models of healthy and diseased tomato leaves for segmented leaf images (A) for 2
class classification, (B) for 6 class classification, and (C) for 10 class classification.
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untrustworthy (Schlemper et al., 2019). Figure 9 further

illustrates how segmentation has assisted in categorization,

with the network learning from the area of attention resulting

from segmentation. Using this reliable learning method, we

could classify erroneous information correctly. Comparing

segmented pictures to non-segmented images, we found that

division assisted in knowledge and making judgments from

germane areas associated with non-segmented imageries

see Figure 10.

Discussion

Plant diseases pose a substantial danger to the global food

supply. The agricultural industry requires cutting-edge

technology for disease control, which is currently unavailable.

The application of technologies based on artificial intelligence to

the identification of plant diseases is currently the subject of

intensive research. Popularity of computer vision-based disease

detection systems can be attributed to their durability, ease of

data collection, and quick turnaround time. In this study,

classification and segmentation of tomato leaf images are used

to evaluate the performance of model scaling CNN-based

architectures relative to their predecessors. The initial

categorization (Healthy and Unhealthy) employed a two-

category classification; subsequently, a six-category

classification was employed (Healthy, Fungi Bacteria Mould

Virus, and Mite). Prior to the completion of the final

classification, a preliminary two-class classification (Healthy

and Unhealthy) was utilized (Healthy, Early blight, Septoria

leaf spot, Target spot, Leaf mold, Bacterial spot, Late bright

mold, Tomato Yellow Leaf Curl Virus, Tomato Mosaic Virus,

and Two-spotted spider mite). This study determined that the

InceptionNet1 model was the most successful across all classes,

outperforming all others with the exception of binary and

segmented image classification, which the InceptionNet1

model outperformed. Utilizing segmented photographs and

binary classification, this model outperformed all others in

binary classification and 6-class classification using segmented

images. This model performed significantly better than other

models at classifying segmented 6-class images.

InceptionNet1 has an overall accuracy of 99.5% when using

segmented images to classify sick and healthy tomato leaves into

two classes. Using a 6-class classification method, the

InceptionNet1 algorithm achieves an overall accuracy of

99.12%, according to the study’s findings. InceptionNet3

demonstrated an overall accuracy of 99.89 percent on a 10-

class classification test involving segmented images and photos.

Table 8 highlights the article’s findings, which are comparable to

the current state of knowledge in their respective fields of study.

The Plant Village dataset utilized in this study consists of images

captured in a variety of environments; however, it was collected

in a specific location and only contained images of specific

tomato varieties. Using a dataset consisting of images of tomato

plant varieties from around the world, a study was conducted to

develop a more robust framework for identifying early illness in

tomato plants. In addition, due to their simpler design, CNN

models may be useful for testing portable solutions with non-

linearity in the removal layer feature.

Conclusions

This study presents the outcomes of a CNN built on the

recently proposed Inception Net CNN architecture. The CNN

model was effective, and which accurately assign a class label to

FIGURE 8

Accurate classification and visualization of ROI using the CAM-Score tool: The red intensity indicates the severity of the lesion.
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FIGURE 9

Visual Results of Proposed Modified U-Net CNN model.
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FIGURE 10

Proposed Model Comparison with state-of-the-artwork.
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a tomato leaf image as healthy or non-healthy. The reported

results were obtained using the benchmark publicly available

Plant Vil lage dataset (Hughes and Salathe, 2015) ,

demonstrating that our model outperforms a number of

current deep learning techniques. Compared to other

architectures, modified U-net was superior at separating leaf

images from the background. In addition, InceptionNet1 was

superior to other designs in removing high-priority features

from snaps.

In addition, when the systems were trained with a greater

number of parameters, their overall performance significantly

improved. Using trained models may allow for the automated

and early detection of plant diseases. Professionals require

years of training and experience to diagnose an illness

through a visual examination, but anyone can utilize our

methodology, regardless of their level of experience or

expertise. If there are any new users, the network will

operate in the background, receiving input from the visual

camera and immediately notifying them of the result so they

can take the appropriate action. As a result, preventative

measures may be taken sooner rather than later. Utilizing new

technologies such as intelligent drone cameras, advanced

mobile phones, and robotics, this research could aid in the

early and automated detection of diseases in tomato crops. By

combining the proposed framework with a feedback system

that provides beneficial recommendations, cures, control

measurement, and disease management, it is possible to

increase crop yields. Work will be expanded to evaluate the

performance of the proposed method in an embedded system

and camera-based real-time application. The real-time

system will be a hardware product that, after training with

deep learning, will monitor and predict the health of plants.
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TABLE 8 Proposed model performance comparsion with other state-of-the-art work.

Article Classification Dataset Accuracy Precession Recall F1 score Result

(Agarwal et al., 2020) Multi-Class (10) Plant village 90.98% 89% 91.97% 90.96% Non segmented

(G Irmak and Saygili, 2020) Multi-Class (10) Plant village 93.55% 93.93% 95.69 93.91% Segmented

(Zhang et al., 2018) Multi-Class (10) Custom 94.12% 94.72% 94.35% 96.64% Non segmented

(Dookie et al., 2021) Binary Custom 86.10% 86.44% 86.37 86.41% Non segmented

Proposed study Binary Plant village 99.97% 99.11% 99.96% 99.93% Segmented

Multi-Class (6) Plant village 99.22% 99.19% 99.20% 99.17% Segmented

Multi-Class (10) Plant village 99.91% 99.31% 99.29% 99.30% Segmented
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