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Abstract: This paper explores the properties of a family of bivariate copulas based on a new approach
using the counter-monotonic shock method. The resulting copula covers the full range of negative
dependence induced by one parameter. Expressions for the copula and density are derived and many
theoretical properties are examined thoroughly, including explicit expressions for prominent measures
of dependence, namely Spearman’s rho, Kendall’s tau and Blomqvist’s beta. The convexity properties
of this copula are presented, together with explicit expressions of the mixed moments. Estimation
of the dependence parameter using the method of moments is considered, then a simulation study
is carried out to evaluate the performance of the suggested estimator. Finally, an application of the
proposed copula is illustrated by means of a real data set on air quality in New York City.

Keywords: bivariate copula; counter-monotonic; negative dependence; singularity; financial risk;
statistical modeling

MSC: 62H05

1. Introduction

Copula theories have undergone a spectacular growth in recent decades in view
of the increasing importance of modeling and describing different relationships among
random variables. New families of copulas have emerged, motivated by the importance of
investigating the dependence’s structure in a variety of fields including actuarial science,
hydrology, finance and the insurance industry, among others. It is also known, as mentioned
in Kole et al. (2007), that copulas offer financial risk managers an interesting mathematical
tool to represent complex dependencies in multivariate risk models and are preferable to
the traditional, correlation-based approach.

An important bivariate copula model obtained with Sklar’s theorem is the bivariate
Marshall–Olkin copula (Nelsen 2006), also known as the generalized Cuadras–Augé family.
It is based on the bivariate exponential distribution defined through a stochastic repre-
sentation interpreted in terms of fatal shocks originally presented in Marshall and Olkin
(1967). There is a vast literature documenting the development of generalized families of
distributions based on the Marshall and Olkin shock model. See, for instance, Almongy
et al. (2021); El-Morshedy et al. (2020); Eliwa and El-Morshedy (2020); Haj Ahmad and
Almetwally (2020) and references therein where different extensions of Marshall–Olkin
distributions have been provided. It is worth mentioning that the copula of Marshall–Olkin
describes only the positive dependence and is neither absolutely continuous nor singular,
but rather has both absolutely continuous and singular components. A property that arises
naturally in higher dimensions (see Marshall and Olkin 1967).

The aim of this paper is to examine a counterpart of the Cuadras–Augé family of
copulas specific for modeling the negative dependence. This can be done by using the
counter-monotonic shock method introduced in Genest et al. (2018). More precisely, the
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proposed bivariate copula is mainly based on the bivariate exponential distribution with
negative dependence introduced recently in Bentoumi et al. (2021). This model is perspicu-
ous and interesting in the sense that it fully covers the negative dependence, induced by
only one parameter of dependence, and does not impose any restrictions on the correlation
structure.

The contribution of this paper is to introduce, in the next section, a new approach-
based family of bivariate copulas that span all degrees of negative dependence. In Section 3,
we investigate the properties of the suggested family of copulas. We will show that our
copula has both absolutely continuous and singular components. We also derive explicit
expressions for dependence (concordance) measures, Spearman’s rho, Kendall’s tau and
Blomqvist’s beta, and conclude this section by discussing the product moment of the copula.
Estimation of the dependence parameter using the method of moments is considered in
Section 4. The proposed framework will be illustrated by simulations in Section 5. For
the purpose of practical illustration, a real case study is considered in Section 6. Finally,
Section 7 provides some concluding remarks and discusses some directions for further
research.

2. Proposed Family of Copulas

As noted in the introduction, the purpose of this paper is to present a new strategy to
construct a family of copulas that fully covers the negative dependence. To reach this goal,
we use the approach taken by Bentoumi et al. (2021), who have introduced a new family of
bivariate exponential distribution with given marginal based on the counter-monotonic
shock method initiated by Genest et al. (2018).

2.1. The Model

Bentoumi et al. (2021) proposed a negatively dependent family of bivariate exponential
distributions described by one dependence parameter θ ∈ (0, 1). It has both an absolute
continuous part and a singular part, similar to many bivariate exponential models reported
in the literature. Specifically, let Λ = (λ1, λ2), λi > 0, i = 1, 2 and let U be a uniform
random variable distributed on [0, 1]. Borrowing the notation of Bentoumi et al. (2021),
we denote BED−(θ, Λ) the set of all bivariate exponential random pairs (X, Y), defined
as follows.

Definition 1. Let (X1, X2) and (Y1, Y2) be independent random pairs such that Yi ∼Exp(θλi)
and Xi ∼Exp(λi(1 − θ)), i = 1, 2. Denote by Gi the distribution functions of Yi, i = 1, 2,
respectively. Assume that

1. Y1 and Y2 are counter-monotonic; that is, Y1 = G−1
1 (U) and Y2 = G−1

2 (1−U).
2. X1, X2 and U are independent.

Then

X = min{X1, G−1
1 (U)} and Y = min{X2, G−1

2 (1−U)}. (1)

From the stochastic representation (1), we observe that the family BED−(θ, Λ) ap-
proaches the independence case when θ goes to 0 and it reaches the perfect negative
dependence described by the Fréchet–Hoeffding lower bound when θ goes to 1. Moreover,
it is easily seen that BED−(θ, Λ) is a family of bivariate exponential random pairs with
given marginal distributions, since by construction, X ∼ Exp(λ1) and Y ∼ Exp(λ2). It is
interesting to outline that Equation (1) can be alternatively reformulated as

X = min
{
− ln(U1)

λ1(1− θ)
,− ln(U)

λ1θ

}
and Y = min

{
− ln(U2)

λ2(1− θ)
,− ln(1−U)

λ2θ

}
, (2)

where U1, U2 and U are independent and uniformly distributed on [0, 1].
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For a nonnegative random vector (X, Y) with joint density function fX,Y(x, y) and
joint survival function SX,Y(x, y), the bivariate hazard rate function (BHRF) is defined as
hX,Y(x, y) = fX,Y(x, y)/SX,Y(x, y). Thus, if (X, Y) BED−(θ, Λ), then

hX,Y(x, y) = λ1λ2(1− θ) +
λ1λ2θ(1− θ)

e−λ1θx + e−λ2θy − 1
,

for (x, y) satisfying e−λ1θx + e−λ2θy − 1 > 0 (see Bentoumi et al. 2021 for more details about
the joint density and survival functions).

The surface plots of the bivariate hazard rate function for λ1 = 0.1, λ2 = 0.2 and
different values of θ are shown in Figure 1.

Figure 1. Bivariate hazard rate functions for (λ1, λ2) = (0.1, 0.2) and different values of θ: (a) θ = 0.2,
(b) θ = 0.5, (c) θ = 0.75 and (d) θ = 0.9.

2.2. New Approach-Based Copula

The concept of counter-monotonicity can be viewed in relation to the Fréchet–Hoeffding
lower bound as described in the definitions below.

Definition 2. The Fréchet–Hoeffding lower and upper bounds are given by W = max(u + v−
1, 0) and M = min(u, v), respectively.

Definition 3. The random vector (X, Y) with marginal distributions F and G, respectively,

is counter-monotonic if there exists a unit uniform random variable U such that (X, Y) d
=

(F−1(U), G−1(1−U)). In other words, the joint distribution function of (X, Y) is exactly the
Fréchet–Hoeffding lower bound.

Let us first recall some standard definitions and properties about copulas, as they can
be found for instance in Nelsen (2006). Let X1 and X2 be continuous random variables with
joint distribution function H and marginal distribution functions F1 and F2, respectively.
Then, the random vector X = (X1, X2) has its copula
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CX(u1, u2) = H(F−1
1 (u1), F−1

2 (u2)), 0 ≤ u1, u2 ≤ 1.

Denote H̄ and F̄i = 1− Fi, i = 1, 2 the joint survival function and marginal survival
functions, respectively; then, the survival copula is

ĈX(u1, u2) = H̄(F̄−1
1 (u1), F̄−1

2 (u2)), 0 ≤ u1, u2 ≤ 1.

The survival copula is a useful tool to describe the structure of dependence among
the components and has been widely applied in survival analysis, financial science and
reliability engineering.

As is well known, the lower and upper Fréchet–Hoeffding bounds W and M are
copulas. Moreover, for any copula C and all (u, v) ∈ [0, 1]2

W(u, v) ≤ C(u, v) ≤ M(u, v).

We end this preliminary by recalling an important copula that we will encounter
later, the product copula Π(u, v) = uv. In what follows, we study the family of copulas
corresponding to the class of distributions, BED−(θ, Λ).

Proposition 1. For every θ ∈ (0, 1), the survival copula of (X, Y) ∈ BED−(θ, Λ) is given, for all
(u, v) ∈ [0, 1]2, by

Cθ(u, v) = u1−θv1−θW(uθ , vθ). (3)

Proof. Let (X, Y) ∈ BED−(θ, Λ) and denote by F̄ and Ḡ the respective survival functions
of X and Y. It is well known that the survival copula Cθ of (X, Y) is exactly the joint
distribution of the uniform random pair (V1, V2) = (F̄(X), Ḡ(Y)). Making use of (2), a bit
of algebra yields

V1 = e−λ1X = max
(

U
1

1−θ
1 , U

1
θ

)
and V2 = e−λ2Y = max

(
U

1
1−θ
2 , (1−U)

1
θ

)
. (4)

Using the fact that U1, U2 and U are independent, it follows that for all (u, v) ∈ [0, 1]2,

Cθ(u, v) = P(V1 ≤ u, V2 ≤ v)

= P
(

U1 ≤ u1−θ , U2 ≤ v1−θ , 1− vθ ≤ U ≤ uθ
)

= u1−θv1−θW(uθ , vθ).

This ends the proof of Proposition 1.

As stated in the introduction, the family of copulas {Cθ , θ ∈ (0, 1)} describes only the
negative dependence. Note that the copula Cθ is diagonally symmetric since
Cθ(u, v) = Cθ(v, u) for all (u, v) ∈ [0, 1]2. We also remark, in light of Equation (3), that the
Fréchet–Hoeffding lower bound copula, W, and the product copula, Π, appear as limiting
cases of Cθ when θ goes to 0 and 1, respectively. Moreover, the parameter range can be
extended to 0 ≤ θ ≤ 1 and indeed, C0 = Π and C1 = W.

Recall the Cuadras–Augé family of copulas (see Cuadras and Augé 1981) defined, for
(θ, u, v) ∈ [0, 1]3, by

C̃θ(u, v) = u1−θv1−θ M(uθ , vθ). (5)

One can observe that the family of copulas Cθ is expressible in a similar fashion to
the Cuadras–Augé family of copulas, involving the Fréchet lower bound rather than the
upper bound.

It is worth mentioning here that the family of copulas Cθ has been introduced pre-
viously in the literature. It can be easily deduced, for instance, from Equation (1) in
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Dolati et al. (2014), Example 3 in Durante (2009), Proposition 4.1 of Khoudraji (1995) or
Theorem 2.1 of Liebscher (2008). Nevertheless, we are not aware of any published work
where its construction was based on a counter-monotonic shock model and consequently its
corresponding stochastic representation (4). Indeed, the latter representation will provide a
useful and easy-to-implement algorithm for generating data from the copula Cθ :

1. Generate three independent values u1, u2 and u3 from uniform [0,1].

2. Set u = max
(

u
1

1−θ
1 , u

1
θ
3

)
and v = max

(
u

1
1−θ
2 , (1− u3)

1
θ

)
.

3. The desired pair is (u, v).

Figure 2 illustrates scatterplots for simulations of the proposed family of copulas Cθ ,
each using 100 pairs of points generated by the above algorithm for different values of θ.
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Figure 2. Scatterplots for Cθ .

Proposed copula Cθ(u, v) based on different values of θ is displayed in Figure 3.

(a) (b)

(c) (d)

Figure 3. Copulas Cθ for (a) θ = 0.2, (b) θ = 0.5, (c) θ = 0.75 and (d) θ = 0.9.
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3. Properties of the Copula Cθ

The following section will be devoted to investigating the properties of the family of
copulas Cθ . We first present the singular and the absolutely continuous components of
the copula and then derive the corresponding copula density function. The concordance
measures of Cθ , namely Spearman’s rho and Kendall’s tau, will be addressed and expressed
succinctly in terms of the beta function. We conclude by analyzing the product moments of
the copula that will be exploited in the next section.

3.1. Singularity

Analogously to the Marshall–Olkin copula, the proposed copula Cθ is neither abso-
lutely continuous nor singular, but rather has both absolutely continuous and singular
components. These two parts involved the incomplete beta function B(x, a, b) defined by

B(x, a, b) =
∫ x

0
ta−1(1− t)b−1dt a, b, x > 0.

Recall that the incomplete beta function satisfies the following useful equation

B(x, a + 1, b) + B(x, a, b + 1) = B(x, a, b). (6)

Note that the beta function B(a, b) is a special case of the incomplete beta function
given by B(1, a, b). It is well known that the beta function enjoys the following relations

B(x + 1, y) = B(x, y)
x

x + y
and B(x, y + 1) = B(x, y)

y
x + y

. (7)

Thanks to the preceding equations, we will prove that the copula Cθ can be decom-
posed into the sum of a singular component, Sθ , and an absolutely continuous compo-
nent, Aθ .

Proposition 2. The singular and absolutely continuous components of Cθ are given by

Sθ(u, v) =

{
B
(

uθ , 1
θ , 1

θ

)
− B

(
1− vθ , 1

θ , 1
θ

)
if uθ + vθ − 1 > 0,

0 if uθ + vθ − 1 ≤ 0,

and
Aθ(u, v) = Cθ(u, v)− Sθ(u, v).

In addition, the Cθ-measure of the singular component, that is, P(Uθ + Vθ − 1 = 0) where
(U, V) ∼ Cθ , is given by

Sθ(1, 1) = B
(

1
θ

,
1
θ

)
.

Proof. The singular component of Cθ is expressed by

Sθ(u, v) = Cθ(u, v)−Aθ(u, v),

where

Aθ(u, v) =
∫ u

0

∫ v

0

∂2Cθ(x, y)
∂x∂y

dx dy.

Let us begin by showing that Aθ(u, v) = 0 if uθ + vθ − 1 ≤ 0. Choose (x, y) ∈
[0, u] × [0, v] and note that xθ + yθ − 1 ≤ uθ + vθ − 1 ≤ 0. Thus, Cθ(x, y) = 0 for all
(x, y) ∈ [0, u]× [0, v] and consequently Aθ(u, v) = 0.
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Next, let us suppose uθ + vθ − 1 > 0 and define Ku,v = {(x, y) ∈ [0, u] × [0, v] :
xθ + yθ − 1 > 0}. Then, we obtain

Aθ(u, v) =
∫
Ku,v

∂2Cθ(x, y)
∂x∂y

dx dy

=
∫ u

(1−vθ)
1
θ

[∫ v

(1−xθ)
1
θ

{
(1− θ)x−θ + (1− θ)y−θ − (1− θ)2x−θy−θ

}
dy
]

dx

= J1 + J2 + J3,

where

J1 = (1− θ)
∫ u

(1−vθ)
1
θ

∫ v

(1−xθ)1/θ
x−θdy dx,

J2 = (1− θ)
∫ u

(1−vθ)
1
θ

∫ v

(1−xθ)1/θ
y−θdy dx,

J3 = −(1− θ)2
∫ u

(1−vθ)
1
θ

∫ v

(1−xθ)1/θ
x−θy−θdy dx.

It could be readily seen that

J1 = (1− θ)
∫ u

(1−vθ)
1
θ
(v− (1− xθ)

1
θ )x−θdx

= v(u1−θ − (1− vθ)
1
θ−1)− (1− θ)

∫ u

(1−vθ)
1
θ

x−θ(1− xθ)1/θdx.

Setting z = xθ , it follows that

J1 = v(u1−θ − (1− vθ)
1
θ−1)− (1− θ)

θ

∫ uθ

1−vθ
z1/θ−2(1− z)1/θdz

=
(1− θ)

θ

[
B
(

1− vθ ,
1
θ
− 1,

1
θ
+ 1
)
− B

(
uθ ,

1
θ
− 1,

1
θ
+ 1
)]

(8)

+v(u1−θ − (1− vθ)1/θ−1).

Similar arguments lead to

J2 =
1
θ

[
B
(

1− vθ ,
1
θ

,
1
θ

)
− B

(
uθ ,

1
θ

,
1
θ

)]
+ v1−θ(u− (1− vθ)1/θ), (9)

and

J3 = − (1− θ)

θ

[
B
(

1− vθ ,
1
θ
− 1,

1
θ

)
− B

(
uθ ,

1
θ
− 1,

1
θ

)]
(10)

−v1−θ(u1−θ − (1− vθ)1/θ−1).

Combining (8)–(10) and making use of the identities (6) and (7) gives

Aθ(u, v) = Cθ(u, v)− B
(

uθ ,
1
θ

,
1
θ

)
+ B

(
1− vθ ,

1
θ

,
1
θ

)
,

which completes the proof of Proposition 2.

3.2. Density Function Corresponding to Cθ

In the following, denote

Kθ = {(u, v) ∈ [0, 1] : uθ + vθ > 1}
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and
K∗θ = {(u, v) ∈ [0, 1] : uθ + vθ = 1}.

Let IA denote the indicator function of the set A. Hence, the density function of the
copula Cθ can be derived as follows.

Proposition 3. The density function cθ of the copula Cθ is given by

c(u, v) = c1(u, v)I{(u,v)∈Kθ} + c0(u)I{(u,v)∈K∗θ },

where
c1(u, v) = (1− θ)(u−θ + v−θ)− (1− θ)2u−θv−θ

and

c0(u) = θ
(

1− uθ
) 1

θ−1
.

Proof. The function c1 represents the absolutely continuous part of the density function.
It is then obtained in terms of the continuous part Aθ of Cθ described in Proposition 2.
Specifically, one has, for all (u, v) ∈ Kθ ,

c1(u, v) =
∂2Aθ

∂u∂v
= (1− θ)u−θ + (1− θ)v−θ − (1− θ)2u−θv−θ .

In contrast, the function c0 describes the positive mass of probability distributed over
the curve K∗θ . To derive the explicit form of the component c0, we adopt the approach
developed in Ruiz-Rivas and Cuadras (1998). In other words, c0 represents the singular
component of the density c with respect to the measure ν defined, for any Borel set B in
[0, 1]2,

ν(B) = λ

{
u ∈ [0, 1] :

(
u,
(

1− uθ
) 1

θ

)
∈ B

}
,

where λ is the Lebesgue measure in [0, 1]. In addition, this measure can also be viewed as a
product measure defined, for all Borel sets A and B in [0, 1], by

ν(A× B) =
∫

A
I{
(1−uθ)

1
θ ∈B

}dλ(u).

Standard calculations show for uθ + vθ > 1,∫ u

0

∫ v

0
θ
(

1− xθ
) 1

θ−1
dν(x, y) = B

(
uθ ,

1
θ

,
1
θ

)
− B

(
1− vθ ,

1
θ

,
1
θ

)
= Sθ(u, v).

This shows that c0(x) = θ
(
1− xθ

) 1
θ−1 is the singular part of the density c. It can be

shown that,∫ 1

0

∫ 1

0
c(u, v)(u, v)du dv =

∫ 1

0

∫ 1

0
c1(u, v)du dv +

∫ 1

0

∫ 1

0
c0(u)dν(x, y) = 1,

which completes the proof of the proposition.

To illustrate, the density of Cθ for θ ∈ {0.2, 0.5, 0.75, 0.99} appears in Figure 4.
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(3)(3)

(a) (b)

(c) (d)

Figure 4. Copula density for (a) θ = 0.2, (b) θ = 0.5, (c) θ = 0.75 and (d) θ = 0.9.

3.3. Concordance Measures of Cθ

First of all, we will show that the family of copulas {Cθ , θ ∈ [0, 1]} is negatively
ordered with respect to concordance order. To do so, let us recall some basic definitions
about the point-wise partial ordering of copulas.

Definition 4. Let C1 and C2 be two copulas. We say that C1 is smaller than C2 with respect to the
concordance ordering, denoted C1 ≺ C2, if C1(u, v) ≤ C2(u, v), for all (u, v) ∈ [0, 1]2.

Definition 5. A family {Cα} of copulas is positively ordered if Cα1 ≺ Cα2 whenever α1 ≤ α2, and
negatively ordered if Cα1 � Cα2 whenever α1 ≤ α2.

Proposition 4. The family {Cθ , θ ∈ [0, 1]} is negatively ordered, i.e.,

θ1 ≤ θ2 =⇒ Cθ2 ≺ Cθ1 ∀ (θ1, θ2) ∈ [0, 1]2.

Proof. First, note that the case u = 0 or v = 0 is trivial. Otherwise, the copula Cθ can be
rewritten in the following form

Cθ(u, v) = uv max{1− (1− u−θ)(1− v−θ), 0}, (u, v) ∈ (0, 1)2.

Therefore, the result is immediately deduced from the fact that, for fixed (u, v) ∈ (0, 1),
θ → 1− (1− u−θ)(1− v−θ) is a decreasing function and u → max(u, 0) is an increasing
function.

We remark that the degree of the dependence generated by {Cθ} decreases in terms of
θ. Another observed consequence of the preceding proposition is that the family {Cθ} is
negatively quadrant dependent since Cθ ≺ Π for all θ ∈ [0, 1].

We now focus on the most widely used measures of association (concordance), namely
Spearman’s rho and Kendall’s tau. We aim to derive explicit expressions for these measures
in terms of the beta function.
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Proposition 5. Spearman’s rho and Kendall’s tau of Cθ are given by

ρθ = − 3
(2− θ)2

{
θ2 − 4 B

(
2
θ

,
2
θ

)}
, (11)

and

τθ = − 2θ2

(2− θ)2

{
1−

(
4
θ
− 1
)

B
(

2
θ

,
2
θ

)}
. (12)

Proof. Let U and V be independent uniform random pairs. Spearman’s rho is expressed in
terms of Cθ as follows,

ρθ = 12E[Cθ(U, V)]− 3

= 12
∫∫
Kθ

{
vu1−θ + uv1−θ − u1−θv1−θ

}
du dv− 3

= 12
∫ 1

0

[∫ 1

(1−uθ)
1
θ

{
vu1−θ + uv1−θ − u1−θv1−θ

}
dv
]

du− 3

= − 3θ2

(2− θ)2 − 12
(

1
2

I1 +
1

2− θ
I2 −

1
2− θ

I3

)
,

where

I1 =
∫ 1

0
u1−θ(1− uθ)

2
θ du, I2 =

∫ 1

0
u(1− uθ)

2
θ−1 du and I3 =

∫ 1

0
u1−θ(1− uθ)

2
θ−1 du.

The above integrals can be calculated in terms of the beta function using the next
formula.

By setting x = uθ , it is straightforward to verify that∫ 1

0
ua(1− uθ)bdu =

1
θ

∫ 1

0
x

a+1
θ −1(1− x)b dx

=
1
θ

B
(

a + 1
θ

, b + 1
)

.

Therefore,

ρθ = − 3θ2

(2− θ)2 −
12
2θ

B
(

2
θ
− 1,

2
θ
+ 1
)
− 12

θ(2− θ)
B
(

2
θ

,
2
θ

)
(13)

+
12

θ(2− θ)
B
(

2
θ
− 1,

2
θ

)
.

By virtue of (7), one can express B
( 2

θ − 1, 2
θ + 1

)
and B

( 2
θ − 1, 2

θ

)
in terms of B

( 2
θ , 2

θ

)
B
(

2
θ
− 1,

2
θ

)
=

4− θ

2− θ
B
(

2
θ

,
2
θ

)
, (14)

B
(

2
θ
− 1,

2
θ
+ 1
)

=
2

2− θ
B
(

2
θ

,
2
θ

)
. (15)

Putting (13)–(15) together, we have the desired expression of ρθ

ρθ = − 3
(2− θ)2

{
θ2 − 4 B

(
2
θ

,
2
θ

)}
.
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We are now going to address τθ using its tractable expression

τθ = 1− 4
∫∫

[0,1]2

∂Cθ(u, v)
∂u

∂Cθ(u, v)
∂v

du dv

= 1− 4
∫∫
Kθ

ψθ(u, v)φθ(u, v)du dv,

where

ψθ(u, v) = v1−θ + (1− θ)u−θv− (1− θ)u−θv1−θ ,

φθ(u, v) = u1−θ + (1− θ)uv−θ − (1− θ)u1−θv−θ .

It follows that

τθ = 1− 4
9

∑
i=1

Ij, (16)

where

I1 =
∫∫
Kθ

u1−θv1−θ du dv =
1

(2− θ)2 −
1

θ(2− θ)
B
(

2
θ
− 1,

2
θ

)
,

I2 =
∫∫
Kθ

(1− θ)uv1−2θ du dv =
1
4
− 1

2θ
B
(

2
θ

,
2
θ
− 1
)

,

I3 = −
∫∫
Kθ

(1− θ)u1−θv1−2θ du dv = − 1
2(2− θ)

+
1
2θ

B
(

2
θ
− 1,

2
θ
− 1
)

,

I4 =
∫∫
Kθ

(1− θ)u1−2θv du dv =
1
4
− 1− θ

2θ
B
(

2
θ
− 2,

2
θ
+ 1
)

,

I5 =
∫∫
Kθ

(1− θ)2u1−θv1−θ du dv =
(1− θ)2

(2− θ)2 −
(1− θ)2

θ(2− θ)
B
(

2
θ
− 1,

2
θ

)
,

I6 = −
∫∫
Kθ

(1− θ)2u1−2θv1−θ du dv = − 1− θ

2(2− θ)
+

(1− θ)2

θ(2− θ)
B
(

2
θ
− 2,

2
θ

)
,

I7 = −
∫∫
Kθ

(1− θ)u1−2θv1−θ du dv = − 1
2(2− θ)

+
1− θ

θ(2− θ)
B
(

2
θ
− 2,

2
θ

)
,

I8 = −
∫∫
Kθ

(1− θ)2u1−θv1−2θ du dv = − 1− θ

2(2− θ)
+

1− θ

2θ
B
(

2
θ
− 1,

2
θ
− 1
)

,

I9 =
∫∫
Kθ

(1− θ)2u1−2θv1−2θ du dv =
1
4
− 1− θ

2θ
B
(

2
θ
− 2,

2
θ
− 1
)

.

The previous integrals can be expressed in terms of B
( 2

θ , 2
θ

)
using the next relations

B
(

2
θ
− 1,

2
θ

)
= B

(
2
θ

,
2
θ
− 1
)
=

4− θ

2− θ
B
(

2
θ

,
2
θ

)
,

B
(

2
θ
− 2,

2
θ

)
=

4− θ

1− θ
B
(

2
θ

,
2
θ

)
,

B
(

2
θ
− 1,

2
θ
− 1
)

=
2(4− θ)

2− θ
B
(

2
θ

,
2
θ

)
,

B
(

2
θ
− 2,

2
θ
+ 1
)

=
4− θ

(1− θ)(2− θ)
B
(

2
θ

,
2
θ

)
,

B
(

2
θ
− 2,

2
θ
− 1
)

=
(4− θ)(4− 3θ)

(1− θ)(2− θ)
B
(

2
θ

,
2
θ

)
,

and the conclusion follows upon substitution in (16).
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Another measure of dependence is Blomqvist’s beta which can be defined for a random
pair (X, Y) with copula C by β(C) = 4C(1/2, 1/2)− 1.

Proposition 6. For the copula Cθ , Blomqvist’s beta is given by

βθ = 2θ+1 − 22θ − 1 for all θ ∈ [0, 1].

Proof. The proof is straightforward, and therefore omitted.

It is noteworthy that the above-stated formulas of ρθ , τθ and βθ coincide exactly with
the lower bounds expressed in Proposition 7 of Dolati et al. (2014).

Remark 1. It is ensured by means of Proposition 4 that the measures of dependence Kendall’s tau,
Spearman’s rho and Blomqvist’s beta are nonincreasing functions with respect to the dependence
parameter θ. In fact, if θ1 ≤ θ2, then Cθ2 ≺ Cθ1 . Hence, we obtain ρθ2 ≤ ρθ1 , τθ2 ≤ τθ1 and
βθ2 ≤ βθ1 (Dolati et al. 2014; Nelsen 2006). Furthermore, one observes from Proposition 5 that
ρθ = τθ = −1 when θ = 1 since B(2, 2) = 1/6. Additionally, ρθ and τθ are linearly linked;
that is,

τθ = − θ2

2
+

θ(4− θ)

6
ρθ .

Recall (Capéraà and Genest 1993; Lehmann 1966; Nelsen 2006) that the random vari-
able Y is said to be left-tail increasing in X, denoted LTI(Y|X), if P(Y ≤ y|X ≤ x) is
nondecreasing in x for all y. Similarly, Y is said to be right-tail decreasing in X, denoted
RTD(Y|X), if P(Y > y|X > x) is nonincreasing in x for all y. Capéraà and Genest (1993)
proved, for continuous random variables X and Y, that if LTI(Y|X) and RTD(Y|X) both
hold, then ρ ≤ τ ≤ 0. A simpler proof can be found in Fredricks and Nelsen (2007). This
result was extended to a discrete case by Mesfioui and Tajar (2005).

The family of copulas, Cθ , possesses this property. In fact, let (U, V) be uniform
random pair with distribution Cθ . One can see that, for all (u, v) ∈ (0, 1)2,

P(V ≤ v|U ≤ u) =
Cθ(u, v)

u
= v1−θ max(1− (1− vθ)u−θ , 0),

which is obviously nondecreasing in u for all v, so LTI(V|U) is in force. Similarly, one
observes that for all (u, v) ∈ (0, 1)2,

P(V > v|U > u) =
1− u− v + Cθ(u, v)

1− u
=

1− u− v + u1−θv1−θ max(uθ + vθ − 1, 0)
1− u

.

Easy calculations show that the latter is nonincreasing in u for all v, which ensures
that RTD(V|U) holds. Therefore, Spearman’s rho and Kendall’s tau of Cθ described in
Proposition 5 are such that ρθ ≤ τθ ≤ 0. This fact is illustrated in Figure 5.
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Kendall's tau
Blomqvist’s beta

Figure 5. Graph of Spearman’s rho, Kendall’s tau and Blomqvist’s beta.
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3.4. Convexity Properties of Cθ

In this subsection we address some convexity properties of the copula Cθ . We start by
recalling the Schur-concavity and the submigrativity properties..

Definition 6. A bivariate copula C is called Schur concave if for all u, v and γ in [0, 1],

C(u, v) ≤ C(γu + (1− γ)v, γv + (1− γ)u).

Definition 7. A bivariate copula C is called submigrative if it is symmetric and satisfies

C(γu, v) ≤ C(u, γv),

for 0 ≤ v ≤ u ≤ 1 and 0 ≤ γ ≤ 1.

Proposition 7. The copula Cθ defined by (3) is Schur concave.

Proof. It is clear, after some elementary algebra, that W is Schur concave. The result follows
immediately as a consequence of Proposition 9 of Dolati et al. (2014).

Proposition 8. The copula Cθ defined by (3) is submigrative.

Proof. It is easy to show that W is submigrative. We then make use of Proposition 10 of
Dolati et al. (2014) to end the proof.

3.5. Mixed Moment of Cθ

In what follows, we derive the expression of the mixed moment corresponding to
copula Cθ . This result will be of great use in studying the asymptotic behaviour of the
estimator of the dependence parameter that will be explored in the next section.

Proposition 9. If (U, V) is a random pair distributed as a copula Cθ , then for any nonnegative
integers i and j,

E
(

UiV j
)
= α(i, j, θ) + β(i, j, θ) B

(
i + 1

θ
,

j + 1
θ

)
, (17)

where

α(i, j, θ) =
(i− θ + 1)(j− θ + 1)− ijθ2

(i + 1)(j + 1)(i− θ + 1)(j− θ + 1)

and
β(i, j, θ) =

ij
(i− θ + 1)(j− θ + 1)

.

Proof. Let (U, V) be a uniform random pair distributed as a copula Cθ . Then one has,

E
(

UiV j
)

=
∫ 1

0

∫ 1

0
ijui−1vj−1P(U > u, V > v) du dv

=
∫ 1

0

∫ 1

0
ijui−1vj−1(1− u− v + Cθ(u, v)) du dv

= K1 +K2,

where

K1 =
∫ 1

0

∫ 1

0
ijui−1vj−1(1− u− v) du dv =

1− ij
(i + 1)(j + 1)
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and

K2 =
∫ 1

0

∫ 1

0
ijui−1vj−1Cθ(u, v) du dv =

∫ 1

0

∫ 1

0
ijui−θvj−θ max(uθ + vθ − 1, 0) du dv

= s1 + s2 − s3.

Straightforward calculations lead to

s1 = ij
∫ 1

0
ui
[∫ 1

(1−uθ)
1
θ

vj−θ dv
]

du =
ij

j− θ + 1

{
1

i + 1
− 1

θ
B
(

i + 1
θ

,
j + 1

θ

)}
,

s2 = ij
∫ 1

0
vj
[∫ 1

(1−vθ)
1
θ

ui−θ du
]

dv =
ij

i− θ + 1

{
1

j + 1
− 1

θ
B
(

i + 1
θ

,
j + 1

θ

)}
,

s3 = ij
∫ 1

0
vj−θ

[∫ 1

(1−vθ)
1
θ

ui−θ du
]

dv

=
ij

(i− θ + 1)(j− θ + 1)

{
1−

(
i + 1

θ
+

j + 1
θ
− 1
)

B
(

i + 1
θ

,
j + 1

θ

)}
.

Expression (9) can now be derived in a routine manner.

4. Parameter Estimation

We are now in a position to estimate the parameter of dependence θ by the method of
moments and investigate its asymptotic behaviour. Indeed, a consistent estimator of θ can
be determined by means of Equation (11).

g(θ) = ρθ = − 3
(2− θ)2

{
θ2 − 4 B

(
2
θ

,
2
θ

)}
.

Let (U1, V1), . . . , (Un, Vn) be mutually independent copies of (U, V) with copula Cθ .
The estimator θ̂ can be deduced by solving

g(θ̂) = ρ̂,

where ρ̂ denotes the sample Spearman’s rho expressed, in terms of (U1, V1), . . . , (Un, Vn),
as follows

ρ̂ =
12
n

n

∑
i=1

UiVi − 3.

Since the function h is strictly decreasing, the desired estimator is uniquely obtained by

θ̂ = g−1(ρ̂). (18)

Note that ρ coincide with the Pearson correlation coefficient of the uniform random
vector (U, V) distributed as Cθ . This means that

g(θ) = cor(U, V) = 12cov(U, V). (19)

Consider the covariance sample S12 expressed in terms of (U1, V1), . . . , (Un, Vn) by

S12 =
1

n− 1

(
n

∑
i=1

UiVi − nŪV̄

)
,

where Ū and V̄ denote the sample means of U1, . . . , Un and V1, . . . , Vn, respectively. Clearly,
ρ̂ is expressed in terms of S12 as follows

g(θ̂) = ρ̂ = 12
(

n− 1
n

S12 + ŪV̄ − 1
4

)
. (20)
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It is well known (see, e.g., Theorem 8 on p. 52 of Ferguson 1996) that S12 is a consistent
and asymptotically Gaussian estimator of the population covariance cov(U, V), namely

√
n
(
S12 − cov(U, V)

)
→ N (0, σ̃2(θ)) as n→ ∞, (21)

where σ̃2(θ)) = var
{(

U − 1
2

)(
V − 1

2

)}
. It follows from (19)–(21) that, as n→ ∞,

√
n
(

g(θ̂)− g(θ)
)
→ N (0, σ2(θ)),

with σ2(θ) = 144σ̃2(θ) = 9 var{(2U − 1)(2V − 1)}. A direct application of the Delta
Method and Slutsky’s Lemma applied to θ̂ = g−1(ρ̂) yields the asymptotic law of θ̂. The
following proposition has been proved.

Proposition 10. For all θ ∈ (0, 1), one has

√
n
(
θ̂ − θ

)
→ N

(
0,
{

g′(θ)
}−2

σ2(θ)
)

as n→ ∞,

where σ2(θ) = 9 var{(2U − 1)(2V − 1)} for a uniform random vector (U, V) with copula Cθ .

In order to derive an explicit expression of the asymptotic variance, one can easily see
that

σ2(θ) = 9
{

E
[
(2U − 1)2(2V − 1)2

]
− (E[(2U − 1)(2V − 1)])2

}
= 144E

[
U2V2

]
− 288E

[
UV2

]
+ 216E[UV]− 144(E[UV])2 − 12.

Using Proposition 9, one can deduce that

E[UV] =
1− θ

(2− θ)2 +
1

(2− θ)2 B
(

2
θ

,
2
θ

)
,

and

E
[
UV2

]
=

6− 5θ − θ2

6(2− θ)(3− θ)
+

2
(2− θ)(3− θ)

B
(

2
θ

,
3
θ

)
,

E
[
U2V2

]
=

3− 2θ − θ2

3(3− θ)2 +
4

(3− θ)2 B
(

3
θ

,
3
θ

)
.

This in turn implies that

σ2(θ) = T1(θ)B2
(

2
θ

,
2
θ

)
+ T2(θ)B

(
2
θ

,
2
θ

)
+ T3(θ)B

(
3
θ

,
2
θ

)
+ T4(θ)B

(
3
θ

,
3
θ

)
+ T5(θ),

where

T1(θ) = − 144
(2− θ)4 , T2(θ) =

72(3θ2 − 8θ + 8)
(2− θ)4 ,

T3(θ) = − 576
(2− θ)(3− θ)

, T4(θ) =
576

(3− θ)2 ,

T5(θ) = −12(θ6 − 4θ5 − θ4 + 22θ3 − 34θ2 + 32θ − 12)
(2− θ)4(3− θ)2 .

On the other hand, the derivative of g is given by:

g′(θ) = − 12θ

(2− θ)3 +
24

(2− θ)3 B
(

2
θ

,
2
θ

)
− 48

θ2(2− θ)2 B1,0

(
2
θ

,
2
θ

)
,
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with B1,0(x, y) being the partial derivative of B(x, y) defined, for x > 0 and y > 0, by

B1,0(x, y) =
∂B
∂x

(x, y) =
∫ 1

0
ln(t)tx−1(1− t)y−1 dt

= B(x, y)(ψ(x)− ψ(x + y)),

where ψ(x) is the Digamma function. This completes the discussion on the asymptotic
variance.

5. Simulation Study

In the following, we will examine the performance of θ̂, the estimator of the depen-
dence parameter θ established previously, and then provide an asymptotic confidence
interval for θ. To do this, we will consider different values of Spearman’s rho for the copula
Cθ . Theoretical values of θ can thereby be obtained by solving

g(θ) = ρθ = − 3
(2− θ)2

{
θ2 − 4B

(
2
θ

,
2
θ

)}
.

Let (U1, V1), . . . , (Un, Vn) be mutually independent copies of the vector of unit uniform
random variables (U, V) with copula Cθ . The estimator of the dependence parameter θ
is then uniquely obtained by solving θ̂ = h−1(ρ̂), where ρ̂ denotes the sample version of
Spearman’s rho. Different sample sizes, n, are considered with 500 replications of each
possible scenario.

The results of the estimator θ̂, bias, mean squared error (MSE) and 95% asymptotic
confidence interval estimations of θ are reported in the next tables. In each of the scenarios
under investigation, simulations demonstrate that θ̂ provides a good estimator for the
dependence parameter θ. Not surprisingly, the effectiveness of our estimator θ̂ increases
as n becomes larger: bias and MSE of θ̂ decrease while the confidence intervals become
narrower. This can be seen upon looking at the behaviour of the estimator θ̂ in three
different scenarios, weak, moderate and strong dependence in Table 1.

Table 1. Moment-based estimation for θ.

n θ̂ Bias(θ̂) MSE(θ̂) 95% CI

ρ = −0.1 θ = 0.3098

50 0.4717 0.1619 0.0262 (0.2202, 0.7232)
100 0.4308 0.1209 0.0146 (0.2328, 0.6287)
200 0.3798 0.0699 0.0049 (0.2400, 0.5195)
300 0.3563 0.0465 0.0022 (0.2407, 0.4720)
400 0.3450 0.0352 0.0012 (0.2492, 0.4408)

ρ = −0.2 θ = 0.4190

50 0.5120 0.0930 0.0087 (0.3031, 0.7209)
100 0.4653 0.0463 0.0021 (0.3146, 0.6158)
200 0.4385 0.0195 0.0004 (0.3194, 0.5575)
300 0.4214 0.0024 5× 10−6 (0.3201, 0.5227)
400 0.4210 0.0020 4× 10−6 (0.3332, 0.5088)

ρ = −0.3 θ = 0.5038

50 0.5508 0.0470 0.0022 (0.3509, 0.7507)
100 0.5173 0.0136 0.0002 (0.3707, 0.6640)
200 0.5055 0.0017 2× 10−6 (0.4000, 0.6107)
300 0.5020 −0.0017 3× 10−6 (0.4155, 0.5885)
400 0.5048 0.0010 10−6 (0.4289, 0.5807)

ρ = −0.4 θ = 0.5788

50 0.5972 0.0184 0.0003 (0.4042, 0.7902)
100 0.5761 −0.0028 7× 10−6 (0.4377, 0.7144)
200 0.5765 −0.0023 5× 10−6 (0.4787, 0.6743)
300 0.5770 −0.0018 3× 10−6 (0.4972, 0.6569)
400 0.5791 0.0003 9× 10−8 (0.5101, 0.6481)
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Table 1. Cont.

n θ̂ Bias(θ̂) MSE(θ̂) 95% CI

ρ = −0.5 θ = 0.6494

50 0.6460 −0.0034 10−5 (0.4571, 0.8349)
100 0.6508 0.0014 2× 10−6 (0.5174, 0.7842)
200 0.6491 −0.0003 10−7 (0.5547, 0.7434)
300 0.6491 −0.0003 8× 10−8 (0.5721, 0.7261)
400 0.6496 0.0002 6× 10−8 (0.5816, 0.7176)

ρ = −0.6 θ = 0.7181

50 0.7087 −0.0093 8× 10−5 (0.5220, 0.8954)
100 0.7121 −0.0059 4× 10−5 (0.5801, 0.8441)
200 0.7159 −0.0021 5× 10−6 0.6226, 0.8092)
300 0.7188 0.0007 5× 10−7 (0.6246, 0.8112)
400 0.7176 −0.0004 2× 10−7 (0.6426, 0.7926)

ρ = −0.7 θ = 0.7864

50 0.7529 −0.0336 0.0011 (0.5664, 0.9393)
100 0.7758 −0.0106 0.0001 (0.6439, 0.9078)
200 0.7879 0.0015 2× 10−6 (0.6946, 0.8812)
300 0.7861 −0.0004 10−7 (0.7099, 0.8623)
400 0.7866 0.0002 3× 10−8 (0.7104, 0.8628)

ρ = −0.8 θ = 0.8556

50 0.8101 −0.0455 0.0021 (0.6232, 0.9971)
100 0.8337 −0.0219 0.0005 (0.7013, 0.9661)
200 0.8540 −0.0016 3× 10−6 (0.7603, 0.9477)
300 0.8542 −0.0015 2× 10−6 (0.7777, 0.9307)
400 0.8565 0.0008 6× 10−7 (0.7902, 0.9227)

ρ = −0.9 θ = 0.9265

50 0.8654 −0.0611 0.0037 (0.6779, 1)
100 0.8951 −0.0314 0.0010 (0.7624, 1)
200 0.9099 −0.0166 0.0003 (0.8161, 1)
300 0.9187 −0.0078 6× 10−5 (0.8421, 0.9953)
400 0.9223 −0.0042 2× 10−5 (0.8560, 0.9887)

6. Real Data Study

This section is devoted to analyzing a data set based on the proposed copula and
estimation methodology described earlier. In our study, “airquality”, which refers to a
data set on the daily quality of air, will be considered. The data collected are based on
153 successive days in the New York Metropolitan Area. The two variables explored here
are average wind speed (in miles per hour) and mean ozone level (in parts per billion). See
(Chambers et al. 1983, Appendix, Data set 2) for a thorough description of the data. This
data set is also available in the R package “datasets”.

In this analysis, 116 observations are inspected, ignoring the missing values. The
following scatter plot (Figure 6) indicates a negative dependence between average wind
speed and mean ozone level which is supported by negative values of Spearman’s rho and
Kendall’s tau coefficients, 0.59 and 0.43, respectively. To analyze this phenomenon, we fit
the proposed copula using the method of moments. To do this, we propose five models,
commonly used in the field of engendering and environmental science: Weibull, lognormal
Gamma, Beta four parameters (Beta4) and Generalized Extreme Value distribution (GEVD)
for modeling average wind speed and mean ozone level. Based on the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC), as shown in Tables 2 and 3, we
find that the Gamma distribution fits both marginals better than the other proposed models.
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Figure 6. Scatter plot of average wind speed versus mean ozone.

Table 2. AIC and BIC criteria for average wind.

Weibull Lognormal Gamma Beta4 GEVD

AIC 625.408 631.862 624.490 626.947 624.942
BIC 630.916 637.370 629.997 637.961 633.203

Table 3. AIC and BIC criteria for mean ozone level.

Weibull Lognormal Gamma Beta4 GEVD

AIC 1089.221 1091.766 1087.075 1090.803 1093.552
BIC 1094.728 1097.273 1092.583 1101.817 1101.813

Using the bootstrap technique based on Kolmogorov–Smirnov (KS) and Anderson–
Darling (AD) goodness-of-fit (GOF) tests, Table 4 demonstrate that Gamma distribution is
a good fit for both marginals. The maximum likelihood estimates (MLEs) of the parameters
are shown in the same table.

Table 4. KS and AD goodness-of-fit tests for Gamma distribution and MLE parameters.

Average Wind Mean Ozone Level

KS AD KS AD

Test statistic 0.073 0.481 0.080 0.738
p-value 0.537 0.766 0.420 0.527
Shape 7.17 1.70
Scale 1.375 24.770

The estimate of the dependence parameter of the proposed copula is obtained by
solving θ̂ = g−1(ρ) for ρ̂ = −0.59 (see (18)). It is found to be θ̂ = 0.711. Now, we evaluate
the GOF tests of the proposed copula Cθ , based on Kolmogorov–Smirnov and Cramér–von
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Mises statistics using the bootstrap algorithm proposed by Genest et al. (2009). Table 5
shows that our proposed model fits the data set reasonably well.

Table 5. Goodness-of-fit test for Cθ .

KS Cramér–von Mises

Test statistic Tn = 0.078 Sn = 0.120
p-value 0.584 0.219

7. Conclusions

We have introduced a new negatively quadrant bivariate family of copulas by means
of the counter-monotonic shock method. The properties of this family were derived, and a
moment-based estimator for the parameter of dependence was investigated. The usefulness
of the copula was illustrated through simulations and a real case study dealing with the
daily air quality measurements for the New York Metropolitan Area. We argue that this
new approach-based copula is easy to simulate and interpret and will be a great addition
to the theory of copulas. A generalization of this family will be explored, in a forthcoming
paper, by examining a model with two dependence parameters, θ1 and θ2, to allow for
more flexible modeling. Another possible direction of future research could be a a general
model describing both positive and negative dependence.
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