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Abstract: Contemporary navigation systems rely upon localisation accuracy and humongous spatial
data for navigational assistance. Such spatial-data sources may have access restrictions or quality
issues and require massive storage space. Affordable high-performance mobile consumer hardware
and smart software have resulted in the popularity of AR and VR technologies. These technologies
can help to develop sustainable devices for navigation. This paper introduces a robust, memory-
efficient, augmented-reality-based navigation system for outdoor environments using crowdsourced
spatial data, a device camera, and mapping algorithms. The proposed system unifies the basic
map information, points of interest, and individual GPS trajectories of moving entities to generate
and render the mapping information. This system can perform map localisation, pathfinding, and
visualisation using a low-power mobile device. A case study was undertaken to evaluate the proposed
system. It was observed that the proposed system resulted in a 29 percent decrease in CPU load and
a 35 percent drop in memory requirements. As spatial information was stored as comma-separated
values, it required almost negligible storage space compared to traditional spatial databases. The
proposed navigation system attained a maximum accuracy of 99 percent with a root mean square
error value of 0.113 and a minimum accuracy of 96 percent with a corresponding root mean square
value of 0.17.

Keywords: location awareness; prospective memory; embedded navigational intelligence; vision
services; sustainable urban innovation

1. Introduction

Emerging technologies such as augmented and virtual reality (AR and VR) have
resulted in research tools that may offer a decent balance between ecological validity
and experimental control for research studies. Affordable high-performance mobile con-
sumer hardware and smart software have resulted in the popularity of AR and VR
technologies [1,2] (Pan and Hamilton). The primary difference between these two tech-
nologies is their intertwining of the virtual and real worlds. VR offers a synthetic view of
the content presented with the help of stereoscopic displays, whereas AR imbues virtual
and real-world spatial structures. Navigation systems are one domain where augmented
reality may contribute to the maximum. Navigation systems use positioning systems such
as the Global Positioning System (GPS) to determine the position of any person or object.
Fortunately, GPS technology has become integral to current mobile devices [3,4]. Such
integration has resulted in numerous context-aware and location-based services (LBS).
Typical LBS have four major components, and these are explained below:
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• Location Information: The location information component provides the location
information. These components can be a direct or indirect source of location providers,
e.g., GPS receivers, inertial sensors, deduced reckoning techniques, cellular systems,
and Wi-Fi devices. GPS receiver provides output in the form of longitude and latitudes
but sometimes lacks in performance due to shielding effects.

• Reference data: Reference data provides digital map information for the geographical
entities. This information includes location, topological, Arial, and content information.
The sources of reference data can be proprietary or non-proprietary. Proprietary data
sources are Google Maps, Bing Maps, TomTom map, etc. Non-proprietary data sources
include OpenStreetMap data, GPX records, etc.

• Processing Unit: The processing unit is responsible for information retrieval and
knowledge generation. This system fetches the information from the location informa-
tion component and reference data source and uses its supporting tool to retrieve the
knowledge.

• Output Unit: Any audio-visual device that can communicate knowledge to the user.
The output unit takes the help of the graphical user interface or some storage medium
for displaying the output.

Reference data is crucial for any navigation system. The more precise your reference
data, the more accurate your navigation system is. Though proprietary datasets charge a
license fee to avail of their services, they do not allow the use of their data for analysis and
research purposes. On the other hand, OpenStreetMap (OSM) shares its data under a GNU
license and does not restrict its use. With crowdsourced data, everyone can contribute,
update, correct, and share spatial data. Many commercial navigation systems rely on OSM
data for their reference data [5–9]. Although the OSM community has described some
fundamental attributes for the data, it does not mandate full compliance.

Further, contributors may use nonstandard hardware and nomenclature to contribute
data, which may add real challenges to maintaining data quality. Owing to the complexity
of data structures used for capturing and developing reference data, analysing spatial data
may require many generalisations due to the volume of data to be analysed [10–12]. If
the navigation system is meant to offer offline services, then the size of reference data
itself is a prime challenge. Reference data may not only require huge storage space, but it
may also slow down the system itself [13,14]. Further, the renderer services responsible
for showing graphics to assist route guidance are also responsible for guzzling hardware
resources. The more spatial information added to reference data, the more would be the
size of reference data. There is a need to revamp the traditional architecture of navigation
systems to make these navigation systems more scalable, robust, and user-friendly. This
paper proposes a novel approach for location identification and route finding for offline
outdoor navigation systems. It uses minimal storage and processing resources and is not
reliant on traditional spatial databases. The proposed navigation system merely uses GPS
as a location provider and a comma separated file (CSV) file as a spatial data source. The
proposed system supports the device camera’s augmented graphical user interface (GUI).
There is no need to process heavy shape files to generate the GUI effect.

The rest of this paper is organised as follows: Sections 2 and 3 provide the literature
study and proposed methodology, respectively. The proposed system is presented in
Section 4, a case study and experimental results are explained in Section 5. The future scope
and conclusion are provided in Section 6.

2. Literature Studies

Location-based services deal with the user’s current location and provide different
functionality based on the user’s location. Firm growth in the development of LBS is
possible due to the easy availability of small GPS receivers [15]. First, LBS (Active Badge)
was based on a sensor network to find the user’s location [16]. Since 2000, many GPS-based
applications have come into existence; LBS has become an interest for both business and
educational purposes, and navigation system is one of them [17].
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According to the area of usage, navigation systems are of two types: indoor and
outdoor. Indoor navigation systems are used to navigate inside a building or any enclosed
area, whereas outdoor navigation systems provide navigation options in a road network
or any open area. According to visual utility, outdoor navigation systems are further
categorised into map-based, map-less, and mapbuild-based [18–22].

Mapbuild-based systems are based on the concept of Simultaneous Localisation and
Mapping (SLAM) systems. Due to the unavailability of maps, considerable progress in
SLAM systems for navigation was achieved during the last decade. SLAM system uses
image stream from the camera, map information such as sparse and dense information, and
a visual odometer for navigation purposes. These systems estimate and map the location
by using the camera images. Typically, SLAM systems are based on a teach-and-repeat
process [23]. SLAM system uses bundle adjustment (BA) for localisation using camera
and sensing devices. BA application for the SLAM system was initially used using the
visual odometer [24]. These systems perform localisation, frame selection, feature selection,
mapping, tracking, and navigation [25,26].

Further accuracy in the SLAM system is enhanced using the concept of convergence
theorem. The convergence theorem states that if any sequence grows and is bounded by
the least upper bound, then the sequence is converted to the least upper bound. Similarly, if
any sequence decreases and is bounded by the greatest lower bound, the sequence converts
to the greatest lower bound. Errors in distance calculations and landmark estimations
were controlled and adjusted using the convergence estimation [27]. The coordinate
transformation was eliminated, and navigation was performed using the non-coordinate
system to reduce the complexity of the SLAM system. In a non-coordinate system, the
device is trained before the actual navigation using navigation components such as path,
obstacle, and places. This system does not require a map and uses implicit substitutes based
on cause–effect correspondence using associative memory. Robot navigation is an example
of non-coordinate-based navigation. Causes are the predefined action of the robot. Camera
images and sensor data define the view and act as the robot’s input. Based on views and
causes, the robot takes navigational steps. These steps act as effects on the robot [28].

Due to rapid development in road infrastructure, digital maps are not updated ac-
cordingly (primarily for rural areas). This causes many challenges during autonomous
navigation. A mapless driving framework was proposed to reduce the complexity of
the SLAM system. This framework uses topological maps with sensor-based systems to
provide local perception. In this approach, the system first generates local and global
perception using waypoint and local perception [29].

Further, a 3M ("multi-robot, multi-scenario, and multi-stage")-based framework was
designed to improve the accuracy of mapless navigation. In reinforcement learning, robot
and environmental data are used as training data to generate the navigation steps. This
work uses gradient-based reinforcement learning to train the robot using complex crowd
environmental data. The reinforcement environment was set up using the 4-tuple Markov
decision process [30]. A hidden Markov model with an optimal transition matrix was used
to provide the route in a road-less environment [31].

The favourite route recommendation (FAVOUR) algorithm has been developed to
select routes in a multi-model environment. This algorithm provides routes using situation-
aware and personal data [32]. Optimal route selection using eco-friendly factors was
designed. This route selection algorithm uses the traffic-light signal timing, traffic at the
intersection, and a star route finding algorithm to provide the optimal route with less
energy consumption [33]. To provide routes in both online and offline scenarios, the
Graphium Map Matching (GraphiumMM) algorithm was proposed using both topological
and geometrical features of the road network and GPS trajectories [34].

The research community proposed many navigation systems and map matching
algorithms to increase the accuracy and performance of the mapping process [35,36]. One of
the prime reasons for poor accuracy is an error in spatial data [37]. Although online spatial
data are being handled by big ventures and have fewer errors, offline, non-proprietary
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spatial data have many errors and quality issues [6,7], [38,39]. These quality issues are due
to less contribution by society and volunteer access. Navigation based on these offline
spatial dataset causes poor accuracy and a high error rate in location mapping [35–37].

In past research, using different techniques, the concept of augmented reality was
introduced with navigation in indoor and outdoor networks. Location information and
digital photographs of the location were used as markers for indoor navigation. These
markers act as a label for the input for augmented-reality-based navigation. For augmented
reality in indoor navigation, markers were created using building labels, particular points,
turn points, and floor information. For providing navigation inside the building, QRcode,
Beacon messages, points on the floor, special codes for markers, device cameras, and graph
databases were used [40–44]. The OpenStreetMap dataset used a graph database to add
augmented reality to outdoor navigation. This graph database stores information in the
form of nodes and edges. Nodes contain data in the form of text information and images.
Edges define the link between two or more images. In this approach, location images of the
navigational area were stored in a graph database, and their mapping was performed with
location information. Different images were linked to each other in order of their sequence
in the actual route. While navigating, images from the graph database were fetched using
the location information received from the GPS device. These images were displayed to the
user as output [45].

Further, camera images and points of interest were mapped to provide outdoor aug-
mented reality. In outdoor navigation, location images with GPS and inertial sensors were
used to add augmented reality. Inertial sensors compute any device or body’s orientation,
force, and angular velocity. The inertial sensor comprises a gyroscope and an accelerometer
for the relative movement estimation. The different researchers also addressed the use of
sensors in outdoor networks and body area networks’ impact on spatial data quality [46–48].

Map-based navigation requires prior knowledge of environment structure (such as
geometric and topological information of the road network) for navigation. In contrast,
a map-less navigation system aims to recognise the road network during motion and
decide based on the non-map element. A mapbuild-based system builds the map itself for
localisation and routing. This mapbuild-base system is known as SLAM (Simultaneous
Localisation and Mapping). These systems do not require a map for localization and
navigation. For localization, these systems use sensor and movement measurements.
Similarly, these systems build routing and navigation maps using cameras and sensors. For
example, room cleaning robots. These robots use sensors and wheel movement information
for obstacle avoidance and wall detection. These robots use cameras and sensors to create
a map for routing [23]. Table 1 provides comparisons among map-based, map-less, and
mapbuild-based navigation systems. According to the studied literature, considerable
research is performed to improve the accuracy and performance of map-less, map-based,
and map-build-based navigation systems. According to the studied literature, less work
has been done to reduce the size of ever-increasing spatial databases [44,45,49].

Further, the impact of massive storage on processing resources and rendering of
information has not been investigated to the extent. Furthermore, the integration of
augmented reality with navigation systems has only been available for licensed proprietary
systems, which also demands huge storage and processing power. In the purview of
the previously mentioned observations, there was a need to propose an efficient, reliable,
scalable navigation system with augmented-reality support for navigation instructions.
Complete details of the proposed system are provided in subsequent sections.



Sustainability 2022, 14, 12720 5 of 17

Table 1. Comparision of different navigation systems.

Map-Based Map-Less Mapbuild-Based

Requires prior knowledge of
environment structure (such as geometric
and topological information of the road

network) for navigation [13,33,50].

Recognises the road network during
motion and makes the decision based on

the non-map element [22,51,52].

Builds map itself for the localization and
routing, also called SLAM (Simultaneous

Localization and Mapping) system
[24,25,28,53].

These systems use predefined maps that
include all geometrical and topological

attributes. Routing and navigation
algorithms are used to find the path and

localization of the device.

These systems do not require a map for
routing and localization. For navigation,
these systems are trained on predefined
routes, and after training, the device can
move based on the training instruction.

These systems do not require a
predefined map for localization and
navigation but create a map while

navigating. These systems use sensor and
movement measurements for localization,

but for routing and navigation, these
systems build maps using cameras

and sensors.

GPS-based routing is an example of a
map-based system. These systems

generate the route using map
information, starting address, and

ending address.

Data transmission robots are an example
of a map-less system. These systems are
trained on a predefined route and after

training, the robot can move on the same
route without any map information.

Room cleaning robots are an example of
mapbuild-based navigation. These robots

use sensors and wheel movement
information for obstacle avoidance and

wall detection. These robots use cameras
and sensors to create a map

for navigating.

3. Research Methodology

This section covers the system description and details the adopted methodology for
this experiment. There is a need to understand a few fundamental concepts and definitions,
as discussed below, to elaborate the entire methodology:

3.1. Fundamental Terms

• Node: A node is the fundamental element of the map. If we consider a map a graph,
then the node is equivalent to a vertex of the graph. For example, M (V, E) is a map, V
comprises all the map nodes, and E comprises all the map edges. In Figure 1, A-I is
the map node, and set V comprises [A, B, C, D . . . I].

• Edge: An edge is a link between two nodes of the map. If vi, vj are the nodes of map
M (V, E), then edge eij is the direct link between vi and vj. Whereas vi, vj € V and eij €
E. In a map, the collection of edges is called a road. A road consists of finite connected
edges. Figure 1 shows the edge as a link between two nodes.

• Route: A route is a path between two directly or indirectly connected nodes. If two
nodes are directly connected, the route is the same as edge, whereas if two nodes are
not directly connected, the route is a collection of adjacent edges. The route always
has a finite length. In Figure 1, A-B-D-F-H-I is an example of a route.

• GPS receiver output: GPS receiver output provides the positional and temporal in-
formation of the device. It comprises latitude and longitude information with a
timestamp.

• GPS Trajectory: GPS trajectory is formed by collecting continuous GPS points with
respect to time. Figure 1 shows a sample scenario of a road network where A–I are
the road nodes and GPS trajectory collected from GPS receiver by traversing path
A-C-E-G-I is shown using a dotted line. Each trajectory element includes latitude,
longitude, and time information.
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Figure 1. Basic map elements.

3.2. A Star Algorithm

A star (A*) algorithm provides the shortest path between source and destination node
of a graph. A star algorithm uses Equation (1) to calculate the path cost [54,55].

Path_Cost(i) = Traversed_cos t(i) + Estimation(i) (1)

where i is the current node, Traversed_cost(i) is the path cost between s and i; Estimation(i)
provides the minimum cost between node i and destination node d.

3.3. Nearest Neighbor Search Algorithm

The nearest neighbour search (NNS) algorithm finds the closest point within a given
set to any given point. NNS based on proximity search is used for solving the optimisation
problem [56]. The NNS problem is defined as: giving a set of P points from a complete
set S (where P subset of S). Action point A € S would find the nearest point in P to A. The
generalisation of NNS is k-NNS, which finds the k nearest points to a given point. Let A be
a sample input point having n features (A1, A2.....An), and P a set of points for finding the
closest point. Each point in P has n features (P11, P12, . . . , P1n), then NNS finds the closest
point using the Euclidean distance as given in Equation (2). A point with the minimum
Euclidean distance is considered the closest point.

D(A, Pi) =

√
(A1 − Pi1)

2 + (A2 − Pi2)
2 + · · · ........ + (An − Pin)

2 (2)

3.4. The Proposed System

The proposed system (resource-efficient navigation—REN) provides route information
between source and destination with minimal storage and computational resources. The
basic component of the system is shown in Figure 2. REN operates with the help of four
basic subsystems responsible for data preparation, location identification, path generation,
and a visual output component. The functioning of these subsystems is detailed below and
depicted in Figure 3.

3.4.1. Data Preparation (S1)

This subsystem is responsible for generating navigation reference spatial data (map)
for the navigation using the trajectories of moving entities and basic map components. This
component (S1) generates a map in the format of CSV files and will be used later for routing
and navigation purposes. Location information of the user was fetched using the GPS
receiver output. Further, these GPS trajectories were used to enhance the quality of data.
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3.4.2. Location Identification (S2)

S2 records the immediate location information of the user. The location information
fetched from the GPS receiver may have a particular drift from the actual location due to
transmission delay and associated errors. S2 maps the recorded immediate GPS receiver
output to the actual location on the digital map using the k-nearest neighbour algorithm
with kd tree and support vector machine [49]. S2 subsystem is responsible for location
identification by using the GPS receiver output and reference spatial data. Due to transmis-
sion delay and associated errors with the receiver, the location information fetched from
the GPS receiver may have a certain drift from the actual location, so this subsystem keeps
records of the previous location information of the user to process the current location.

3.4.3. Route Identification (S3)

For navigation from one location to another location, it is mandatory to have a route.
S3 generates the route between the start and end location, passing through a fixed loca-
tion. Finding the single route from all possible is called route identification. For route
identification, S3 relies on the A star algorithm to find the shortest path.

3.4.4. Visual Output (S4)

S4 provides output to the user using the device camera and screen. In this system,
augmented reality has been provided using the device camera output. While navigating,
the device’s back camera provides a real-time view of the road, which will be used with the
output of the S3 component to provide user output. This component replaces the heavy
shapefiles of spatial data to provide the map GUI.
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4. The REN System

The REN system identifies location and path with optimised space and processing
requirements. According to the studied literature, navigation systems primarily use either
online spatial data (API support) or offline spatial data for navigation purposes. The
proposed REN stored spatial data in a comma-separated file system. This data contained
only the geometrical and topological information about the road network. In contrast to
other offline storage systems, the REN dataset does not contain data for the graphical user
interface and map visualisation (like .shp, .shx files). We used an integrated mobile camera
and screen to render navigation instructions for graph visualisation.

A Kd tree-based K nearest neighbour algorithm was used for the location identification,
and A star algorithm was deployed to calculate the shortest path calculation. The complete
process for the navigation between source to destination using REN is shown in Figure 4.
Step-by-step working of the REN system is shown in Algorithm 1.

Algorithm-1: REN (G, S, E)

Input: Finite connected map data comprises V vertices and E edges.
Output: Route from source to destination

1. Start
2. Set t = 0
3. Take the output of GNSS receiver ft and direction of motion of the device
4. If (ft is the first observation and ft =~ S)
5. Set ft to S
6. Else
7. Map ft using K-NN search algorithm to the resultant node that is Sn.
8. Set C = Sn
9. Update shortest path SP using A star algorithm between current node C and E
10. Do
11. Take next GPS receiver output ft
12. For each previous fix ft-1 update shortest path SP using A star algorithm between the

starting point (S) and ending point (E) passing through ft-1
13. Identify the direction of movement using the point orientation algorithm
14. Identify actual map node using kd tree based nearest node search algorithm
15. While ( ft-1! = E)
16. End
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5. Case Analysis

The proposed REN system was verified and validated using a case study. For the case
study, the road networks of Punjab and Haryana (two states of India) were considered.
The considered road networks include urban, suburban and rural areas. Different types of
roads were considered for the experiment based on the selected area. For this experiment,
the longitude and latitudes of the road networks were considered. Due to its user-friendly
interface and easy availability, mobile phone-based applications are frequently used for
navigation. Therefore, for this experiment, the REN prototype was developed as an Android
application. During the experiment, two modes of travel were considered: pedestrian and
travel modes. In travel mode, the device speed was from 5 km/h to 80 km/h (based on
allowed traffic limits).

A mobile application (as shown in Figure 4) was developed for data collection and to
analyse the accuracy and performance of the REN system. The frequency of the inertial unit
was about 30 Hz (it depends on the mobile device used to implement REN). The sample
rate for the GPS receiver was between 1 to 10 seconds, depending on the type of travelling
mode (pedestrian or vehicle). Data from predefined routes were first collected to create the
spatial reference data (i.e., map in CSV format). A few volunteers were selected, and their
GPS trajectories were captured while moving, as shown in Table 2.

Table 2. Route Specification.

Route
Number Distance (in km) Road Beginning and Ending Position

(Lat, Lon) in Degree Unit Route Type

1 0.3 (30.516913,76.660170)(30.514242,76.660846) Pedestrian

2 0.65 (30.512529,76.658809)(30.517021,76.660418) Pedestrian

3 7.2 (30.518102,76.659002)(30.487103,76.603105) Road

4 32.4 (30.518102,76.659002)(30.338219,76.832267) Road

5 16 (30.281446,76.834756)(30.335909,76.834155) Road

6 45.3 (30.515920,76.658856)(30.258633,76.852609) Road

7 48.2 (30.257539,76.852845)(30.478197,76.578609) Road

8 60.3 (30.173239,76.861614)(30.532606,76.678967) Road

For this experiment, we considered eight road networks (shown in Table 2) covering
pedestrian and vehicle movement. The mobile phone’s built-in GPS and GLONASS module
was used to receive the GPS points.

5.1. Comparison Metrics

The proposed system was evaluated based on accuracy, performance, and space
matrices. The proposed approach calculates accuracy by identifying the correct location
mapping for POI’s. Accuracy determines the percentage of correctly identified locations
concerning the recorded GPS points. Equation (3) provides the formula to calculate the
accuracy. Further, to identify the accuracy, matched/unmatched node count (MaUC) was
calculated based on the wrong and correct mapping of GPS points. If the received GPS
receiver points are T = 〈T1, T2, . . . ., Tu〉 and P = 〈P1, P2, . . . ., Pm〉 are the road points, then
MaUC returns the number of T nodes correctly and wrongly mapped with P.

Accuracy =
Total number o f matched nodes

Total number o f node considered
× 100 (3)

Similarly, the root mean square error (RMSE) metric was used to identify the er-
ror rate in the mapping process. RMSE calculates the deviation between obtained map-
ping results and standard mapping results. The RMSE of received GPS receiver points
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T = 〈T1, T2, . . . ., Tu〉 can be calculated using Equation (4), where SD = 〈SD1, SD2, . . . ., SDu〉
is the standard mapping series.

RMSE =

√
1
u
∗

u

∑
i=1

(SDi − Ti)
2 (4)

Storage requirement is also calculated using the total storage space required on sec-
ondary storage for application data. To identify the performance of the proposed system,
execution time of location identification and route-finding algorithm is calculated using
Equation (5). It includes the total time elapsed by an algorithm to generate the results.
Where ET is the end time of the process and ST is the start time of the process.

Total Execution Time (TT) = ET− ST (5)

5.2. Experimental Results

To evaluate the performance of the proposed system in real time, we used mobile
devices in an outdoor environment. During the experiment, the mobile device was kept in
such a position that x-axis of the device is along the forward direction and y-axis on the
right side with the perpendicular to the x-axis. The Z-axis is perpendicular to the plane
formed by x and y-axis, which is an x-y plane. We performed experiments in an outdoor
environment to obtain the maximum precision value of the GPS receiver and good heading
information of the inertial unit. The experiments were executed two–five times by eight
different users/participants on pre-decided routes (as shown in Table 2). The distance
covered by the eigjt users is shown in Table 3.

Table 3. User information on test.

Route Number User1 User2 User3 User4 User5 User6 User7 User8

Distance Covered
(in km) 80 105 186 33 93.5 108 134 77

The accuracy and RMSE of the location identification process were calculated by
analysing the experimental data received from eight users. The average accuracy of
97.75 per cent and an average RMSE of 13.2 per cent (0.132 units) were recorded. The value
of accuracy and RMSE achieved by eight users is shown in Figure 5 According to Figure 5,
the maximum recorded accuracy and RMSE were 99 per cent and 17 per cent (0.17 units),
respectively, whereas the minimum value of accuracy and RMSE were 96 and 11.3 per cent,
respectively.
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Further, to check the impact of the density of road nodes on the accuracy, we experi-
mented on a pedestrian track (of distance 300 m) having different nodes count (in the range
of 10 to 100). The experiment was repeated 10 times for 30 GPS points each time with a
sampling rate of 10 seconds and observed the accuracy in terms of accuracy percentage,
RMSE, and matched/unmatched node count (MaUC). Figures 6–8 shows the accuracy
achieved concerning different node densities.
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Road node density was set between 0.033 and 0.333 nodes per meter to analyse the
influence of node density on mapping accuracy. For the considered track of 300 m, the
maximum accuracy to map 30 GPS points was 98.3 per cent, and the minimum accuracy
was 30.1 per cent. Similarly, the maximum and minimum value of RMSE is 0.54 and 0.127,
respectively. The number of road nodes was lower and far apart in sparse areas (due to
low node density). As a result, GPS locations were mapped to nodes that were far away,
resulting in inaccurate mapping.

Similarly, road node density was sufficiently good for the dense area, resulting in
better GPS location mapping to road nodes. In this experiment, it was also observed that
after a certain node density, accuracy and RMSE remain constant, and after that, increasing
node density has no significant influence on the mapping process’ accuracy. This accuracy
behavior will remain the same for the different types of GPS.

If we make the node density very dense, then instead of improving the accuracy, it
results in inappropriate results and poor performance. According to Figure 8, it is observed
that after the threshold level of node density, MaUC provides improved results. Therefore,
for good mapping, the track must have a sufficient number of nodes. If the track has fewer
nodes which are far from each other, it creates wrong mapping and poor matching results.

To demonstrate the usefulness of the REN data storage approach for navigation, it
was compared with OpenStreetMap (OSM). Figures 9 and 10 shows the comparison of
REN data storage approach and OSM dataset based on the accuracy and storage size. To
analyse the accuracy, the road was selected, and the navigation process was performed
using both datasets. According to this analysis, it was observed that the REN approach
gives approximately the same accuracy for both datasets. In some ways, the REN approach
has a better result. The probable reason is that the OSM dataset has data-quality issues and
location identification provides incorrect mapping due to the low quality of data.

Sustainability 2022, 14, x FOR PEER REVIEW 13 of 18 
 

 

Figure 9. Comparison of OSM and REN system based on achieved accuracy. 

 

Figure 10. Comparison of OSM and REN system based on storage space. 

Table 4 provides the comparison of the proposed REN with already existing technol-
ogies. The REN system uses the concept of a device camera to replace the heavy shapes 
files of maps to visualise the navigation output. REN achieved maximum accuracy of 99 
per cent with RMSE of 13.2. At the same time, the minimum value of RMSE is 0.113. Ac-
cording to Table 4, AR-based navigation systems use an RCB-D camera, augmented real-
ity and SLAM system for localisation and navigation in hybrid maps. This system attained 
maximum accuracy of 99 percent in an indoor area (in a room) [45]. Our proposed system 
also attained 99 percent accuracy in an outdoor area without using the GUI-based map 
information. The REN system was implemented using the road's basic location attributes, 
and these basic features are present for each and every road. Due to the requirement of 
general geospatial properties such as location information and turn identification, this 
case study can be implemented for other roads also.  

Figure 11 shows the CPU usage trends of the REN system (Figure 11a) and OSM-
based navigation application (Figure 11b). In Figure 10, the blue line shows maximum 
CPU frequency and for the selected system it was 41 percent, the green line shows CPU 
utilisation of system process and routes and other services, the orange line shows CPU 
usage of the selected navigation applications (OSM-based or REN). It was observed that 
OSM-based navigation requires more CPU than the REN system. According to Figure 11, 
the CPU usage of the REN system is 29 percent less than the OSM-based system. 

Figure 9. Comparison of OSM and REN system based on achieved accuracy.

Sustainability 2022, 14, x FOR PEER REVIEW 13 of 18 
 

 

Figure 9. Comparison of OSM and REN system based on achieved accuracy. 

 

Figure 10. Comparison of OSM and REN system based on storage space. 

Table 4 provides the comparison of the proposed REN with already existing technol-
ogies. The REN system uses the concept of a device camera to replace the heavy shapes 
files of maps to visualise the navigation output. REN achieved maximum accuracy of 99 
per cent with RMSE of 13.2. At the same time, the minimum value of RMSE is 0.113. Ac-
cording to Table 4, AR-based navigation systems use an RCB-D camera, augmented real-
ity and SLAM system for localisation and navigation in hybrid maps. This system attained 
maximum accuracy of 99 percent in an indoor area (in a room) [45]. Our proposed system 
also attained 99 percent accuracy in an outdoor area without using the GUI-based map 
information. The REN system was implemented using the road's basic location attributes, 
and these basic features are present for each and every road. Due to the requirement of 
general geospatial properties such as location information and turn identification, this 
case study can be implemented for other roads also.  

Figure 11 shows the CPU usage trends of the REN system (Figure 11a) and OSM-
based navigation application (Figure 11b). In Figure 10, the blue line shows maximum 
CPU frequency and for the selected system it was 41 percent, the green line shows CPU 
utilisation of system process and routes and other services, the orange line shows CPU 
usage of the selected navigation applications (OSM-based or REN). It was observed that 
OSM-based navigation requires more CPU than the REN system. According to Figure 11, 
the CPU usage of the REN system is 29 percent less than the OSM-based system. 

Figure 10. Comparison of OSM and REN system based on storage space.



Sustainability 2022, 14, 12720 13 of 17

Table 4 provides the comparison of the proposed REN with already existing technolo-
gies. The REN system uses the concept of a device camera to replace the heavy shapes files
of maps to visualise the navigation output. REN achieved maximum accuracy of 99 per cent
with RMSE of 13.2. At the same time, the minimum value of RMSE is 0.113. According to
Table 4, AR-based navigation systems use an RCB-D camera, augmented reality and SLAM
system for localisation and navigation in hybrid maps. This system attained maximum
accuracy of 99 percent in an indoor area (in a room) [45]. Our proposed system also attained
99 percent accuracy in an outdoor area without using the GUI-based map information.
The REN system was implemented using the road’s basic location attributes, and these
basic features are present for each and every road. Due to the requirement of general
geospatial properties such as location information and turn identification, this case study
can be implemented for other roads also.

Table 4. Comparison of proposed system with state-of-the-art techniques.

Algorithm Accuracy Error Key Features Reference

ORB-SLAM 93 percent

46.58 and 1.59 m
are the

maximum and
minimum RMSE

Uses ORB features to
perform tracking,

mapping, localisation and
loop closing.

[25]

GraphiumMM 93.1 Percent

Minimum RMSE
is 0.12 and

maximum RMSE
is 0.38

Graphical and
Topological features were

used for localisation
[34]

AR based
Navigation

99 percent for
indoor

environment

4 percent error
rate

RCB-D camera,
Augmented reality and

SLAM system was used to
provide the localisation

and navigation in
hybrid maps.

[45]

Proposed
navigation

system

Maximum
accuracy of 99

percent and
minimum

accuracy is 96
percent

0.113 and 0.17
are the

minimum and
maximum root
mean square
error values.

Uses CSV files as source
of reference data. Device
camera, A Star algorithm
and NNS are used for the
localisation, routing and

result visualizaton

Figure 11 shows the CPU usage trends of the REN system (Figure 11a) and OSM-
based navigation application (Figure 11b). In Figure 10, the blue line shows maximum
CPU frequency and for the selected system it was 41 percent, the green line shows CPU
utilisation of system process and routes and other services, the orange line shows CPU
usage of the selected navigation applications (OSM-based or REN). It was observed that
OSM-based navigation requires more CPU than the REN system. According to Figure 11,
the CPU usage of the REN system is 29 percent less than the OSM-based system.

Similarly, memory usage is shown in Figure 12. Memory usage and memory faults for
the REN system were less in comparison to an OSM-based navigation application. Memory
usage for OSM based navigation application were more in comparison to the REN system.
From the memory usage trends, it was observed that REN system have 35 percent less
memory requirements in comparison to OSM-based applications.
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6. Future Scope and Conclusions

Mobile devices are used for many daily activities and have become an integral part of
our life. Almost all desktop-based activities can be operated through the mobile phone. We
use mobile phones for essential communication and complex activities such as banking, en-
tertainment, art, audio/visual development, navigation, and searching. All these activities
use large storage space and processing capacities. Therefore, in this study, we attempted to
optimally use the mobile phone’s storage space and processing power for a very frequently
used application, i.e., a navigation application. The experiment was conducted in different
traffic conditions and speed limits between 5–80 km/h. The proposed methodology can
also be applied to other roads with a different speed limit.

In this study, we proposed a resource-efficient navigation system, which optimally uses
device resources and storage for navigation purposes. In the proposed system, instead of
using a heavy spatial dataset for navigation, a crowdsourcing-based light CSV dataset was
used for reference data. The CSV dataset comprises only the topological and geometrical
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information of the map. In contrast to the existing dataset (such as OSM), the REN system
does not use shapefiles for the graphical interface. A device camera was used to augment
the real-life navigation scenario to provide the graphical interface. The proposed system
used the K nearest neighbour algorithm with the Kd tree and support vector machine
for location identification. For finding the shortest distance, A star algorithm in recursive
mode was used. Further, a case study was performed to test the accuracy and performance
of the REN system. To validate the performance and accuracy of the proposed system, a
comparison analysis is performed between REN and OSM datasets. The comparison shows
that the REN system has approximately the same accuracy as the OSM dataset provides
for navigation.

Apart from the accuracy, the REN system storage scheme requires very little space
compared to the offline OSM dataset. Due to requiring less storage space, the REN system
provides better processing capabilities and optimal resource utilisation. According to the
experiments performed, the REN system requires less CPU and memory requirements.
Further, the REN system ensured a maximum accuracy of 99 percent with the lowest RMSE
of 0.11. REN system can work effectively with spatial data in CSV files format. If spatial
data is presented in an OSM format or in graphical shapes file format, then the REN system
will not work and requires some additional data processing mechanism. In the future,
additional spatial data conversion mechanisms can be added to the REN system to provide
compatibility with different spatial data formats.
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