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Energy consumption prediction has always remained a concern for researchers because of the rapid growth 
of the human population and customers joining smart grids network for smart home facilities. Recently, the 
spread of COVID-19 has dramatically increased energy consumption in the residential sector. Hence, it is 
essential to produce energy per the residential customers’ requirements, improve economic efficiency, and 
reduce production costs. The previously published papers in the literature have considered the overall energy 
consumption prediction, making it difficult for production companies to produce energy per customers’ future 
demand. Using the proposed study, production companies can accurately have energy per their customers’ needs 
by forecasting future energy consumption demands.
Scientists and researchers are trying to minimize energy consumption by applying different optimization and 
prediction techniques; hence this study proposed a daily, weekly, and monthly energy consumption prediction 
model using Temporal Fusion Transformer (TFT). This study relies on a TFT model for energy forecasting, which 
considers both primary and valuable data sources and batch training techniques. The model’s performance has 
been related to the Long Short-Term Memory (LSTM), LSTM interpretable, and Temporal Convolutional Network 
(TCN) models. The model’s performance has remained better than the other algorithms, with mean squared error 
(MSE), root mean squared error (RMSE), and mean absolute error (MAE) of 4.09, 2.02, and 1.50. Further, the 
overall symmetric mean absolute percentage error (sMAPE) of LSTM, LSTM interpretable, TCN, and proposed 
TFT remained at 29.78%, 31.10%, 36.42%, and 26.46%, respectively. The sMAPE of the TFT has proved that the 
model has performed better than the other deep learning models.

1. Introduction

The COVID-19 pandemic has disturbed people’s daily life activities 
in offices and homes. Along with the other problems, energy consump-
tion in the residential sector has increased dramatically due to increased 
spending time by the residents at home [8]. The other primary reason 
could be shifting offices to work-from-home mode, which has increased 
the usage time of electronic equipment and ultimately increased the 
electric bills. Besides these, the other significant reason for increased 
energy consumption is the rapid growth in the urban population for 
work and educational opportunities [55,45]. Energy consumption is in-
creasing day by day, and the wastage of energy by residents is due to 
negligence and unawareness of peak hours [24,14].

The other significant wastage of energy production resources can 
be noticed in the companies and smart grids. The wastage in smart 
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grids is due to energy production without considering future demand 
[13,17]. The smart grid network will add new users in the future; hence 
it is essential to predict the exact amount of future energy consumption 
demand of customers to avoid wastage and problems like energy short-
fall and optimize the consumption [42,41,33]. Moreover, the shortfall 
may lead to other crises like a disturbance in the official duties of resi-
dents working from home due to COVID-19. Scientists have tackled the 
energy consumption prediction problem using different prediction algo-
rithms like machine learning and deep learning techniques [15,7,44,5]. 
Deep learning models have remained successful because they can han-
dle big energy consumption data [46,6,51].

Few models and algorithms have focused on the energy consump-
tion prediction of individual customers in smart grid networks [1,34]. 
Traditional methods have focused on the energy consumption of the 
next day, hour, week, month, and year [5,12]. The prediction of exist-
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ing users’ energy consumption is more manageable than future demand 
due to the unavailability of historical data and the limitations of al-
gorithms. The energy demand of every customer is different, but still, 
residential customers have similar energy consumption behavior [19]. 
Hence, it is challenging for researchers and scientists to forecast the en-
ergy consumption of individual customers in smart grid networks [26]. 
Ensemble clustering may play a significant role in clustering customers 
based on energy consumption [25,43]. The novelty of the proposed 
model relies on consideration of the customer based data rather than 
overall consumption considered by the traditional models. This study 
relies on a TFT model for energy forecasting and carefully considers 
primary and valuable data sources and batch training. It divides train-
ing data-sets into many batches based on their correlations and intrinsic 
behavior to produce predictability of TFTs. The training samples are 
reconstructed using auto-encoders for the best possible training; cur-
rent data is preserved and used accurately. The proposed study uses 
the customers’ historical energy consumption to predict the future en-
ergy consumption demand. The model focuses on the customer’s daily, 
weekly, and monthly energy consumption [16,34]. The London house-
hold’s daily energy consumption data-set contains every customer’s en-
ergy consumption data from November 2011 to February 2014 [10]. 
The study considers 169 (28 months for each user) customers with a 
dynamic time of use (dToU) pricing scheme.

The proposed model has three major components, i.e., pre-pro-
cessing, prediction, and performance evaluation. The prediction module 
uses Temporal Fusion Transformer (TFT) as a prediction algorithm. The 
TFT combines multi-horizon forecasting and interpretable temporal dy-
namics [31].
This model contributes to the following.
• For demand-side management of consumers (customer based), a model 
based on TFT is developed for forecasting days, weeks, and months of 
energy consumption in advance.
• As a way to optimize the performance of a TFT, specialized compo-
nents are used to choose relevant features and a series of gated layers 
to suppress the unnecessary features to achieve high accuracy.
• In the proposed model, as part of the training process, the TFT model 
performs a time-series analysis of the input and maintains time-series 
behavior.
• This study focuses on developing a high-dimension data processing 
model that can simulate the behavior pattern of load consumption over 
a long period to eliminate the problem of over-fitting. For this purpose, 
a batch-training approach is employed for training the TFT model.
• With TFT, local relationships can be learned using recurrent layers, 
and long-term relationships can be learned using interpretable layer 
self-attention.
• With its attention-based architecture, TFT offers a comprehensive 
representation of the dynamics of time through a combination of high-
performance multi-horizon forecasting and interpretable temporal in-
sights.
• The performance evaluation of the proposed TFT procedure is exam-
ined with various performance evaluation indicators, including some 
conventional methods like LSTM, LSTM Interpretable, and TCN.

The rest of the paper is as follows; Section 2 presents the related 
work, Section 3 discusses the proposed methodology, Section 4 presents 
results, the detailed discussion in Section 5, and Section 6 presents the 
study’s conclusion.

2. Related work

An analysis of relevant publications has been conducted on energy 
consumption prediction and efficiency improvements. These studies ex-
amine energy efficiency models for smart cars, homes, and grids. The 
literature published on energy consumption prediction has used deep 
learning methods due to the deep structure and multiple hidden lay-
ers. However, the training time of the algorithms makes deep learning 
methods costly to be used with massive data-sets. The critical analy-

sis of the studies can be seen in Table 1. The paper by Moradzadeh 
et al. [36] used Variational Autoencoder Bidirectional Long Short-Term 
Memory (VAEBiLSTM) for energy consumption forecasting. The model 
has focused on reducing the noise of data for better accuracy. Fur-
ther, overfitting has been prevented using batch training. As a result, 
the VAEBiLSTM model’s performance remained better than the LSTM 
and support vector regression (SVR) for energy consumption forecast-
ing.

The energy consumption activities of residents in houses also help 
predict residents’ energy usage behavior. Lin [32] model has detected 
and classified residents’ home activities using the non-intrusive load 
monitoring (NILM) technique. By dis-aggregating electricity consump-
tion onto the level of individual appliances, NILM replaces all net-
worked plug-level energy meters. The day ahead scheduling also re-
mained an attractive topic [2] implemented the demand side manage-
ment (DSM) strategy in a smart grid for the day ahead scheduling to 
tackle the cost and pollution. Load costs have been reduced by con-
sidering the output power of curtailable loads (CLs) and wind turbines 
(WTs). Yang and Schell [54] used a pre-trained parallel convolutional 
neural network with a quadruple-branched autoencoder (QCAE) as a 
forecasting model to develop an optimal design for an autoencoder. 
In addition to compressing the input, QCAE also compresses the fea-
tures. Salleh et al. [39] have used data from historical electricity usage 
for forecasting the identification of optimum historical load using long 
short-term memory (LSTM) for short-term forecasting. Berriel et al. [5]
predicted energy consumption using a deep learning model with nor-
malized data. Le et al. [27] used a convolutional neural network 
(CNN) and Bi-directional LSTM for the energy consumption prediction. 
Deep reinforcement learning (DRL) has been used in the model of Xu 
et al. [53] for building energy management to solve the energy sched-
ule issues of buildings with solar energy storage systems at a minimum 
electricity price for beneficial people’s lifestyle and pocket friendly. 
However, the DRL agent only makes decisions when measurable in-
formation occurs and does not consider the changing environmental 
conditions.

Deep reinforcement learning has also played a significant role in the 
model by Li et al. [30] to identify and address the uncertainty in charg-
ing power forecasting for electric vehicles. Long short-term memory 
(LSTM) calculated the electric vehicle charging station (EVCS) charging 
powerpoint forecasts. The adaptive exploration proximal policy opti-
mization algorithm based on reinforcement learning models changes 
LSTM cell states using a Markov decision process (MDP).

The multi-objective bi-level optimization model has been used to 
reduce energy usage with a maximum profit for agents. Jia et al. [22]
have examined many stakeholders’ allies on agents’ pricing methods 
to gain optimum business profit and progress. The optimization model 
uses the Stackelberg game.

In addition, the Karush-Kuhn-Tucker (KKT), duality theory, is based 
on linear relaxation that solves and simplifies the bi-level nesting prob-
lem. Lee et al. [28] attempt to describe the life assessment model 
based on the price of an energy storage system (ESS) and schedule. 
The depth-of-discharge (DOD) stress model and fatigue analysis tech-
niques determine the life-cycle price function depth in detail. A tool 
based on reinforcement learning to determine the optimal schedule of 
the ESS model on its life-cycle cost. Kanellos et al. [23] proposed a sys-
tem for integrating multiple plug-in electric vehicles (PEVs) in a large 
cluster and connecting their distribution networks. PEVs are charged 
using a method that reduces the cost of charging up to the distribution 
network.

Utkarsh and Srinivasan [47] are concerned about global warming, 
and government policies have been developed to encourage the inte-
gration of distributed energy resources, or DERs (usually renewable 
energy sources). The study presents efficient strategies for integrat-
ing and coordinating distributed energy resources in medium-to-low 
voltage distribution networks/micro-grids. Natividade et al. [37] exam-
ined the energy efficiency benefits of Energy Performance Contracting 
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Table 1

Critical analysis of the already proposed methods.

Ref. Focus/Aim Method/Algorithm Schedule Pre 
Process

Time 
Series

Single User 
Pred.

Multi User 
Pred.

Big 
Data

Batch 
Train.

Total Cons. 
Pred.

Price 
Pred.

[36] Energy

forecast

VAEBiLSTM,

SVR

x ✓ ✓ x x ✓ ✓ ✓ x

[2] Demand-side

mgmt./

Day

ahead

schedule

PDF,

MOWDO,

DMM

✓ x x x x x x ✓ x

[54] Optimal

design

for

autoen.

QCAE x ✓ ✓ x x x x ✓ x

[39] Short-term

energy

forecast

LSTM x ✓ ✓ x x ✓ x ✓ x

[5] Energy

cons.

forecast

FCN,

CNN,

LSTM

x x ✓ x x x x ✓ x

[27] Energy

cons.

pred.

CNN,

Bi-LSTM

x x ✓ x x x ✓ ✓ x

[30] Charging

power

forecast

of electric

vehicles

DRL,

LSTM-AEPPO,

MDP

x ✓ x x x x x ✓ x

[28] Energy

storage

system

(ESS)

MDP, MP ✓ ✓ x x x x x ✓ x

[23] Integrate

multiple

plug-in

electric

vehicles

(PEVs)

PEV, MAS x ✓ x x x x x x ✓

[37] Energy

efficiency

benefits of

energy

performance

contracting

(EnPC)

EnPC x ✓ x x x x x x ✓

Proposed Model Energy

prediction

TCN,

LSTM,

LSTM Int.,

and TFT

x ✓ ✓ ✓ ✓ ✓ ✓ ✓ x

(EnPC). It looks at the potential risks and rewards of contracting with 
Energy Service Companies (ESCOs) based on traditional and alternative 
models.

The literature review reveals that the researchers have focused on 
different dimensions, like energy storage, prediction, optimization, cost 
reduction, and handling of the pollution problem. Most models have 
used deep learning and deep reinforcement learning techniques for pre-
diction problems. It is, however, necessary to develop a novel model to 
predict the future demand for energy consumption by individual cus-
tomers within a smart grid network.

3. Research design and methods

The proposed model predicts individual customers’ demand for en-
ergy consumption in a smart grid network. The model contains three 
modules: pre-processing, prediction, and performance evaluation. The 
prediction module of the proposed model includes a Temporal Fusion 
Transformer (TFT) responsible for predicting customers’ energy con-
sumption demand.

3.1. Database acquisition and description

The London household’s daily energy consumption data-set contains 
every customer’s data from November 2011 to February 2014 [10]. The 
proposed study considers 169 (28 months for each user) customers with 
a dynamic time of use (dToU) pricing scheme. The selection of the users 
is based on the first available 169 customers (some dropped due to high 
energy consumption) in the data-set. Accordingly, the model consid-
ers the daily energy consumption in kWh for the experiment, which 
means 126 (75%) for training and 43 (25%) for testing. The data of 
only 169 customers have been considered because of the limitations 
of the memory and available computation equipment and resources of 
Google Colab.

Furthermore, with the increased number of customers, the training 
time of models has increased; hence the training was not completed 
within the allocated time of GPU and other resources. So the maxi-
mum possible number of customers was 169 for the smooth training of 
models with reasonable time. While for evaluation purposes, this paper 
mentions the experimental results of one customer.
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3.2. Pre-processing

Outliers, or observations below or exceeding Q1 + 1.5 IQR, have 
been identified using the interquartile range (IQR) with the Python 
package NumPy. The data has been pre-processed using a moving av-
erage to remove the prominent outliers. The normalization and denor-
malization into 0-1 scale have been carried out using (1) and (2).

𝑁(𝑎) = 𝑥(𝑎) − min(𝑎)
max(𝑎) − min(𝑎)

(1)

𝐷(𝑎) =𝑁(𝑎) ∗ (max(𝑎) − min(𝑎)) + min(𝑎) (2)

Where 𝑁(𝑎) and 𝐷(𝑎) represent the normalized and denormalized data, 
and 𝑥(𝑎) represents the value that is being normalized. While min(𝑎) and 
max(𝑎) denote the minimum and maximum values of the dataset.

3.3. Prediction module

The most important module of the proposed model is the predic-
tion module. In the initial step, the data has been prepared to be 
used as input by the prediction module containing the Temporal Fu-
sion Transformer (TFT) as a prediction algorithm [31]. The algorithm 
uses training data sets and the day series as past covariates. While the 
input variables are day, month, year and energy consumption in kWh. 
The lag order of t-2 has been considered for the experimentation for all 
the scenarios of the experimentation like day, week and month. So for 
the day the TFT considers energy consumption of the previous 2 days, 
while for the week it looks into the previous two weeks energy con-
sumption. The same stands for the month scenario. The details can be 
seen in the Table B.7. Training a machine learning model involves mul-
tiple hyper-parameters set before learning begins. The TFT also offers to 
optimize the parameters and define learning rate using the predefined 
function of the PyTorch. With PyTorch Lightning learning rate finder, 
optimize-hyperparameters() determines the learning rate. In the pro-
posed model we have not considered the optimize-parameters() due to 
various reasons including the complexity. The parameter settings of the 
algorithm have been carried out based on the trial and error method for 
finding the best settings. The following parameter settings of the TFT 
have been used for the experimentation. One layer of the LSTM has 16 
neurons in the proposed network. The random state was 42, with 8 as 
the hidden continuous size. In the experiment, the parameter space for 
the random state ranged from 1 to 70. There is very little difference in 
the performance of the algorithm when the random state is changed, 
so the final model uses 42 random state values. The network uses 30 
and 15 input and output chunks, respectively. With a learning rate of 
le-3, a batch size of 1000 was considered with a 0.1 dropout rate. Model 
computation costs are heavily influenced by batch size, input chunks, 
and output chunks. Due to this, the number has been carefully selected. 
The model considers 30 days of data to predict the next 15 days, in-
creasing accuracy. We have tested batch sizes of 250 to 2000, and it 
was decided that the batch size of 1000 provides the highest perfor-
mance at the lowest cost. This is due to larger batches, which reduce 
computation cost but decrease accuracy. The algorithms training took 
longer than the other deep learning models, with 150 epochs. The MSE 
Loss() function uses day series as covariates. The settings of different 
deep learning algorithms can be seen in Table B.7.

The proposed model uses the TFT implementation in PyTorch fore-
casting. The model employs past covariates derived from input chunks 
before prediction time and future covariates derived from output 
chunks after prediction time [31]. The algorithm uses multi-head at-
tention queries on future inputs from mandatory future covariates. In 
addition to the past covariates, encoders were employed to generate the 
day covariates (future covariates) automatically.

3.3.1. Temporal Fusion Transformer (TFT)

The TFT uses covariates known as future inputs in multi-horizon 
forecasting. The algorithm blends high performance with forecasting 

in multi-horizon to analyze temporal dynamics [31,21]. The algorithm 
can do local and long-term processing using recurrent and interpretive 
self-attention layers. We can control superfluous components to choose 
relevant attributes from groups of accumulating layers. The adaptive 
depth for network convolution for the energy consumption data set 
makes the algorithm suitable to handle big dataset [38]. It provides gat-
ing methods to ignore any unnecessary components of the architecture, 
providing flexibility to networks for variable selection for each time step 
and specified input variables [52]. Temporal dynamics use encoders to 
add static features into the network using context vector encoding. The 
algorithm learns long and short-term correlations of inputs using tem-
poral processing. The sequence-to-sequence layer takes responsibility 
for the local processing, while the interpretable multi-head attention 
block deals with long-term dependency [31]. The algorithm uses a de-
terministic forecast instead of a quantile forecast using MSELoss(). The 
proposed model can be seen in Fig. 1.

Dynamically generated forecasts are known as deterministic fore-
casts when they produce forecasts with all the available computing 
power [20]. The deterministic approach has been adopted as it requires 
less information with minimum mathematical calculations, reducing the 
training time and producing detailed forecasts. The deterministic ap-
proach remains suitable for short-term energy consumption prediction 
(hourly, daily) and may not perform better with the one-year ahead 
forecast [6]. It can be noted that the layers of the model have been 
shortened for simplicity, and the detailed model readers can refer to 
the original model proposed by Lim et al. [31].

Lim et al. [31] have already discussed the TFT in extensive detail, in-
cluding the functionality, detailed mathematical calculations involved 
in each component, and the complete TFT model flow. These mathe-
matical expressions have been taken from the model explained by Lim 
et al. [31]. This paper has discussed its highlights to provide a brief 
overview of how the TFT works.

3.3.2. Gated Residual Network (GRN)

The GRN provides flexibility to the model considering the input 𝑎
and vector 𝑐 as in (3).

𝐺𝑅𝑁𝜔(𝑎, 𝑐) =𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑎+𝐺𝐿𝑈𝜔(𝜂1)) (3)

𝜂1 =𝑊1,𝜔 𝜂2 + 𝑏1,𝜔 (4)

𝜂2 =𝐸𝐿𝑈 (𝑊2,𝜔 𝑎+𝑊3,𝜔 𝑐 + 𝑏2,𝜔 ) (5)

The Exponential Linear Unit is represented by ELU [9]. Intermediate 
layers of the network are denoted by 𝜂1𝜖𝑅𝑑𝑚𝑜𝑑𝑒𝑙 and 𝜂2𝜖𝑅𝑑𝑚𝑜𝑑𝑒𝑙 as in (4)
and (5). The normalization has been represented by the LayerNorm [3]. 
While the index for weight sharing can be denoted by 𝜔. GLUs (Gated 
Linear Units) [11] are utilized as component gating layers to control the 
model’s unnecessary components. The input 𝛾𝜖𝑅𝑑𝑚𝑜𝑑𝑒𝑙 creates following 
mathematical structure of GLU as seen in (6).

𝐺𝐿𝑈𝜔(𝛾) = 𝜎(𝑊4,𝜔𝛾 + 𝑏4,𝜔)⊙ (𝑊5,𝜔𝛾 + 𝑏5,𝜔) (6)

The sigmoid function has been represented by 𝜎(.). The weights of the 
model are represented by 𝑊 (.)𝜖𝑅𝑑𝑚𝑜𝑑𝑒𝑙 ∗ 𝑑𝑚𝑜𝑑𝑒𝑙 . The biases of the GLU can 
be denoted by 𝑏(.)𝜖𝑅𝑑𝑚𝑜𝑑𝑒𝑙 . The 𝑑𝑚𝑜𝑑𝑒𝑙 expresses hidden state size while 
the Hadamard product is represented ⊙. As the GLU outputs can all be 
close to 0, TFT can suppress the nonlinear impact of GRN as much as 
possible, skipping the layer altogether if necessary.

3.3.3. Variable selection networks

Utilizing learning capacity only on the most critical variables can 
significantly improve model performance. Variable selection networks 
are used to pick relevant input variables at each step. Additionally, 
variable selection allows TFT to remove noise inputs that could ad-
versely affect performance and provide insights into what variables are 
most significant [31]. Feature representations of categorical variables 
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Fig. 1. Proposed TFT model.

are represented through entity embeddings [18], while linear transfor-
mations were used to define continuous variables. Variable selection 
weights are generated by feeding both Ξ 𝑡 and an external context vec-
tor 𝑐𝑠 through a GRN, followed by a Softmax layer. An external context 
vector 𝑐𝑠 and Ξ 𝑡 are used to generate variable selection weights, using a 
GRN and Softmax layer (7) where the flattened vector of all past inputs 
at time 𝑡 is denoted by Ξ 𝑡.

𝑣𝑋𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝐺𝑅𝑁𝑣𝑋 (Ξ 𝑡, 𝑐𝑠) (7)

The vector of variable selection weights is denoted by 𝑣𝑥𝑡𝜖 𝑅 𝑚𝑥, 
wherein 𝑐𝑠 is acquired using a static covariate encoder. The nonlinear 
processing layer at each step feeds 𝜉(𝑗)

𝑡
through GRN as (8).

𝜉
∼(𝑗)
𝑡

=𝐺𝑅𝑁𝜉∼(𝑗) (𝜉
(𝑗)
𝑡
) (8)

The processed feature vector of 𝑗 has been represented by 𝜉∼(𝑗)
𝑡

which 
are combined as (9).

𝜉∼
𝑡
= Σ𝑚𝑥

𝑗=1𝑣
𝑗

𝑥𝑡
𝜉
∼(𝑗)
𝑡

(9)

Where the 𝑗 element of the vector 𝑣𝑥𝑡 is represented by 𝑣𝑗
𝑥𝑡

.

3.3.4. Static covariate encoders

The static covariate encoders in the model use context vectors to 
condition temporal dynamics to integrate static characteristics into the 
network. The GRN encoders in the TFT network produce temporal 
variable 𝑐𝑠, temporal features processing 𝑐𝑐 , 𝑐ℎ and temporal features 
enrichment 𝑐𝑒. The static covariate encoders are connected to the mod-
el’s different layers, as seen in Fig. 1.

3.3.5. Temporal processing

The temporal processing in the model is used to learn both long-
and short-term temporal correlations from time-varying inputs (energy 
consumption data) that are both seen and known. Local processing is 
handled by a sequence-to-sequence layer, while long-term dependencies 
are operated by a unique interpretable multi-head attention block [29,
48]. Multi-head attention was first proposed in [48] and modified in 
[31] to share values in all heads and employ additive aggregation as 
(10), (11), (12) and (13).
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𝐼𝑀𝐻(𝑄,𝐾,𝑉 ) =𝐻∼𝑊𝐻 (10)

𝐻∼𝐴∼(𝑄,𝐾)𝑉 𝑊𝑣 (11)

= { 1∕𝐻Σ𝑚𝐻
ℎ=1𝐴(𝑄𝑊

(ℎ)
𝑄

,𝐾𝑊
(ℎ)
𝑘

) } 𝑠𝑠𝑉 𝑊𝑣 (12)

= { 1∕𝐻Σ𝑚𝐻
ℎ=1𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊

(ℎ)
𝑄

,𝐾𝑊
(ℎ)
𝑘

) }𝑉 𝑊𝑣 (13)

Where the shared weights across all heads are represented by
𝑊𝑣𝜖𝑅

𝑑 𝑚𝑜𝑑𝑒𝑙 𝑥 𝑑𝑣 , and 𝑊𝐻𝜖𝑅
𝑑 𝑎𝑡𝑡𝑛 𝑋 𝑑𝑚𝑜𝑑𝑒𝑙 denote linear mapping.

3.3.6. Temporal fusion decoder

The temporal fusion decoder uses different layers.

3.3.7. Sequence-to-sequence layer

The sequence-to-sequence layer employs an LSTM encoder and de-
coders. The model uses 𝑐𝑐, 𝑐ℎ context vectors for the initialization of 
cell and hidden state, respectively, of the LSTM. The gated skip connec-
tion in the model can be represented as (14).

∅∼(𝑡, 𝑛) =𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝜉∼
𝑡+𝑛 +𝐺𝐿𝑈∅∼ (𝑡, 𝑛)) (14)

Where 𝑛𝜖
[
−𝑘, 𝑡𝑚𝑎𝑥

]
is a position index.

3.3.8. Static enrichment layer

The static enrichment layer helps to enhance the temporal features. 
The static enrichment for 𝑛 index can be represented by (15).

𝜃(𝑡, 𝑛) =𝐺𝑅𝑁𝜃(∅∼(𝑡, 𝑛), 𝑐𝑒) (15)

The 𝐺𝑅𝑁𝜃 weights remain shared with different layers, and 𝑐𝑒 de-
notes the context vector.

3.3.9. Temporal self-attention layer

The multi-head attention can be represented by (16), wherein the 
Θ(𝑡) denotes enriched temporal features for the determination of 𝐵(𝑡).

𝐵(𝑡) = 𝐼𝑀𝐻(Θ(𝑡),Θ(𝑡),Θ(𝑡)) (16)

TFT uses the self-attention layer to discover long-range dependen-
cies. The decoder masking [29,48] is essential for ensuring that each 
temporal dimension can only attend to its preceding feature. The addi-
tional layer helps to facilitate the training (17).

𝛿(𝑡, 𝑛) =𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝜃(𝑡, 𝑛) +𝐺𝐿𝑈𝛿(𝛽(𝑡, 𝑛))) (17)

3.3.10. Position-wise feed-forward layer

The position-wise feed-forward layer uses GRNs as in (18).

𝜓(𝑡, 𝑛) =𝐺𝑅𝑁𝜓(𝛿(𝑡, 𝑛)) (18)

The layers share weights of 𝐺𝑅𝑁𝜓 . The gated residual connection 
provides a direct path to the sequence-to-sequence layer using (19).

𝜓∼(𝑡, 𝑛) =𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝜙∼(𝑡, 𝑛) +𝐺𝐿𝑈𝜓∼ (𝜓(𝑡, 𝑛))) (19)

3.3.11. Deterministic forecasts

Calculate the range of likely goal values at each prediction hori-
zon. Only one deterministic forecast has excellent accuracy over the 
first six days; it is fast, easy to use, and sensitive to new data. The 
system does not convey confidence, does not produce probability fore-
casts, and displays little ability to predict the long term. The aim of the 
proposed model is short-term energy consumption prediction; hence 
deterministic forecast remains suitable [4]. The sequence-to-sequence 
layer of the model takes responsibility for the local processing, while 
the interpretable multi-head attention block helps deal with long-term 
dependency [31].

3.4. Performance evaluation metrics

The model’s performance has been measured using mean absolute 
error (MAE). An MAE also ignores the direction of prediction errors 
and measures the average magnitude. A specific example is the average 
absolute difference between a prediction and the actual value across the 
entire testing set. Each difference is weighed equally in this measure-
ment. The second metric is the RMMSE. A measure of how spread out 
the residuals are is the root mean square error (RMSE), which calcu-
lates the standard deviation of errors. The Symmetric mean absolute 
percentage error (sMAPE) measures based on percentage. Finally, a 
metric called mean square error (MSE) describes the average differ-
ence between the predicted and actual values [49]. These performance 
metrics can be mathematically expressed as (20), (21), (22), and (23). 
Researchers have commonly used these matrices to measure the effi-
ciency of algorithms and models.

𝑀𝐴𝐸 = 1
𝑁

𝑛∑
𝑖=1

|𝐴𝑖 − 𝑃𝑖| (20)

𝑠𝑀𝐴𝑃𝐸 = 100%
𝑁

𝑛∑
𝑖=1

|𝑃𝑖−𝐴𝑖||𝐴𝑖|+|𝑃𝑖|
2

(21)

𝑀𝑆𝐸 = 1
𝑁

𝑛∑
𝑘=0

(𝐴− 𝑃𝑖)2 (22)

𝑅𝑀𝑆𝐸 =

√√√√ 1
𝑁

𝑛∑
𝑘=0

(𝐴− 𝑃𝑖)2 (23)

Where 𝑁 stands for total observations, 𝐴 for actual values, and 𝑃 for 
predicted values.

4. Implementation, results, and performance evaluation

4.1. Implementation

The training of the deep learning algorithms has been carried out 
using the GPU of Google Colab pro service. The experimentation has 
been carried out on Tesla P100, a 16 GB graphics card with a RAM 
of 16 GB. The graphical representation has been carried out in Matlab 
2022a.

4.2. Results

The complete testing data set has been used to measure the mod-
el’s efficiency, while the customer having id 868 was selected for the 
elaboration and graphical representation. The reason for elaboration 
using a single customer is to avoid complexity and improve the paper’s 
readability. However, the proposed model lets readers know about the 
rest of the customer’s predicted energy consumption. Customer 868 was 
chosen randomly; the user was the last user of the testing dataset. The 
number of days considered is entirely dependent on the data set pro-
vided. As a result, the energy usage for customer id 868 is accessible 
from May to December 2012, January to December 2013, and January 
to February 2014. Energy consumption prediction has been used for the 
graphical representation only one day ahead.

Fig. 2 shows LSTM, LSTM interpretable, TCN, and the proposed TFT 
model’s one-day-ahead energy consumption predictions for 2012. The 
May to June 2012 graph fluctuates with lower energy consumption of 
around 1 kWh and a maximum of 11 kWh. At the same time, the pro-
posed model has predicted energy consumption in the range of 4 to 7 
kWh. The reason is due to frequent fluctuations in the energy consump-
tion behavior of the customer.

Fig. 3 illustrates a similar pattern for energy usage from July to 
September 2012, with a higher 11 kWh actual energy consumption and 
a lower 1 kWh. Unlike the preceding graph from May to June 2012, 
the LSTM, LSTM interpretable, TCN, and proposed models all show the 
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Fig. 2. May to June 2012 power consumption comparison.

Fig. 3. July to September 2012 power consumption comparison.

Fig. 4. October to December 2012 power consumption comparison.

same pattern of predicted energy usage for July to September 2012. On 
the other hand, the proposed model outperformed the May-June 2012 
period.

Fig. 4 contains energy consumption prediction for October to De-
cember 2012. The higher actual energy consumption can be 14 kWh 
and lower around 2 kWh. The LSTM, LSTM interpretable, and pro-
posed model have performed better than the TCN model. Overall, the 
suggested model performed better than the other deep learning inter-
pretable models for one day ahead of energy consumption in 2012.

Fig. 5 displays predicted energy consumption from January to March 
2013, with the highest actual consumption of about 15 kWh and the 
lowest at around 3 kWh. While the LSTM, LSTM interpretable, and 
proposed model have all successfully predicted energy usage, the TCN 
graph reveals some irregularities compared to the actual energy con-
sumption.

Fig. 6 depicts the energy consumption prediction from April to June 
2013, with the highest actual energy consumption of 10 kWh and the 

lowest of 1 kWh, indicating variations in the energy consumption. The 
LSTM, LSTM interpretable, and suggested model show a similar trend; 
however, the TCN graph differs significantly from the actual energy 
usage graph.

Fig. 7 shows the estimated energy use from July to September 2013. 
Around 11 kWh represents the highest actual energy use, while 3 kWh 
represents the lowest. The LSTM, LSTM interpretable, and suggested 
model all outperformed TCN, as evidenced by the graph showing that 
TCN’s chart is distinct from the other algorithms. TCN is having diffi-
culty due to data volatility. The proposed model has a deep structure 
suited for data uncertainties.

Fig. 8 shows the predicted energy consumption for October to De-
cember 2013, with the highest actual energy consumption of about 13 
kWh and the lowest at around 2 kWh. The graph shows that the pro-
posed model managed better than the LSTM, LSTM interpretable, and 
TCN models. In this case, the TCN model follows a similar trend, with 
the straight graph indicating that it has not performed as well as other 
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Fig. 5. January to March 2013 power consumption comparison.

Fig. 6. April to June 2013 power consumption comparison.

Fig. 7. July to September 2013 power consumption comparison.

Fig. 8. October to December 2013 power consumption comparison.
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Fig. 9. January 2014 power consumption comparison.

Fig. 10. February 2014 power consumption comparison.

deep learning models. Overall, the proposed model’s performance in 
predicting the customer’s energy usage has improved from January to 
December 2013.

Fig. 9 shows the energy consumption prediction for January 2014, 
with extremely low energy consumption on the first days of the month, 
approximately 1 kWh, and several peaks after day 14, with the highest 
energy consumption of 11 kWh on the 26th day of the month. The 
TCN graph reveals that it incorrectly projected energy consumption in 
January 2013. However, the LSTM, LSTM interpretable, and proposed 
models outperformed the TCN because the actual and predicted energy 
graphs follow the same pattern.

Fig. 10 depicts the energy consumption forecast for February 2014, 
with actual consumption remaining higher throughout the month’s first 
days. The highest energy use, estimated at 10 kWh, is noticeable. When 
we look at the lowest energy, we find around 1 kWh. All algorithms 
performed better in the February scenario, including the TCN model, 
which had failed in the previous month’s energy consumption esti-
mate.

5. Discussion

Various scenarios have been adopted to predict energy consumption 
over the year, such as daily, weekly, and monthly. The complexity of 
the data has created problems for all the algorithms, making prediction 
challenging. It has been found that the proposed model outperforms 
other deep learning algorithms. To extensively evaluate the model’s 
performance, the comparison has been divided into daily, weekly, and 
monthly. Furthermore, the first scenario experiments with the mod-
el’s performance on the complete testing data set, including data of 
40 customers. While for the detailed evaluation and interpretation, one 
random customer has been evaluated. The precise performance of the 
model is as follows.

5.1. Comparison of sMAPE

The proposed model performs the best in global performance, espe-
cially for testing data based on daily, weekly, and monthly experiments. 
Energy consumption data in the testing reflect uncertainties; that is, the 
TFT is best suited for dealing with uncertain data on energy consump-
tion. It is possible to observe and verify this opinion more clearly in 
Figs. 2 to 10. Table 2 shows the sMAPE performance of the four models 
for the testing data. Tables 2 and 4 show the TFT’s smallest error scale 
compared to the four comparative methods.

Additionally, this experience indicates that the TFT is more reli-
able than other comparative approaches when predicting future energy 
demand. In Figs. 2 to 10, we can also see that TCN has the lowest per-
formance. Tables 2, 3, 4, and 5 show that the TFT approach has the 
smallest prediction error and highest accuracy for energy consumption 
forecasting.

There are 35.14%, 33.30%, and 32.17% sMAPE values for the LSTM, 
LSTM interpretable, and TCN models, respectively. The proposed model 
outperformed the other algorithms for the May to June 2012 day-ahead 
energy consumption prediction with an sMAPE of 26.27%.

The LSTM, interpretable LSTM, and TCN have sMAPEs of 30.96%, 
29.82%, and 31.50%, respectively, for July to September 2012. The TFT 
outperformed the other algorithms despite the uncertainty of the data 
with an sMAPE of 29.44%. Furthermore, it is important to note that the 
sMAPE errors for October-December 2012 were 36.33%, 37.74%, and 
38.79%, respectively, while the TFT errors were 29.71%. The errors 
of the proposed model for the available data of 2012 remained lower 
compared to the three deep learning models. Although the data for the 
entire year of 2012 was unavailable, the model has difficulty learning 
the consumption pattern.

As the data for 2013 was complete from January to December, the 
results are expected to be better than those in 2012. From January to 
March 2013, the sMAPE was 27.51%, 26.12%, and 28.61%. TFT outper-
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% formed all other algorithms in terms of error, with the lowest sMAPE of 
23.24%. These errors are smaller than those of 2012; thus, it has been 
proven that algorithms can be trained appropriately only if the data is 
complete. The TFT achieved an sMAPE of 28.21% from April to June 
2013, while errors were 32.08%, 32.82%, and 35.58% for the other 
three algorithms. From July to September, the TFT achieved an sMAPE 
of 17.30, lower than 19.41%, 18.96%, and 20.44%. Finally, for Octo-
ber to December 2013, the TFT has shown the lowest value of sMAPE 
of 27.65%; hence it has outperformed the counterpart algorithms.

As of January 2014, the proposed TFT has outperformed all algo-
rithms with an sMAPE of 20.46%. The other algorithms have sMAPE 
of 28.58%, 44.28%, and 107.71%. Similar is the story for February, 
wherein the LSTM, LSTM interpretable, and TCN has sMAPE of 32.14%, 
32.84%, and 32.77%. Regarding sMAPE, the proposed TFT outper-
formed all other algorithms with a value of 26.63%. Energy consump-
tion predictions for LSTM, interpretable LSTM, TCN, and the proposed 
model follow a similar pattern. Therefore, the suggested model out-
performed existing deep learning algorithms. The overall sMAPE of 
the LSTM was 29.78%; the LSTM interpretable was 31.10%. The TCN 
sMAPE remained at 36.42%, while the proposed model has outper-
formed all the algorithms with an sMAPE of 26.46%.

Observing the results, we can conclude that any model’s best energy 
prediction occurred between July and September 2013. At the same 
time, the worst prediction of any algorithm was for October to Decem-
ber 2012. The worst performance from October to December is due to 
increased uncertainty in customer energy consumption and complexity. 
The worst predicted single month by any algorithm was January having 
an sMAPE error of 107.71% by TCN.

5.2. Comparison of energy consumption

The performance measurement of the model in terms of the en-
ergy consumption in kWh provides the overall success of the proposed 
model. It is more evident from the results that deep learning models can 
deal with complex tasks. The time series prediction is also one of those 
complex problems. We can observe the energy consumption of customer 
868 in terms of the four seasons of England, i.e. spring (March to May), 
summer (June to August), Autumn (September to November) and Win-
ter (December to February). For the spring season of 2012, there is no 
data available, so we can observe energy consumption data from March 
to May for the spring season of 2013. In February, it is evident that 
consumption has reduced compared to January, and then during the 
spring season, consumption remains the same. This means it decreases 
at night and increases during the day, except for May, where it remains 
the same day and night. The summer time has higher consumption com-
pared to the spring as seen in June 2013 Fig. 6 and July to August in 
7. There is a significant difference in the consumption during Autumn 
starting from September to November 2013 as seen in Figs. 8 and 9. 
A similar pattern is observed in the Winter with a drop in consumption 
between December and the first two weeks of January, followed by a re-
turn to normal consumption around 5-8 kWh in February 2014 as seen 
in 10. The energy consumption prediction with three traditional models 
has been elaborated in Table 3 compared with the actual energy con-
sumption. The customer having id 868 has 348.08 kWh, 530.16 kWh, 
and 662.17 kWh actual energy consumption for May to June, July to 
September, and October to December 2012, while the proposed model 
has predicted it as 346.25 kWh, 514.72 kWh, and 651.90 kWh, respec-
tively. It can be evident from the comparison that the TCN model has 
performed worst compared with the other three models.

From January to March 2013, the customer consumed 676.44 kWh 
of electricity; TFT predicted the same as 682.74 kWh. It can be seen 
that the best-predicted energy consumption by the proposed model was 
for April to June 2013, wherein the actual energy consumption was 
489.83 kWh, and the proposed model has predicted that as 489.18 kWh. 
The consumption was reduced to 570.15 kWh from July to September 
2013, while the proposed model predicted it as 562.18 kWh. In the fol-
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Table 4

Performance comparison of TFT with deep learning models.

Model Forecast Horizon Metrics

Days Ahead MSE RMSE MAE

LSTM 1 4.94 2.22 1.69
7 6.69 2.59 1.90
30 9.68 3.11 2.38

LSTM Interpretable 1 5.06 2.25 1.70
7 5.94 2.44 1.83
30 6.74 2.60 1.99

Temporal Convolutional 
Networks (TCN)

1 7.14 2.67 2.00
7 6.98 2.64 1.98
30 6.43 2.54 1.93

Deep Neural Network (DNN) [40] 30 – – 23.5

Recurrent Neural Network 
(RNN) [40]

30 – – 22.4

Gated Recurrent Unit (GRU) [40] 30 – – 22.5

LSTM [40] 30 – – 19.2

Proposed TFT 1 4.09 2.02 1.50
7 5.75 2.40 1.79
30 6.49 2.55 1.94

lowing three months, from October to December 2013, the customer 
consumed 536.36 kWh of electricity, and the proposed model predicted 
it as 559.82 kWh. In January 2014 customer consumed 129.09 kWh, 
while the proposed model predicted it as 121.51 kWh. During Febru-
ary, consumption increased to 172.15 kWh, and the TFT predicted it as 
183.05 kWh. The total actual energy consumption for customer id 868 
was 4114.43 kWh, while the LSTM, LSTM interpretable, TCN, and pro-
posed models have predicted it as 4261.96 kWh, 4123.08 kWh, 4348.35 
kWh, and 4111.35 kWh, respectively.

So if we observe the month-wise performance, there is a difference 
in the actual and predicted energy consumption, but in terms of the 
overall energy consumption, the deep learning models have remained 
better at predicting the future demand of the customer. The other most 
prominent algorithm was LSTM interpretable, which performs better 
than the proposed model. The reason is similar building blocks and us-
age of LSTM in the layers of the TFT model. Therefore, the proposed 
model can be implemented in a smart grid for future energy consump-
tion prediction demand for new customers. The model is worth in a 
smart grid environment because, in everyday situations, the smart grid 
can predict the future demand, but with the addition of a new customer, 
it might be challenging to predict the new customer’s energy consump-
tion demand. So, in addition to the overall consumption prediction, 
production companies can predict the future energy consumption of a 
single customer.

5.3. Prediction errors comparison with traditional methods

Table 4 compares the proposed Temporal Fusion Transformer (TFT) 
model to Temporal Convolutional Networks (TCN) in terms of perfor-
mance. Long short-term memory (LSTM) and LSTM interpretable were 
among the other algorithms. The MSE, the RMSE, the sMAPE, and the 
MAE matrices are used to statistically analyze the performance of the 
four prediction models. At the same time, the forecast horizon was con-
sidered for the customer’s future daily, weekly, and monthly energy 
consumption. Table A.6 shows the training and validation losses for 
each algorithm.

5.3.1. Day-ahead energy consumption

Table 4 compares the four deep learning algorithms to predict future 
energy demand daily. The deep learning models have a strong capabil-
ity of extracting the patterns of data; hence all models have performed 
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better. However, the LSTM and interpretable LSTM use the same char-
acteristics except for interpretability which increases the complexity 
of algorithms and training time. Therefore, the general LSTM outper-
formed the interpretable LSTM in terms of performance. However, the 
performance is limited to daily energy forecasting; the errors may vary 
in weekly and monthly predictions. In this scenario, the errors of TCN 
remained higher compared to the three deep learning algorithms. The 
proposed TFT model has improved the forecasting and outperformed 
the other algorithms. However, the improvement is marginal due to 
the complexity of the data and the unavailability of enough data for 
each customer to train the algorithms appropriately. The proposed mod-
el’s interpretable structure is responsible for improved performance. 
Using the day series as a covariate enhanced the day-ahead energy con-
sumption prediction results for one-day ahead demand of customers 
in the smart grid network. It helps deep learning algorithms properly 
adjust the weights and biases according to the changes in time series 
data.

5.3.2. Week-ahead energy consumption

If we observe the results of weekly energy consumption forecasting, 
the errors have relatively increased compared to the day ahead demand. 
When the prediction duration increases in the future, errors are also 
likely to occur. The close observation of the errors reveals that the TCN 
algorithm has struggled to predict the accurate future demand in the 
weekly scenario compared to both versions of LSTM. The reason can be 
that the data makes it difficult for the algorithm to predict accurately. 
The TFT has outperformed the other three deep learning algorithms, 
with decent improvement in the errors. Both versions of LSTM are closer 
to the TFT algorithm results because the TFT model uses blended LSTM 
inside the framework; hence, it provides results more comparable to the 
traditional LSTM. The reason for the improvement in the results of TFT 
is the GRN units which enhance the model’s prediction accuracy and 
reduce errors. In other words, the static enrichment layer of the model 
is responsible for the improvements in the model.

5.3.3. Month-ahead energy consumption

The quantitative analysis of the month ahead demand has revealed 
interesting facts about the interpretable versions of the algorithms. 
Comparing the results of traditional LSTM models with those of all three 
algorithms, it is evident that conventional LSTMs provided the worst re-
sults. While the interpretable algorithms have shown better prediction 
accuracy and surprisingly, the TCN algorithm has performed better than 
the proposed TFT. Although both algorithms have a narrow margin of 
error, we can conclude that TCN has performed better. Accordingly, 
the TFT outperformed LSTM and Interpretable LSTM in terms of per-
formance. It is evident from the results that the algorithms have certain 
limitations; hence the chances of errors have increased once we try to 
predict the future without having information about the future energy 
prediction. Still, the interpretable models consider input data in detail 
with complex calculations, showing improved performance compared 
to traditional algorithms. Based on these results, it can be concluded 
that four algorithms can better predict energy for the day ahead than 
for the week and month ahead. The model has also performed better 
than the experimental results presented by Schirmer et al. [40] as they 
used deep learning models for experimental evaluation. We have also 
compared the results of the TFT and LSTM models using the same data 
set.

5.3.4. Energy consumption with multiple customers

Table 5 provides statistical metrics to measure the model’s perfor-
mance based on the energy prediction with multiple customers. The 
experiment was repeated with customers of 10, 20, 30, and 40. Increas-
ing the number of customers has increased error rates caused by the 
uncertainty of data and the different power consumption profiles of 
each customer. So the lowest errors can be seen for 10 customers’ en-

Table 5

Performance comparison of TFT with 40 customers.

Model Customers Metrics

MSE RMSE MAE sMAPE

LSTM 10 4.96 2.23 1.47 0.22
20 6.96 2.64 1.67 0.23
30 9.16 3.03 1.97 0.25
40 8.41 2.90 1.89 0.25

LSTM Interpretable 10 4.84 2.20 1.39 0.20
20 6.97 2.64 1.61 0.22
30 9.06 3.00 1.90 0.24
40 8.36 2.89 1.84 0.24

Temporal Convolutional 
Networks (TCN)

10 5.81 2.41 1.54 0.22
20 7.84 2.80 1.75 0.24
30 10.37 3.22 2.07 0.26
40 9.68 3.11 1.99 0.26

Proposed TFT 10 4.80 2.19 1.34 0.19
20 7.29 2.70 1.59 0.21
30 9.05 3.00 1.83 0.22
40 8.16 2.86 1.74 0.23

ergy demand predictions. At the same time, the highest was for the 30 
customers. Surprisingly the uncertainties have reduced; hence model 
has performed better with the 40 customers. A similar pattern can be 
seen for the performance of other models except for TCN, which has 
performed worst with 30 customers compared to 40. So it is evident 
from the performance of the models that uncertainties in energy con-
sumption profiles make predictions challenging for the deep learning 
models [35,50]. Overall, the proposed model’s performance remained 
better than the other deep learning models. The consumption profile 
clustering will improve performance, but it increases the system’s com-
plexity. In further experimentation, the profiles of the customers will 
be clustered based on similar characteristics and considered for the 
energy consumption prediction, which will reduce the complexity and 
challenges caused by the diversity of data. The analysis of the energy 
consumption profiles provides similar behavior of energy consump-
tion by different customers while the ranges of energy consumption in 
kWh remain different, so the clustering will help identify the customers 
with similar energy consumption behavior. Based on the clustering, the 
customers will be divided into groups based on the lower, high, and 
very high energy consumption for further experimentation, ultimately 
improving the system’s performance and providing insights into each 
group of customers while reducing the computation time and complex-
ity of the model design.

6. Conclusion

The energy consumption prediction problem has always remained a 
concern for scientists and energy production companies. In recent times, 
deep learning models have been introduced for the big data of energy 
consumption. These models need to be improved in terms of accuracy 
because the dimensionality of the data is a challenge for the algorithms. 
The intense competition for energy consumption between provinces, 
cities, urban, rural areas and industries has increased the challenges for 
energy production companies. There needs to be a reform of the en-
ergy consumption structure, a fast-track industrial restructuring, and a 
renewed commitment to energy conservation. It cannot be overstated 
how critical it is to invest in clean energy, improve the efficiency of 
conventional energy sources, and promote energy conservation and 
emission reductions. The depreciation should be prevented by imple-
menting regional strategies for managing total energy consumption. 
Establishing a relationship between regional energy consumption and 
economic performance is necessary to achieve regional energy develop-
ment goals. The objective of the proposed study is to predict the future 
energy consumption of different customers. The model has improved 
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the prediction accuracy on a big data set with diverse customer en-
ergy consumption profiles. The advantage of the model over traditional 
methods is the consideration of customer-based energy rather than an 
overall forecast. Keeping in mind the sensitivity of the problem, the 
proposed TFT model deals with the future demand of customers’ en-
ergy consumption in a smart grid environment.

TFT model’s performance has remained superior to LSTM, inter-
pretable LSTM, and TCN models. For the one-day ahead prediction of 
energy consumption, the MSE remained at 4.80; for the seven days, 
the MSE increased slightly to 5.75; and for the 30 days, the MSE re-
mained at 6.49. There was an RMSE of 2.19 for the next day, 2.40 for 
the next week, and 2.55 for the next thirty days. One day, one week, and 
thirty days ahead, the MAE was 1.64, 1.79, and 1.94, respectively. Com-
paring the proposed TFT model to the LSTM, the interpretable LSTM 
model, and the TCN model, these errors of the proposed TFT remained 
the lowest. LSTM has an overall sMAPE of 29.78%, while the Blocked 
LSTM has an overall sMAPE of 31.10%. There was a slight increase in 
the sMAPE for the TCN model with a value of 36.42%, whereas the pro-
posed TFT model had an sMAPE value of 29.56%, outperforming all the 
algorithms.

Sustainability requires prioritizing natural resource energy produc-
tion. The proposed model will increase the efficiency of existing re-
sources on the supply side. This feature makes the model suitable for use 
in smart grids and homes. The TFT has a deeper architecture and better 
learning strategies than other deep learning algorithms. TFT extracted 
better building energy consumption features from the smaller data set, 
which improved the prediction accuracy. In contrast, the model does 
not consider the market prices necessary to ensure a fair pricing system 
and sufficient energy demand. The total output will continue to rise, 
but it will be essential to establish a pricing system that is both effec-
tive and affordable. The customer-based predictive model development 
has its advantage as it does not depend on overall energy consump-
tion.

Despite the diversity of data, the model has met its objectives. 
Model performance may vary as more customers are added, since it 
has been tested on data from only one customer. For this study, only 
169 customers have been considered because of memory constraints, 
computing equipment, and resource availability. In the future, it would 
be better to use a more powerful platform or computer to facilitate the 
running of deep learning algorithms, as the algorithms take a long time 
to run. Furthermore, the study is limited by a limited number of par-
ticipants, so more customer data should be input. Future studies can 
propose hybrid or ensemble methods since they are more accurate than 
single algorithms.
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Appendix A. Learning loss of deep learning models

Table A.6

Learning loss comparison of TFT with deep learning models.

Parameter LSTM Blocked LSTM TCN Proposed TFT

Train_Loss 0.00101 0.000823 0.00186 0.00171
Val_Loss 0.000948 0.0013 0.00149 0.00169

Appendix B. Parameters settings of deep learning models

Table B.7

Parameters settings of algorithms.

Parameter LSTM Blocked LSTM TCN Proposed TFT

Activation Function ReLU ReLU ReLU
Hidden Size/Widths 20 10 16
Number of Layers 1 1 2 2
Random State 30 42 0 42
Training/Input Length 30 30 30 30
Output Chunk Length 15 15 15 15
Hidden Continuous Size 8
N Epoch Val Period 1 1
Batch Size 1500 32 1000
Optimizer Adam Adam
Learning Rate 1e-3 1e-3 1e-3
Epochs 200 200 200 150
Droupout Rate 0-0.2 0.1 0.1 0.1
Kernel Size 5
Number of Filters 3
Dilation Base 2
Loss-fn torch.nn. 

MSELoss()

Likelihood None
Future/Past Covariates Day Series – – –
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