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Abstract

Coronavirus disease 2019 (COVID-19) is a respiratory illness that started and rapidly became the pandemic of the century, as the number
of people infected with it globally exceeded 253.4 million. Since the beginning of the pandemic of COVID-19, over two years have
passed. During this hard period, several defies have been coped by the scientific society to know this novel disease, evaluate it, and treat
affected patients. All these efforts are done to push back the spread of the virus. This article provides a comprehensive review to learn
about the COVID-19 virus and its entry mechanism, its main repercussions on many organs and tissues of the body, identify its symptoms
in the short and long terms, in addition to recognize the role of diagnosis imaging in COVID-19. Principally, the quick evolution of active
vaccines act an exceptional accomplishment where leaded to decrease rate of death worldwide. However, some hurdels still have to be
overcome. Many proof referrers that infection with CoV-19 causes neurological dis function in a substantial ratio of influenced patients,
where these symptoms appear severely during the infection and still less is known about the potential long term consequences for the
brain, where Loss of smell is a neurological sign and rudimentary symptom of COVID-19. Hence, we review the causes of olfactory bulb
dysfunction and Anosmia associated with COVID-19, the latest appropriate therapeutic strategies for the COVID-19 treatment (e.g., the
ACE2 strategy and the Ang II receptor), and the tests through the follow-up phases. Additionally, we discuss the long-term complications
of the virus and thus the possibility of improving therapeutic strategies. Moreover, the main steps of artificial intelligence that have been
used to foretell and early diagnose COVID-19 are presented, where Artificial intelligence, especially machine learning is emerging as
an effective approach for diagnostic image analysis with performance in the discriminate diagnosis of injuries of COVID-19 on multiple
organs, comparable to that of human practitioners. The followed methodology to prepare the current survey is to search the related work
concerning the mentioned topic from different journals, such as Springer, Wiley, and Elsevier. Additionally, different studies have been
compared, the results are collected and then reported as shown. The articles are selected based on the year (i.e., the last three years).
Also, different keywords were checked (e.g., COVID-19, COVID-19 Treatment, COVID-19 Symptoms, and COVID-19 and Anosmia).

Keywords: artificial intelligence for COVID-19; COVID-19; COVID-19 treatment; COVID-19 symptoms; COVID-19 and anosmia;
imaging in COVID-19

1. Introduction

A cluster of fatal pneumonia cases was reported in De-
cember 2019. The infection spread rapidly as visitors trans-
mitted the infection to several countries, evoking memories
of past pneumonia outbreaks such as Severe Acute Res-
piratory Syndrome (SARS) and the Middle East Respira-
tory Syndrome (MERS). Patients with severe COVID-19
have emerged as a high-risk cohort for invasive fungal in-
fections (IFIs) [1]. Shortness of breath began to spread
among patients whose pathological causes were unknown

and it was treated as influenza infection at that time [2].
Based on clinical criteria, serologically, and molecular in-
formation, the new infection was termed coronavirus dis-
ease 2019 (COVID-19) [3]. An increased incidences of car-
diovascular has been recognized in those with COVID-19
[4]. Therefore, in the case of patients with cardiovascu-
lar disease infected with the COVID-19 virus, it may lead
to inflammation of the heart muscle or cardiac arrhythmias
and may even lead to death [5]. COVID-19 injuries did not
affect the respiratory system only, but also damaged most
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of the body’s systems in the short and long term, such as
the digestive and nervous systems. For COVID-19, there is
an elevated rate of cerebral outcomes, especially Anosmia
caused by the effect of COVID-19 on the olfactory bulb.
Loss of smell is an early sign of infection, which can take
weeks, months, or more (i.e., up to a year to recover from)
[6]. The number of infections and deaths from COVID-19
has increased worldwide. However, the number of people
healing from COVID-19 infection has increased. Statisti-
cally, for November 13, 2021, the number of COVID-19
cases worldwide has reached nearly 253.4 million, the total
number of deaths worldwide is about 5.1 million, and the
total number of people recovered worldwide is about 229.2
million. The total number of COVID-19 patients per mil-
lion of the world’s population is about 32,506, while the to-
tal number of COVID-19 deaths per million of the world’s
population is about 655.3 [7].

1.1 Survey Objectives and Contributions
The main objective of the current survey is to review

to learn about the Role of Imaging and AI in the Evalu-
ation of COVID-19 Infection. This is done by gathering
knowledge about COVID-19 virus, its main repercussions
on many organs and tissues of the body, to identify the
symptoms of COVID-19 in the short and long term, as well
as the post-acute consequences of COVID-19 infection on
many organs of the body. Additionally, this work reviews
the causes of dysfunction and loss of sense of smell asso-
ciated with COVID-19, the latest appropriate therapeutic
strategies to combat COVID-19, and methods of follow-up
for those recovering fromCOVID-19. It discusses the long-
term complications of the virus and thus the possibility of
improving therapeutic strategies. Also, the main steps of
artificial intelligence that are used to predict and early di-
agnose COVID-19 are presented. The contributions can be
summarized in points as follows:

– Reporting the COVID-19 infection and its entry
mechanism.

– Presenting the early common impacts and symptoms
of COVID-19 in the short-term and discussing the impacts
and symptoms of COVID-19 in the long-term.

– Discussing the impacts of COVID-19 on the olfac-
tory bulb which lead to Anosmia.

– Presenting the diagnoses imaging In COVID-19 and
its outcomes.

– Presenting the treatment strategies and follow-ups.
Getting familiar with the COVID-19 AI systems’

internals and reviewing state-of-the-art published articles
concerning the different AI-based system phases.

1.2 Paper Organization
The current survey is organized as follows: the follow-

ing section presents the COVID-19 infection and its Entry
Mechanism. Section 2 discusses early common impacts and
symptoms of COVID-19 on both short-term and long-term.

It discusses the impacts of COVID-19 on the olfactory Bulb
which can lead to Anosmia. Additionally, the diagnoses
imaging in COVID-19 and its outcomes is presented. Sec-
tion 3 presents the treatment strategies and follow-up ap-
proaches. Section 4 concerns the AI-based systems related
to COVID-19 and their phases, in addition to comparing
different state-of-the-art published studies. The limitations
of the current survey are presented in Section 5. The survey
is concluded and the future work is discussed in Section 6.

2. COVID-19 Infection and COVID-19 Virus
Entry Mechanism

The current section briefly provides a definition of
COVID-19, the type of viruses to which COVID-19 be-
longs, and the similarities of it with previous coronaviruses.
SARS-CoV-2 acts as the 7th member of the Coronaviri-
dae family recognized to infect humans. Its analogs con-
tain four families of weak effects (229E, OC43, NL63,
and HKU1), in addition, to two other B-coronaviruses
that caused the prior spread of acute and potentially lethal
respiratory tract infections—SARS-CoV and the Middle
East respiratory syndrome- Coronavirus (MERS-CoV) [8].
Coronavirinae (i.e., coronavirus) is a subfamily of viruses
that infect mammals, often presenting as respiratory or en-
teric infections. Coronaviruses are large, positive, single-
strand RNA viruses. Their morphology can be described
as spherical virions with a central shell and surface protru-
sions like the solar corona as shown in Fig. 1 [9]. SARS-
CoV-2 is closely related to the SARS-CoV virus [9]. It
also participates in the same cellular receptor as SARS-CoV
which is the angiotensin-converting enzyme 2 (ACE2) re-
ceptor [10]. ACE2 receptors are reinforced in alveolar ep-
ithelial type II cells of lung tissues [11], as well as extrapul-
monary tissues such as the heart, endothelium, renal, and
intestines [12,13], which might play a role in the multi-
organ impacts of COVID-19. SARS-CoV-2 has the typical
characteristics of coronaviruses. It contains a genetic se-
quence of 79% identical to SARS-CoV and 50% related to
the MERS-coronavirus (MERS-CoV) [14,15]. The sever-
ity of COVID-19 infection ranges from very mild to severe
as the levels of infection severity depend on the individual’s
immune system, age, and comorbidities [16].

2.1 COVID-19 Virus Entry Mechanism
Entry of virus into host cells is a prerequisite for coro-

navirus infection. Spike protein (S protein) interacts with
the receptors of host cells, hence, it causes the fusion of the
membranes of the cellular and viral. Via biological analy-
sis, the S protein of both COVID-19 and SARS-CoV is sim-
ilar. To infect epithelial cells, the S protein interacts with
the ACE2 receptor on the surface of host cells [17]. So, the
ACE2 molecule is the primary molecule of COVID-19 in-
fection [17]. ACE2 is expressed in the human respiratory
system as well as in arterial endothelial and smooth muscle
cells. It has a crucial and major role in the COVID-19 in-
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Fig. 1. The Coronavirus Morphology.

fection [13]. Transmission of infection occurs through three
possibilities: transmission of respiratory droplets by cough-
ing or sneezing, aerosols, usually during clinical transac-
tions to produce aerosols, and mucosal link with fomites
[18,19].

2.2 Early Common Impacts and Symptoms of COVID-19
on Short-Term

The current subsection presents the main clinical
symptoms of COVID-19 infection in the short term. Pneu-
monia is the early medical diagnosis of the SARS-CoV-2
[16]. The clinical symptoms include fever, cough, nasal
congestion, and fatigue, in addition to other signs such as
shortness of breath [9]. The most common signs of viral
pneumonia are low oxygen levels and blood gas aberra-
tions. Also, ground-glass opacity, irregular fusion, alveolar
exudation, and interlobular involvement are the most com-
mon signs of pneumonia in medical images [20]. Francone
et al. [21] investigated the short-term impact of COVID-
19. Their study used computed tomography (CT) to de-
termine its predictive ability to patient outcomes. Then,
a correlation between a semi-quantitative result of pul-
monary embroilment in pneumonia resulting from COVID-
19 with clinical progression and laboratory outcomes was
computed. The study included 130COVID-19 patients, and
all of them experienced an RT-PCR test to confirm their in-
fection. The most common clinical appearance was fever,
coughing, dyspnea, and high temperature. The raised lev-
els of CRP existed in 86% patients and raised levels of

D-dimer existed in 87.7% patients. Reduced lymphocyte
number was observed in 61.5% patients, reduced O2 sat-
uration was observed in 40.1%, and reduced PaO2/FiO2
ratio was observed in 66.2% patients. According to Chi-
nese CDC clinical results [22], 60.8% were categorized as
mild, 32.3% as severe, and 6.9% as serious. Concerning
the beginning time of symptoms, cases were classified as
either early (i.e., 0–7 days) or late clinical manifestations
(i.e., >7 days) [23]. The study also proved the following:
the early stage (7 days after symptoms appear) of COVID-
19 infection is characterized by the spread of ground-glass
opacity. The late stage of infection was characterized by a
crazy-paving pattern, consolidation, and fibrosis. In severe
COVID-19 cases, CT scans give very good and clear re-
sults compared to simple COVID-19 cases. In late-stage
COVID-19 infection, the CT findings correlated with d-
dimer and C-reactive protein (CRP) levels [16]. Neurologi-
cal manifestations range fromminor symptoms such as loss
of smell, dizziness, and headache to severe symptoms such
as seizures and encephalitis [24]. Fig. 2 summarizes the
COVID-19 symptoms on short-term. Although anosmia
belongs to the early symptoms of infection in short term,
recovery from it may extend for months or more, and there-
fore it also falls within the long-term effects of COVID-19.

2.3 Common Impacts and Symptoms of COVID-19 on
Long-Term

The COVID-19 pandemic presents a direct unprece-
dented and still identifies as a threat, especially to health

3
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Fig. 2. Short-term symptoms development summarization.

care systems. Worldwide, the total number of infected pa-
tients skipped the health care system capacities, especially
the patients that needing helped ventilation. During the
severe stage of COVID-19 infection, nearly 36% of cases
develop neurological symptoms, 25% of which can be at-
tributed to the immediate involvement of the central ner-
vous system. For example, the major symptoms contain
headache, dizziness, seizure, and impaired consciousness
[25]. Among patients presenting with neurological symp-
toms, there may be cases with (or without) pre-existing neu-
rological disorders [26]. Affected people displayed excita-
tion, chaos, and corticospinal tract signs, e.g., enhanced ten-
don reflexes and clonus during intensive care units, while in
mild to intermediate disease cases about 85.6% of patients
reported olfactory dysfunctions and about 88.0% of patients
reported gustatory dysfunctions. Interestingly, around 11%
of patients reported anosmia occurred first before any other
symptoms [27].

Additionally, COVID-19 can cause alterations in co-
agulation, especially inflammation-produced disseminated
intravascular coagulation (DIC). DIC can lead to cere-
brovascular ischemia including the little patients, jointly
with endothelial dysfunction, where several of them suffer
from big vessel ischemic stroke [28]. About 5.7% of the
acute cases experienced ischemic stroke [25] or had pre-
existing vascular hazard agents particularly in the old per-
son, in whom ischemic stroke rather occurred as a delayed
complication [29,30]. Further, sub-acute symptoms that oc-
curred 3–10 days after the evolution of COVID-19 symp-
toms such as Guillain-Barre´ syndrome [31] and Miller-
Fisher syndrome [32]. The adverse effect of COVID-
19 on the central nervous system is expressed by sev-
eral possible mechanisms such as direct viral encephali-
tis, systemic inflammation, dysfunction of peripheral or-
gans (i.e., liver, kidney, lung), and cerebrovascular alter-
ations. However, many cases may show a mixture of these
neurological appearances [26]. In addition to neurologi-
cal damages, acute renal injury, hyperglycemia, thrombotic

problems, cardiac dysfunction, arrhythmia, acute coro-
nary syndromes, and hepatocyte injury are other symp-
toms of COVID-19 [33,34]. Persons who survive COVID-
19 may be at risk of developing long-term neurological
consequences due to aggravating a pre-existing neurolog-
ical disorder or by emerging a new disorder [26]. The
presence of COVID-19 infection is linked with an acute
immune response and increased levels of systemic cy-
tokines. Accordingly, this innate immune response has
been exploited to predict infection severity and mortal-
ities rate [35]. Cytokines and inflammatory mediators
that have raised levels in response to COVID-19 infec-
tion include: interleukin-1β, interleukin-2, interleukin-
2 receptor, interleukin-4, interleukin-10, interleukin-18,
interferon-γ, C-reactive protein, granulocyte colony stim-
ulating factor, CXCL10, monocyte chemoattractant protein
1, macrophage inflammatory protein 1-α, and tumor necro-
sis factor-α [36,37]. In addition to this, T-cell depletion in
many COVID-19 patients and reduced lymphocyte number
are considered signs [38,39]. In parallel, acute respiratory
distress syndrome (ARDS) is the most prevalent clinical
presentation among COVID-19 patients [40], as lung injury
models in mice and someARDS patients confirmed the role
of NLRP3 in the pathogenesis of infection with acute respi-
ratory distress syndrome and negative results [41,42]. Also,
the inflammatory activity of NLRP3 is stimulated by the
coronavirus ORF3a protein [43]. In addition, ventilation-
produced hypercapnia has been experimentally shown to
lead to cognitive impairment in a NLRP3 inflammasome-
interleukin-1β-dependent manner [44]. The long-term im-
pact of COVID-19 on other organs such as:

– Blood: The number of patients who experienced
thromboembpost-acute COVID-19 is less than 5%, and the
period for COVID-19 hyperinflammation is unknown. An-
ticoagulants and low molecular weight heparin are consid-
ered long-term anticoagulant prophylaxis in persons at risk
of persistently elevated d-dimer levels, loss of motility, or
high-risk comorbidities [45].
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Fig. 3. Long-term symptoms development summarization.

– Kidneys: Most patients recover from acute kid-
ney injury during the follow-up interval, however, dur-
ing 6 months of follow-up, a decrease in the estimated
glomerular filtration rate (eGFR) was reported. COVID-
19-associated nephropathy (COVAN) is most commonly
found among people of African descent, among those who
suffer from chronic problems in kidney function and re-
cover from COVID-19. Early follow-up for these patients
in the clinics specializing in acute renal impairment is nec-
essary [45].

– Endocrine: Endocrine sequelae include new or
worsening control of diabetes mellitus and moderate thy-
roiditis. In cases of newly diagnosed diabetes, in the ab-
sence of conventional risk factors for type 2 diabetes, lab-
oratory tests for hypothalamic-pituitary-adrenal axis sup-
pression or hyperthyroidism should be performed and the
patients should be referred to an endocrinologist [45].

– Hepatobiliary and Gastrointestinal: Even after
a negative result on nasopharyngeal swab examination, a
prolonged viral signal may be detected in feces following
COVID-19 infection. By fertilizing opportunistic organ-
isms and reducing beneficial compensation, COVID-19 can
change the gut microbiome [45].

– Dermatologic: Hair loss is a common symptom,
with around 20% of PASC patients reporting it [45].

– Multisystem Inflammatory Syndrome in Chil-
dren (MIS-C): MIS-C is also known as a pediatric mul-
tisystem inflammatory syndrome. According to the WHO,
fever, severe inflammatory signs, and multiple organ dys-
function are most common among people under the age of
21. Children’s injuries occur in those whose ages are under
7 years. Cardiovascular and neurological disease, fever, ab-
dominal pain, vomiting, diarrhea, and rash are the clinical

manifestations of MIS-C [45].
COVID-19 infection often lasts between one to four

weeks [46]. However, a subset of patients who become
infected with SARS-CoV-2 develop a variety of chronic
symptoms that last for months [46,47]. Nearly 30% of
COVID-19 patients, who were followed up for 9 months,
had chronic symptoms. Post-acute sequelae of COVID-19
(PASC) is the most appropriate term to describe the issues
faced by these patients [48]. Fig. 3 summarizes the COVID-
19 symptoms on long-term.

2.4 Impacts of COVID-19 on Olfactory Bulb which Lead
to Anosmia

The current subsection presents the relationship be-
tween COVID-19 and partial (or complete) Anosmia. The
olfactory nerve is described as being tiny in size and can
only be seen by MRI of the base of the skull [49]. The ol-
factory bulbs are located over the cerebral plate, below the
olfactory sulcus, and inside the anterior cranial fossa [50] as
shown in Fig. 4. The morphology of the olfactory bulb was
considered normal if it appeared in an oval shape or J shape
and abnormal if it appeared in an oblong or atrophic appear-
ance [51]. Reverse neurological signs have been recognized
in the configuration of hyposmia, anosmia, headache, dys-
geusia, disgust, puke, commotion, raving, and wreaked re-
alization [52–56].

Coronaviruses are mostly neurotropic [57], where the
particles of COVID-19 were revealed in human brain neu-
rons [12]. Therefore, CoV-19 can arrive in the CNS, hence,
causing neuronal damage. There are three suppositions of
CoV-19 entrance into the CNS, namely, intranasal inocu-
lation with diffusion by the olfactory bulb and nerves to
the brainstem, transsynaptic diffusion from neuron to neu-
ron by endocytosis (exocytosis), or hematogenous diffusion
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Fig. 4. The location of the olfactory bulbs in a DTI image for
a COVID-19 patient.

by affected monocytes and crossing the blood-brain bar-
rier [58]. There are three mechanisms for Pathophysiol-
ogy of CNS from COVID-19, either immediate viral en-
trance into the brain, inverse immune response, or respira-
tory strain [59]. Recently, the empirical proof showed that
a human CoV progeny and HCoV OC43 can be transported
to the olfactory bulb through the nasal cavity, then diffuse
to the piriform cortex, and brainstem by the negative out-
break and axonal transition [60,61]. There are a large num-
ber of viruses that interact with the receptors of the nasal
mucosa, resulting in inflammation-causing the dysfunction
[62]. The upper respiratory tract does not have distinct
symptoms that enable the doctors to differentiate with cer-
tainty between infection with COVID-19 and other viruses.
As the mechanism of viral infection for most viruses is sim-
ilar, the virus enters through the epithelium of the respira-
tory tract and interacts with the ACE2 receptors [63]. The
interaction may occur directly or indirectly, thus, the olfac-
tory neurons may be affected and lead to the emergence of
neurological symptoms [64].

Strauss et al. [50] proved that the MRI is a reliable
medical imaging method to confirm olfactory system in-
juries in those who suffer from COVID-19 with the pres-
ence of neurological symptoms. The diseases of the olfac-
tory bulb in people with COVID-19 are a defect or anoma-
lies in the olfactory bulb signal. Chiu et al. [49] have noted
that the loss or decreased sense of smell is one of the symp-
toms of COVID-19, as 60% of people with COVID suffered
from it. However, the olfactory nerve was not primarily

scanned. This study examined 19-year-old female suffer-
ing from persistent loss of smell as a result of COVID-19
infection. The patient underwent RT-PCR to confirm the in-
fection and the result was positive. After recovering from
the infection, she still suffers from anosmia. An MRI was
performed after two months to find out that atrophy in the
olfactory bulb is the reason for the continued loss of smell.
By comparing the result of the MRI that the patient had pre-
viously done for other reasons and the current imaging due
to infection with COVID-19, it was proved that there was
a difference in the sizes of the olfactory bulbs. The size of
the olfactory bulb 3 years before the loss of smell due to
COVID-19 was 47.46 mm3 and 49.5 mm3, The size after
the loss of smell was 35.51 mm3 and 29.96 mm3 while the
minimum size of the olfactory bulb for women under the
age of 45 is 54 mm3.

2.5 Diagnosis Imaging in COVID-19 and Its Outcomes

Medical imaging techniques play a major part in diag-
nosing the infection with COVID-19, primely, concerning
the first symptoms of pulmonary disease and the tissue al-
location of the angiotensin-converting enzyme 2 (ACE 2)
receptor. The non-sensitivity of RT-PCR scans for positive
diagnosis is the main motive for resorting to medical imag-
ing approaches.

Quantitative imaging including the “radiomics and ar-
tificial intelligence” introduced interesting findings in pul-
monary disease detection in the short- and middle-term and
foretell long-lasting fibrotic alters [65,66]. In extension to
the different pulmonary symptoms, COVID-19 is a sys-
temic disease with broad impacts on matures and youths
that can be evaluated using imaging [67–70]. For exam-
ple, Gastrointestinal symptoms, colitis signs at computed
tomography such as bowel wall thickening [68–71], olfac-
tory bulb abnormality in MR and induced anosmia [51,69].
Additionally, myocarditis-similar markers such as myocar-
dial edema or delayed gadolinium enhancement in chil-
drenwho are suffering frommultisystem inflammatory syn-
drome (MIS-C) due to COVID-19 [70,72], all of these
symptoms indicate the presence of COVID-19 infection.
These symptoms can be detected through an appropriate
medical imaging model of each organ or tissue. Such a
broad group of symptoms may occur and continue to the
post-COVID syndrome that may last for more than a year
[73]. Also, patients may suffer from cardiovascular, endur-
ing pulmonary, endocrine, gastrointestinal, hematologic,
psychiatric signs, and neurological [74]. For example, neu-
roinflammatory mechanisms in addition to the influences of
microvascular damages revealed at MR are responsible for
severe and continuous neurological symptoms [75,76].

Several studies have demonstrated COVID-19 has sig-
nificant implications for the Olfactory bulb using the re-
sults of CT and MRI that many patients with anosmia have
undergone. Where the results of some tests showed that
COVID-19 causes an olfactory dysfunction due to the pres-
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ence of a change in the shape and size of the olfactory
bulb in some people with anosmia caused by COVID-19.
There are reports of neurological symptoms in patients with
COVID-19, denoted to the neurotropic nature of the virus
[52]. Animal surveys displayed that the viral permeation
occurs in the olfactory bulb and then spread to the subcor-
tical area and cortical area. In the premier survey from
Wuhan, 5.1% and 5.6% of 214 COVID-19 cases had suf-
fered from anosmia and loss of taste, respectively [25].

According to an American study [77], the loss of the
sense of smell is strong evidence of infection with COVID-
19. A case with a sudden loss of the sense of smell un-
derwent MRI and CT on the nasal sinuses. The result was
a normal appearance of the olfactory bulb and olfactory
tracts and the presence of bilateral inflammation in the ol-
factory cleft [78]. Tissues of nasal from patients with post-
viral anosmia show severe purulence, missing or fewer cilia
on surviving receptor cells [79]. However, the causes of
COVID-19 infection are still unknown [80]. A sample of
the olfactory epithelium could be used as a source of tis-
sue for primary viral identification to reduce the number
of incorrect-negative examination findings [81]. There are
two options: (1) a post-viral anosmia syndrome with di-
rect infection and inflammation of the olfactory mucosa and
neurodegeneration of the olfactory sensory neurons or (2)
an upper respiratory infection with some smell loss as a
result of nasal inflammation, mucosal edema, and imped-
iment of the flow of air into the olfactory cleft. Signs of ill-
ness development include injury to the peripheral nerve sys-
tem, as well as its malfunction, such as anosmia or hypos-
mia [82,83]. Amajor multicenter European survey reported
that 85.6% and 88%of 417COVID-19 patients experienced
olfactory weakness and taste dysfunction, respectively [27].
However, a modern survey from Spain notarized anosmia
in 4.9% and loss of taste in 6.2% of 841 patients [84]. In a
survey after death, MRI of non-survivors demonstrated the
occurrence of olfactory bulb asymmetry and atrophy in 4 of
19 COVID-19 cases [85]. In a case study with screening 4
days after the beginning of anosmia, signal changes of the
olfactory bulb in MRI along with a signal increase in the
gyrus rectus and bilateral atrophy were documented [69].

The nasal sinuses underwent CT and the olfactory
nerves underwent MRI [51]. The measurements were done
based on imaging findings to assess the nasal sinuses and
opacity of the olfactory clefts. They were:

– Paranasal Sinus CT: Based on CT of the sinuses,
the ventilation pattern of the olfactory cleft was classified
as normal, partial, or whole opacity [51].

–Olfactory Cleft Opacification: The olfactory clefts
were lined by an olfactory epithelium that contained olfac-
tory receptor neurons. The neurons’ axons were carried out
as olfactory cilia, which were twisted with the olfactory
bulbs through the cribriform plate. The inability of odor
to reach the olfactory clefts due to infections of the mucous
membranes, in addition to blockage of the nasal cavity. A

study relied on CT of the nasal sinuses to assess the opac-
ity of the olfactory clefts showed that the total opacity was
4.3%, while the partial opacity was 69.6%. No cases dis-
played ethmoid air cells opacification or nasal cavity opaci-
fication [51].

– MRI Assessment: The method of MRI of nerves
was the most appropriate method for anatomical imaging.
Therefore, MRI was used to assess olfactory dysfunction
associated with post-viral infection, neurodegenerative pro-
cesses, and trauma. Particularly, the coronal T2 weighted
images covering the olfactory bulb anterior pole to the pri-
mary olfactory area and conventional sequences for the
whole brain [51]. The quantitative measurements were
achieved through MRI specific to the olfactory nerves for
olfactory bulb volumes, olfactory sulcus depth, qualitative
evaluation of olfactory bulb morphology, signal intensity,
olfactory nerve cilia measurements, and primary olfactory
cortex signal intensity olfactory bulb volumes. The pres-
ence of an excessively intense signal in the olfactory bulb
appeared in the form of simple bleeding indicating the pres-
ence of inflation. Rarity and clustering were used to as-
sess the olfactory nerve cilia. A multi-planar reconstruction
(MPR) was used to determine the size of the olfactory bulb
[51].

– Olfactory Sulcus Depth: The depth to the olfac-
tory sulcus deepest point could be calculated through coro-
nal T2 weighted images. The relationship between the DTI
scores and the depth of the right olfactory sulcus was neg-
ative. There was no relationship between the DTI scores
and the depth of the left olfactory sulcus. There was no re-
lationship between the depth of the sulcus and the sizes of
olfactory bulbs [51].

– Signal Intensity Evaluation: The appearance of
several foci with a very high density in the olfactory bulbs
and the presence of high intensity around these foci. The re-
sults ofMRI which were collected concerning the pattern of
the shape and the bulb of the signal proved that there was
no statistically meaningful dissimilarity between the sizes
of the olfactory bulbs, the scores of DTI, and the depths of
the olfactory sulcus. The olfactory nerve cilia structure ap-
peared normally, and clusters appeared [51].

3. Treatment Strategies and Follow-Ups
The current section presents some of the treatment

strategies proposed by many researchers that may stop or
reduce the infection of COVID-19. Additionally, it presents
the importance of follow-up for those recovering from
COVID-19, as still many unknown sequelae for those re-
covered. Therefore, follow-up is necessary for those recov-
ering from COVID-19 to know their clinical needs and dis-
cover the unknown long-term sequelae.

3.1 Treatment Strategy of COVID-19
The current subsection presents some of the proposed

therapeutic strategies to confront the COVID-19 virus, in-
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cluding the role of ACE2 and AT1-R receptors as therapeu-
tic strategies. Modern treatment strategies played an im-
portant role in eliminating or decreasing the incidence of
COVID-19 infection in the heart, lung, and kidney [86].
Seif et al. [86] introduced some strategies for the treatment
of COVID-19. TheACE2, angiotensin II receptor type I ob-
structor (AT1-R obstructors), restraint of ACE, and peptides
of angiotensin 1–7 were among the strategies considered.
As the ACE2 and AT1-R function critical roles in the im-
provement of COVID-19, innovative treatment techniques
may help to reduce virus-produced heart, lung, and kid-
ney deterioration. Janus kinase inhibitors (JAKinibs) may
be useful because they may not only lower medical symp-
toms in the infected many organs, but they may also control
some inflammatory cytokines generated throughout ARDS
or tempest of cytokine [86]. There were two potential treat-
ment strategies for COVID-19, namely (1) ACE2 enzyme
treatment strategy and (2) receptors of ACE2 for treatment
strategy. Fig. 5 summarizes the treatment strategy that will
be examined in detail in the subsequent subsections.

3.1.1 ACE2 Enzyme Treatment Strategy

Angiotensin-converting enzyme-2 is the master key
for SARS-CoVID and COVID-19. The virus attacks the
target cells via the cell protease TMPRSS2. The renin-
angiotensin system is a very important regulator of blood
pressure, and it is a zinc carboxypeptidase that limits the
activity of the potent vasopressor peptide angiotensin II by
eliminating the terminal residues of phenylalanine to ob-
tain heptapeptide [87]. ACE2 is plentifully available in
the brain, lung, kidney, liver, heart, intestine, and testes

[88]. The angiotensin-converting enzyme interacts with the
spike protein on the surface of the virus [89]. This interac-
tion leads to activation of the disintegrin, metalloprotease17
(ADAM17) [90]. This reaction results in the elimination of
the ACE2 enzyme present in the target cells, thus, generat-
ing greater levels of AngII and hyaluronan that contribute
to the exacerbation of acute respiratory distress syndrome
that leads to death [91].

Therefore, therapeutic strategies based on soluble
ACE2 or ACE2 antibodies can reduce the interaction be-
tween COVID-19 and ACE2. Also, according to the ad-
ministration of soluble receptor-binding domain (RBD), the
basic domain derived from spike protein on the surface of
the virus may prevent the virus from entering cells because
it contains 193 amino acids and it can connect with ACE2
[92].

3.1.2 Receptors of Angiotensin II for Treatment Strategy

AT1-R and AT2-R are two types of G-protein-coupled
receptors through which AngII can function. AT1- R is re-
sponsible for the majority of cardiovascular work, while
the adult cardiovascular system contains very little AT2-
R. There is a proposed treatment for COVID-19 through
angiotensin II receptor blockers (e.g., losartan, valsartan,
telmisartan, and candesartan). A study showed that older
patients who have other comorbidities with COVID-19 and
who were given antihypertensives such as angiotensin re-
ceptor blockers are less susceptible to lung injuries [93].

Angiotensin receptor blockers, angiotensin-
converting enzyme inhibitors, Ang (1–7) peptides,
ACE2, and aldosterone synthase inhibitors are all sug-
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Fig. 6. The base phases on diagnosing COVID-19 using AI.

gested strategies that may prevent or limit heart and lung
injuries caused by COVID-19 [94]. Despite this, abrupt
discontinuation of these inhibitors may cause problems
in some patients at high risk in the case of COVID-19
infection [95]. For some people with ARDS, this syndrome
may occur due to the production of excessive levels of
inflammatory cytokines, including IL-1, IL-2, IL-6, IL-7,
IL-10, and TNF-α. Therefore, Janus Kinase is a novel
strategy to control COVID-19, as JAK acts to regulate the
immune system [35].

The plasma of people recovering from COVID-19 in-
fection is considered a treatment strategy for COVID-19.
The plasma of the recovered people can identify the anti-
bodies to the virus. It is preferable to inject patients at an
early stage of infection with plasma from people who have
recovered from COVID-19 [96].

3.2 Follow-Up after Recovering from COVID-19
The current subsection presents the importance of con-

ducting follow-ups with recovering persons from COVID-
19 to know their clinical needs. Follow-up is carried out in
different ways, e.g., assessments of the body by assessment
of the respiratory system and other assessments for different
organs, through the follow-up stage, the long-term sequelae
of COVID-19 can be detected.

Arnold et al. [97] presented an investigation into
the follow-up phase of COVID-19 patients. The aver-
age follow-up period was about 90 days from the onset of
COVID-19 symptoms, and their study included 110 people.
The participants underwent several tests, including spirom-
etry, exercise test, blood tests, and chest radiography. Their
results were as follows: 39% had difficulty breathing, 7%
had normal oxygen levels, 39% had severe fatigue and de-
creased physical ability, 5 patients had abnormalities on
chest radiography, 12 patients had liver abnormalities, and
9 patients had abnormal kidney function. A decreased lym-
phocytes were found in 2 of the participants and an increase
in the level of CRP in found 2 of the participants [97].

The consequences of COVID-19 after clinical treat-
ment are still unknown. Therefore, Rovere et al. [98] in-
vestigated the consequences of COVID-19 in a follow-up
phase to determine the clinical requirements of those re-

covering from COVID-19. The study included 453 fol-
lowers, who underwent a multidisciplinary assessment by
conducting several tests, i.e., pulmonary function (physical
examination, blood oxygen level, respiratory rate, and lung
function assessment), cardiovascular assessment, and neu-
rological assessment as well. The results proved that those
recovering fromCOVID-19 in the follow-up phase still suf-
fer from some symptoms of COVID-19, such as low oxy-
gen levels, which leads to difficulty breathing, decreased
lymphocyte count, and elevated CRP levels [98].

4. Ai-Based Systems for Diagnosing
COVID-19

Artificial intelligence (AI) plays an important role in
diagnosing diseases such as breast cancer [40], liver cancer
[99], renal cancer [100], brain cancer [101], heart failure
[102], and recently COVID-19 [103,104]. It is also possi-
ble to utilize AI to detect and anticipate massive epidemics.
The rapid increase in the number of infections has prompted
the use of AI approaches to forecast the likely result of a per-
son infected to provide suitable therapy. Most of the studies
share base phases including data retrieval (i.e., acquisition),
data pre-processing, segmentation, and classification [105].
The phases can be summarized in a framework as shown in
Fig. 6.

4.1 Image Retrieval and Acquisition

The first phase focuses on how the datasets can be re-
trieved. There are two common paths. The first is getting
the data manually from organizations, hospitals, and clin-
ics. The advantage of this approach is that the researcher
can manage the styles of the obtained cases. However, the
drawbacks are time consumption and potential leakage of
protected health information in annotations [106]. The sec-
ond path is working on anonymized, shared datasets that
can be available to the public with or without license agree-
ments. It is worth mentioning that, most of the datasets
related to COVID-19 comprise images [107]. Currently,
many COVID-19 datasets are available online on different
platforms such as Kaggle and GitHub. Table 1 (Ref. [108–
110]) summarizes some of these datasets.
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Table 1. The discussed COVID-19 datasets summarization.
Dataset Link Type Size Classes

COVID × CXR-2 [108] https://www.kaggle.com/andyczhao/COVIDx-
cxr2

X-Ray 16.8K Positive and
Negative

COVID × CT [109] https://www.kaggle.com/hgunraj/COVIDxct CT 195K Normal, Pneumonia,
and COVID-19

Chest X-ray (COVID-19 and Pneumonia) https://www.kaggle.com/prashant268/chest-
xray-COVID19-pneumonia

X-Ray 6.4K Normal, Pneumonia,
and COVID-19

CT Scans for COVID-19 Classification [110] https://www.kaggle.com/azaemon/preprocessed-
ct-scans-for-COVID19

CT 19.6K Non-informative,
Positive, and
Negative
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Fig. 7. Summarization of the image pre-processing techniques.

4.2 Image Pre-Processing
The second phase is the pre-processing which focuses

on enhancing the quality of images, balancing the sizes,
and augmenting them. There are different pre-processing
techniques and selecting the sui ones requires deep knowl-
edge and experimental trials [111]. It is proven that the
pre-processing techniques enhance the overall performance
value [112]. Fig. 7 summarizes the image pre-processing
techniques.

4.2.1 Data Resizing
Data or image resizing focuses on changing the di-

mensions of an image to a target size (i.e., width and
height) [113]. There are multiple resizing techniques such
as nearest-neighbor interpolation, bilinear and bicubic al-
gorithms, and Fourier-transform methods. In addition to
that, there are content-aware resizing methods such as seam
carving [114].

4.2.2 Data Scaling
Scaling techniques are responsible for changing the

scale of the image data range. There are different scal-
ing techniques such as normalization, standardization, min-
max, and max-abs scalers [115]. Kand et al. [116] used
normalization and standardization while Ahsan et al. [117]

used the four mentioned techniques.

4.2.3 Data Balancing

Data balancing techniques target to equalize the num-
ber of records in each category (i.e., class). There are two
common approaches. The first is the undersampling while
the second is the oversampling. In the undersampling ap-
proach, only some records from the majority class are se-
lected. The number of the selected records is equal to the
number of records in the minority class. On the other hand,
in the oversampling approach, copies from the minority
class are created. The number of the created records is equal
to the number of records in the majority class. Reshi et al.
[118] used one of the data balancing approaches.

4.2.4 Data Augmentation

Data augmentation is useful to increase the diversity
of the images. It can be implemented using generative ad-
versarial networks (GAN) or traditional approaches such as
shifting and shearing. Khalifa et al. [119] used GANs to
augment their COVID-19 dataset. Bao et al. [120] pro-
posed the COVID-GAN to estimate mobility under vari-
ous real-world conditions. Traditional approaches include
cropping, shifting, shearing, brightness changing, rotation,
and zooming. Monshi et al. [121] used resizing, rota-

10

https://www.kaggle.com/andyczhao/COVIDx-cxr2
https://www.kaggle.com/andyczhao/COVIDx-cxr2
https://www.kaggle.com/hgunraj/COVIDxct
https://www.kaggle.com/prashant268/chest-xray-COVID19-pneumonia
https://www.kaggle.com/prashant268/chest-xray-COVID19-pneumonia
https://www.kaggle.com/azaemon/preprocessed-ct-scans-for-COVID19
https://www.kaggle.com/azaemon/preprocessed-ct-scans-for-COVID19
https://www.imrpress.com


 Image 
 Segmentation

 Automaticity

 Manual

 Semi-Automatic

 Fully Automatic

 Architecture

 Classical

 Edge-based

 Threshold-based

 Energy-based

 Contour Energy

 Region Energy

 Graph-based

 Region-based

 Growing

 Merging

 Hybrid

 Region and Contour-
 based Watershed

 Machine Learning-
 based

 Traditional

 Random Forest

 Support Vector Machine

 k-Means Clustering

 c-Means Clustering

 Bayesian Classification

 Neural Network-
 based

 Kohonen Neural 
 Network

 Probabilistic Neural 
 Network

 General Regression 
 Neural Network

 Pulse Coupled Neural 
 Network

 Deep Learning-based

 Deep Neural Network

 Convolution Neural 
 Network

Fig. 8. Image segmentation taxonomy.

tion, zooming, wrapping, lightening, flipping, and erasing
in their augmentation pipeline.

4.2.5 Enhancement Techniques
There are different image enhancement techniques

such as applying filters, histogram equalization, color con-
version (i.e., grayscale conversion and binarization), and
edge detection [122]. David et al. [123] studied the impact
histogram equalization and color mapping in the COVID-
19 detection task. Siracusano et al. [124] combined the
bidimensional empirical mode decomposition with the con-
trast limited adaptive histogram equalization (CLAHE) al-
gorithm.

4.3 Image Segmentation
Image segmentation can be categorized concerning

different points of view. The first point of view is the
level of automation that includes three different cate-
gories: (1) manual, (2) semi-automatic, and (3) fully au-
tomatic. The manual approach requires expert interven-
tion. This approach is time-consuming but effective. The
semi-automatic approach injects computer image process-
ing methods and techniques into its working pipeline. Hu-
man interaction is required in the initialization, feedback,
and evaluation processes. Lastly, the fully automatic ap-
proach required no human interaction [125]. The second
point of view is the architecture that can be categorized
into classical and machine learning- based techniques. The
machine-learning-based techniques can also be categorized
into traditional, neural network-based, and deep learning-
based techniques [126]. Fig. 8 summarizes the image seg-
mentation techniques.

Chakraborty et al. [127] proposed a method named
SuFMoFPA which is used to segment the radiological im-
ages. They used the type-2 fuzzy clustering system and
used the super-pixel concept to process the spatial infor-

mation of the CT scan images efficiently. Yan et al. [128]
proposed a deep convolutional neural network to segment
the CT scan images. They reported dice similarity values
of 0.726 and 0.987 for COVID-19 and lung segmentation
respectively. Muller et al. [129] suggested a segmenta-
tion model which was based on the standard 3D U-Net.
They reported dice similarity values of 0.761 and 0.956
for COVID-19 and lung segmentation respectively. Abd
Elaziz et al. [130] proposed a method named MPAMFO.
They depended on enhancing the Marine Predators Algo-
rithm (MPA) performance using the moth-flame optimiza-
tion (MFO) operators. Singh et al. [131] proposed the
FFQOAK (FFQOA + KMC) which is based on the fast
forward quantum optimization algorithm (FFQOA) and K-
means clustering (KMC) algorithm. Liu et al. [132] sug-
gested the CLACO which is based on the ant colony opti-
mization, the greedy Levy mutation, and the Cauchy muta-
tion. Table 2 (Ref. [127–132]) summarizes the discussed
related studies.

4.4 Image Classification

In the image classification phase, the target model
focuses on selecting the most suitable parameters aim-
ing to reach state-of-the-art performance in the evalua-
tion process. There are different classification algorithms.
They can be categorized into machine learning-based, deep
learning-based, and hybrid learning- based algorithms. In
the machine learning-based category, the algorithm accepts
the features as inputs as it can’t extract them automatically.
Random forest and decision trees are examples. In the deep
learning-based category, the features are extracted automat-
ically and hence the algorithm accepts the raw data as in-
puts. Lastly, in the hybrid learning-based category, mul-
tiple algorithms can be combined sequentially (i.e., multi-
stage) or in parallel [133]. Fig. 9 summarizes the classifi-
cation categories and techniques.
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Table 2. Summarization of the COVID-19 related studies concerning image segmentation.
Reference Approach Dataset type

Chakraborty et al. [127] SuFMoFPA with type 2 fuzzy clustering system CT
Yan et al. [128] Deep convolutional neural network CT
Muller et al. [129] 3D U-Net-based model CT
Abd Elaziz et al. [130] MPAMFO CT
Singh et al. [131] FFQOAK CT
Liu et al. [132] (FFQOA + KMC) CLACO X-Ray
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Fig. 9. Classification categories and techniques taxonomy.

As mentioned, machine-learning-based techniques re-
quire the features as inputs, and hence feature selection,
reduction, and extraction can be used. Feature selection
is the process of filtering irrelevant or redundant features
[134]. Feature extraction is the process of creating new fea-
tures that express useful information. Feature reduction is
the process of combining two or more features into one or
more features where the output features are less than in-
put features [135]. Optimization plays an important role
in the classification process. It can accelerate reaching the
global (or approximate) optimum targets. It can be used to
optimize the parameters (i.e., weights) and hyperparame-
ters (i.e., training configurations). Nadam, Adam, and Ada-
Grad are examples of the parameter optimizers that can be
used with deep learning while genetic algorithms, Sparrow
search algorithm [136], and Manta-Ray foraging algorithm
[137] are examples of the meta-heuristic optimizers that
can be used in both (i.e., parameters and hyperparameters)
[138,139].

4.5 System Evaluation

The current subsection introduces the performance
metrics that can be used to evaluate artificial intelligence-
based systems. Also, they can be used to compare the

state-of-the-art approaches concerning the segmentation
and classification processes.

4.5.1 Performance Metrics

Sensitivity is the ability to identify diseased patients
correctly. Specificity is the ability to identify non-diseased
people correctly. Precision is a basic measurement for de-
termining the number of patients accurately recognized in
a dataset with an uneven class distribution. The properly
identified patients’ number in an uneven category dataset
among all the patients whomay have been foretold is known
as recall. The F1 score achieves the ideal equilibrium of
recall and precision, allowing for a proper assessment of
the model’s execution in categorizing patients with SARS-
COV-2. The Dice similarity coefficient is a reproducibility
validation metric and a spatial overlap index that represents
a similarity metric between the ground truth and the pre-
diction score maps [140]. Eqns. 1 to 6 show the mentioned
performance metrics where TP is the true positive, FP is the
false positive, TN is the true negative, and FN is the false
negative.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)
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Table 3. Summarization of the COVID-19 related studies concerning classification algorithms.
Reference Year Approach Dataset type Dataset size Best performance

Zoabi et al. [142] 2021 Gradient boosting and
decision trees

Numerical records 51,831 0.90 AUC

Kassania et al. [143] 2021 DenseNet121 feature
extractor with Bagging tree

classifier

X-Ray and CT images 137 99% accuracy

Afshar et al. [144] 2021 N/A CT images and numerical ecords 305 N/A

Khuzani et al. [145] 2021 Multi-layer neural network X-Ray images 420 94% accuracy

Oh et al. [146] 2020 Probabilistic Grad- CAM X-Ray images 502 88.9% accuracy

N/A, Not applicable.

Specificity = TNR =
TN

TN + FP
(2)

Precision = PPV =
TP

TP + FP
(3)

Recall = Sensitivity = TPR =
TP

TP + FN
(4)

F1 =
2× Precision × Recall

Precision + Recall
(5)

Dice =
2× TP

2× TP + FP + FN
(6)

4.5.2 State-of-the-Art Systems Comparisons

Kwekha et al. [141] reviewed 14 published arti-
cles to investigate the machine learning role and how
it deals with COVID-19. They concluded that super-
vised learning is better than unsupervised learning as it
had 92.9% testing accuracy. Zoabi et al. [142] cre-
ated a machine learning-based system that was based on
gradient boosting with decision trees. They trained it
on 51,831 records where 4769 of which were COVID-
19 cases. They made their data available in English at
https://github.com/nshomron/COVIDpred. They reported
0.90 AUC, 87.30% sensitivity, and 71.98% specificity.
Kassania et al. [143] used the deep learning-based approach
by testing the MobileNet, DenseNet, Xception, ResNet,
InceptionV3, InceptionResNetV2, VGGNet, and NASNet
transfer learning models. They validated their models only
with public X-Ray and CT datasets. They concluded that
the DenseNet121 feature extractor with Bagging tree classi-
fier reported the best performance with 99% accuracy. Af-
shar et al. [144] collected the COVID-CT-MD dataset that
contained 169 positive, 60 CAP, and 76 normal cases. They

compared their dataset with another 8 datasets.
Khuzani et al. [145] collected 420 X-Ray im-

ages and resized them to (512, 512). Their dataset was
grouped into three classes (i.e., COVID-19, pneumonia,
and normal). They used a multi-layer neural network
with two hidden layers and reported 94% accuracy after
33 epochs. They made their work and dataset available
at https://github.com/abzargar/COVID-Classifier.git. Oh et
al. [146] inspired their approach from the statistical anal-
ysis of the potential imaging biomarkers of the X-Ray im-
ages. They worked on the segmentation and classification
tasks and applied them to public datasets. They proposed
a probabilistic Grad-CAM saliency map that is tailored to
the local patch-based approach. They reported 88.9% and
79.8% classification accuracies with and without masks re-
spectively. Table 3 (Ref. [142–146]) summarizes the dis-
cussed related studies. The table is ordered in a descending
order concerning the publication year.

5. Limitations
The limitations of the current survey can be summa-

rized as follows:
– The sample size used by the studies of this survey to

conduct various tests and examinations to confirm the re-
sults of infection with COVID-19 infection is rather small.

– Cases of COVID-19-associated anosmia were sub-
jected to medical imaging several months after the onset of
olfactory impairment, so imaging results indicate moderate
changes, not acute or chronic changes.

– Loss of smell and olfactory bulbs still have unclear
changes that need more future studies to explain. So far,
no unified treatment strategy for COVID-19 infection has
been obtained that suits all patients in the world.

– All the proposed strategies are under trial and used
according to the biological nature of the patient’s body and
the response of each patient.

– All of the COVID-19 drugs mentioned in this survey
are still under trial until a drug suitable for all patients and
designated for COVID-19 infection is obtained.

– In general, there is a need for more studies on every-
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thing related to COVID-19 in the future to reach accurate
results so that the appropriate treatments for the virus can
be known.

6. Conclusions and Future Work
In this survey, we reviewed the COVID-19 infection

and its repercussions on many organs such as the lung,
heart, brain, kidney, and other organs. We presented the
symptoms for the short and long-term. We discussed the
impacts of COVID-19 on olfactory bulb and We presented
the reasons for olfactory dysfunction and anosmia related
to COVID-19 by performing various measurements based
on the results of some types of medical imaging in many
different studies. We also reviewed the latest therapeutic
strategies needed to confront COVID-19 infection, such as
the strategy of usingACE2 enzyme and the strategy of using
AngII receptors. We discussed some of the follow-up tests
that have been done for people who have recovered from
COVID-19, through which we can identify the unknown
long-term sequelae of the COVID-19 virus. Finally, we dis-
cussed some of the artificial intelligence systems and rules
that are used to predict and diagnose COVID-19. In the fu-
ture, we hope to arrive at a radical treatment strategy that is
sure and reliable as a direct, safe, and effective treatment for
the COVID-19 virus and strengthen the role of artificial in-
telligence in forecasting, early detection, diagnosis, as well
as treatment.
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