
Zayed University Zayed University

ZU Scholars ZU Scholars

All Works

1-1-2023

Using Blockchain for Enabling Transparent, Traceable, and Using Blockchain for Enabling Transparent, Traceable, and

Trusted University Ranking Systems Trusted University Ranking Systems

Ammar Battah
Khalifa University of Science and Technology

Khaled Salah
Khalifa University of Science and Technology

Raja Jayaraman
Khalifa University of Science and Technology

Ibrar Yaqoob
Khalifa University of Science and Technology

Ashraf Khalil
Zayed University, ashraf.khalil@zu.ac.ae

Follow this and additional works at: https://zuscholars.zu.ac.ae/works

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Battah, Ammar; Salah, Khaled; Jayaraman, Raja; Yaqoob, Ibrar; and Khalil, Ashraf, "Using Blockchain for
Enabling Transparent, Traceable, and Trusted University Ranking Systems" (2023). All Works. 5682.
https://zuscholars.zu.ac.ae/works/5682

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All
Works by an authorized administrator of ZU Scholars. For more information, please contact scholars@zu.ac.ae.

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/5682?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5682&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholars@zu.ac.ae

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Using Blockchain for Enabling
Transparent, Traceable, and Trusted
University Ranking Systems
AMMAR BATTAH1, KHALED SALAH2, RAJA JAYARAMAN1, IBRAR YAQOOB2,
ASHRAF KHALIL3
1Department of Industrial and Systems Engineering, Khalifa University, Abu Dhabi 127788, UAE.
2Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi 127788, UAE.
3College of Technological Innovation, Zayed University, Abu Dhabi 144534, UAE.

ABSTRACT Ranking systems have proven to improve the quality of education and help build the
reputation of academic institutions. Each of the current academic ranking systems is based on different
methodologies, criteria, and standards of measurement. Academic and employer reputations are subjective
indicators of some rankings determined through surveying that is neither transparent nor traceable. The
current academic ranking systems fall short of providing transparency and traceability features for both
subjective and objective indicators that are used to calculate the ranking. Also, the ranking systems are
managed and controlled in a centralized manner by specific entities. This raises concerns about fairness
and trust. In this paper, we propose a blockchain-based solution to enable transparent, traceable, trusted,
and decentralized academic ranking systems. We develop smart contracts to automatically govern entity
interactions according to set policies. We leverage decentralized storage, oracles, and threshold encryption
to securely fetch, store, and share institutions’ ranking data. We present algorithms along with their
implementation and testing details, as well as validate smart contracts. The proposed solution is evaluated
in terms of cost, throughput and latency, and security to show its affordability, resiliency against attacks,
and superiority. All developed smart contract codes are made publicly available on GitHub.

INDEX TERMS University Ranking, Blockchain, Ethereum, Smart Contract, Trust, Security, Traceability

I. INTRODUCTION

Rankings help academic institutions improve the quality
of education and build their reputations. The most well-
known ranking systems are Quacquarelli Symonds (QS),
Times Higher Education (THE), and Academic Ranking of
World Universities (ARWU). Each of the ranking systems
has different criteria, leading to discrepancies in the ranking
of Higher Education Institutions (HEIs) [1], [2]. The subjec-
tivity of the rankings raises questions. For instance, 50% of
the overall QS score relies on surveys, which constitute 33%
of THE’s overall score as well [3]. Compared to rankings that
rely on subjective indicators, the ARWU uses more objective
metrics, such as achieving a Nobel Prize or publishing in
specific journals such as Nature and Science [4]. However,
even an objective-based ranking such as ARWU is criticized
on grounds of lack of transparency, limited assessment in
comparison to other rankings, and bias towards older and
larger institutions. In general, all the current academic rank-

ing systems are centralized and do not provide full trans-
parency and traceability, which impacts the trustworthiness
of the results [5].

Transparency is crucial to build trust among users towards
rankings. Details such as whom the survey pool consists
of, the response rate, where they are based, and if there is
any potential bias help to build up such trust [6]. However,
surveys utilized by ranking systems are not published nor is
the publicly information shared [7]. This leads to bias such
as that observed in [8], where universities that utilized QS
consultancy services climbed the rankings with no apparent
institutional changes that justified the change. Because most
ranking systems are centralized, it is common for people to
use their power for personal gain [9], [10]. Furthermore, in
several cases, the aggregated scores differed from what they
were claimed to be, yielding misleading results [11], [12].
The centralization of ranking bodies also leads to potential
bias based on the location of the ranking body. Rankings that

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3253948

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

rely on subjective sources must be transparent with the data
and process of generating the indicator, but current systems
fall short on this requirement.

Because of the need for more accurate ranking systems,
national rankings for each country and new global rankings
like Webometrics and Leiden have emerged. Each of the
rankings implements different methodologies [13]–[16]. In
addition, some analysts have constructed alternative rank-
ings, such as U-Multirank, which offer a multi-dimensional
view of HEIs. U-Multirank offers transparency by showing
the individual metrics that could make up an HEI’s overall
rank or score. While there have been many alternative rank-
ings, there needs to be a solution to tackle the issues related
to centralization, trust, traceability, and transparency. To the
best of our knowledge, a decentralized platform has yet to
be proposed to remove the single point of trust given to the
entity; participants instead place trust in the functionality of
the network. In such a system, concerns about bias, manipu-
lation, and transparency can be addressed with confidence.

In this paper, we propose a blockchain-based solution that
aims to enhance university ranking systems by offering trans-
parency, traceability, trust, and audit features. The blockchain
is a hash chain composed of blocks containing many transac-
tions. Each block contains the hash of the previous block;
any change to it invalidates the following blocks since their
hashes are also altered. This allows network participants to
transparently monitor the transactions on the network without
concern for manipulation. Furthermore, since ranking sys-
tems rely on different indicators from different sources, the
blockchain requires means to interact with the outside world.
In our proposed approach, a decentralized oracle subsystem
is used to handle external interactions (off-chain). Smart con-
tracts are developed to manage the oracles and ensure their
results are valid. Moreover, smart contracts enable decen-
tralized governance of interactions in a transparent, secure,
and autonomous manner. Users can validate the authenticity
of calculations and external results that are recorded through
oracle consensus. Through such an approach, several sources
can be relied on to aid in computing the chosen indicators
while maintaining transparency from the data source to the
representation. Furthermore, the anonymous participants can
be authenticated and held accountable to prevent malicious
activities in the ranking process.

The main contributions of the paper are as follows:

• We propose a blockchain-based solution to enable trans-
parent, traceable, and trusted university ranking sys-
tems. We present the proposed system architecture, the
sequence of interactions, and the role of each entity.
We also provide guidelines for interpreting the data
produced by the ranking systems.

• We design an approach governed by smart contracts that
enforces the required policies and transparently records
the interactions. We explain in detail how to register
stakeholders and collect ranking data with accountabil-
ity.

• We utilize Oracle clusters to conduct anonymous sur-
veys, maintaining decentralization and transparency
throughout the approach.

• We secure and scale the proposed solution through
threshold encryption of Oracle transactions, maintaining
traceability and transparency.

• We employ and provision a decentralized storage space
under the governance of oracles and smart contracts to
trace data from HEI’s, surveys and online sources.

• We implement a proof-of-concept smart contract, as
well as present the algorithms along with their testing
and validation details. The smart contract codes are
publicly made available on Github1.

• We evaluate the developed smart contracts through a gas
cost analysis, gauging performance by the throughput of
transactions, and analyzing their security parameters.

The remainder of the paper is organized as follows. Sec-
tion II presents the related work. Section III discusses the pro-
posed approach and its components, as well as highlights the
system architecture and sequence of interactions. Section IV
presents the implementation, testing, and validation details of
the proposed solution. Section V provides cost, security, and
performance analyses of the proposed solution. We provide
concluding remakes along with future work in Section VI.

II. RELATED WORKS
In this section, we review the existing literature focused on
university ranking systems, as well as general advancements
made in the field of education.

A. EDUCATIONAL SECTOR ADVANCEMENTS
The importance of the education sector cannot be neglected,
and various efforts have been put toward advancing differ-
ent educational areas [17], [18], including ranking systems.
However, while traditional university ranking systems have
received much criticism, they are still in bloom with limited
alternatives being offered. The International Ranking Expert
Group (IREG) has compiled a list of the various university
rankings under the Inventory of International Rankings [19].
Despite the criticisms, there is still limited research for alter-
native approaches to the traditional centralized rankings. The
current ranking systems have been critiqued, and guidelines
have been suggested. The researchers in [20] proposed a
framework to evaluate global rankings independently, rather
than devising a ranking system. The method follows the
devised SCOPE framework, which takes into consideration:
1) what is valued about the entity; 2) the importance of the
evaluative context; 3) evaluation options; 4) a deep exami-
nation of the evaluation approach; and 5) the requirement
that an external entity evaluate the ranking. The work also
evaluates the common ranking systems based on a criterion
that follows the proposed framework. While the proposed
framework is community-driven, it is too broad and needs

1https://github.com/anonymousgitter20221206/Decentralized-Ranking

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3253948

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

to cover more bases for the average user to assess ranking
systems appropriately.

The blockchain is slowly being incorporated into solutions
to tackle issues posed by current approaches. The authors in
[21] leveraged the blockchain to keep track of professional
skills, education, and employment history. Such information
requires verification, which network users supply in con-
nection with incentives based on the Vickrey-Clarke-Groves
(VCG) incentive mechanism. Authors in [22] proposed a
decentralized ranking system for educational content. The
solution relies on verified subject matter experts (SMEs) to
rate the online content. While advancements are occurring,
the current university ranking is still unaffected.

In our approach, we utilize a public blockchain to provide
equal access to all entities. On the other end of the spectrum,
centralized solutions violate the main requirements of trust,
transparency, traceability, and auditability, as mainly the con-
trolling entity has access to and control over the central server
or database. Aside from the traditional centralized databases,
there have been recent proposals for different centralized
ledgers to confront the blockchain. LedgerDB is a prominent
example, which proposes a centralized ledger that can be
audited and verified through a timestamp authority (TSA)
[23]. While Aquareum utilizes the blockchain simultane-
ously with a centralized ledger to enhance its capabilities
[24]. An intermediate solution would be private blockchains,
such as Hyperledger Fabric, which would be suitable for con-
sortiums and enterprises [25]. While the mentioned solutions
commonly offer higher throughput, they do not scale with
participants. Furthermore, the mentioned solutions assume
trust in the controlling entity, whether a third party or a
consortium, and restrict the participation and access of other
entities.

B. CURRENT RANKING SYSTEMS
The most renowned ranking systems are QS, THE, and
ARWU. Some other global rankings include Webometrics,
Leiden University Ranking, and U-Multirank. The aforemen-
tioned rankings systems are either centralized or governed by
a consortium. Due to the lack of decentralized approaches
for university ranking, we will focus on the current utilized
approaches.

1) THE
THE ranking was established in 2004 and has focused on
research-intensive institutions. The bibliometric data needed
for ranking is extracted from Elsevier’s Scopus database.
Furthermore, the indicators it uses encompass five areas,
each weighted differently: teaching (30%), research (30%),
citations (30%), international outlook (7.5%), and industry
income (2.5%). The weight distribution of the ranking sys-
tem heavily focuses on research, amounting to 60% if we
consider citations as a compartment of research. Moreover,
the accuracy of the chosen indicators in representing the area
needs to be verified. For instance, 18% of research is based on
a reputation survey, which is a subjective indicator. Research

income and productivity contribute to 6% each, which makes
it difficult to prove a direct correlation with quality research.
This also applies to citations, which comprise a large portion
of the overall score. While the first 200 institutions have an
individual rank, institutions above 200 are given a banded
ranking (i.e., 201-205).

2) QS
The other prominent global ranking is by QS, which was also
founded in 2004. THE and QS published joint rankings until
2009. As for the bibliometric data, QS also relies on Else-
vier’s Scopus database. Eight indicators of various weight
contribute to the QS ranking: academic reputation, employer
reputation, faculty/student ratio, citations per faculty, interna-
tional student ratio, international faculty ratio, international
research network, and employment outcomes. The indicators
regarding academic reputation and employer reputation are
based on surveys conducted by QS, which account for 50% of
the overall score. Surveys are conducted based on a collection
of 130,000 expert opinions within the higher education space.
Again, questions are raised due to a lack of full transparency,
especially when a large portion of the overall score consists
of subjective indicators. QS collates experts through sub-
mitted contact lists from institutions, sign-ups, and the IBIS
database. Regarding rankings, institutions in the top 500 are
given individual ranks, while those above are in bands of 10,
50, and 200, increasing the lower the rank.

3) ARWU
Shanghai Jiao Tong University created the first global rank-
ing, Academic Ranking of World Universities (ARWU), in
2003. Currently, it is managed by Shanghai Consultancy,
which focuses on six objective indicators in four areas. The
four areas of focus are quality of education, quality of faculty,
research output, and per capita performance. These areas
account for 10%, 40%, 40% and 10%, respectively, of the
total weight. ARWU is unique in not relying on subjective
indicators and focusing specifically on objective indicators.
At the same time, it is criticized for not including essential
aspects of evaluating universities such as teaching, social
work, employability, and internationalization [6], [26]. Fur-
thermore, weight selection is highly subjective, as 30% of
the weight is given to alumni or staff of an institution that
has won a Nobel prize or a field medal, both of which are
rare. ARWU collects data through official websites such as
the Nobel Prize website and relies on the Clarivate database.

4) Webometrics
Webometrics rankings began in 2004 at Cybermetrics Lab
and currently rank 12,000 institutions. Compared to the
above-mentioned rankings, Webometrics is more compre-
hensive in terms of included institutions. Its ranking method-
ology differs in that it includes both webometric and biblio-
metric indicators. The reasoning for the different approach
is to encourage academic web presence to facilitate the ex-
change of scientific and cultural knowledge. The three main

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3253948

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

indicators are web content impact, top-cited researchers, and
top-cited papers, with a weight of 50%, 10% and 40%,
respectively. Furthermore, the ranking is carried out twice a
year using public data, making it more transparent than other
rankings. However, this creates a flaw where institutions
could focus on webometrics, increasing their web presence,
to overcome other institutions with a weaker presence.

5) Leiden
The Leiden University Ranking, published by Leiden Uni-
versity, is the only ranking managed by a university. It is
emphasized that the ranking is based on the Web of Sci-
ence database, with Leiden handling the data enrichment.
The ranking focuses only on research and extracting and
enriching bibliometric data. The main indicators are scientific
impact, collaboration, open access, and gender. The ranking
introduces features such as considering the proportion of
publications in the top percentiles of the field and fractional
counting (i.e., a fraction for co-authoring, fraction for a non-
core publication). An advantage of the ranking is the repre-
sentation of rankings, where rankings are listed according
to individual indicators rather than with a single compos-
ite score. Furthermore, there is no subjectivity since only
bibliometric data is used, which is considered more trans-
parent than other rankings with its included documentation.
However, a disadvantage is that Leiden treats educational
institutes as research centers, only considering their research
aspects.

6) U-Multirank
U-Multirank takes a different approach to HEI evaluations
that aims to "rectify" the current ranking systems. It is
proposed by a European Union consortium that includes the
German Center for Higher Education (CHE), the Nether-
lands Center for Higher Education Policy Studies (CHEPS),
Leiden’s Centre of Science and Technology Studies, and
several reputable stakeholders. U-Multirank has no compos-
ite value to rank HEIs but rates them based on categories.
Five dimensions are considered, and five categories from
A to E are used for categorizing HEIs [27]. The ranking
focuses on being multi-dimensional and user-driven, which
other rankings lack. The five dimensions under which the
indicators fall include (1) teaching and learning, (2) research,
(3) knowledge transfer, (4) international orientation, and
(5) regional engagement. The unique nature of U-Multirank
creates no single winner; rather than differentiating between
the institutions, several winners are categorized as "A" (very
good). While this makes it less competitive for institutions
and decreases the drive to be on top, it gives institutions
space to excel in their own way in different dimensions, as
opposed to the rigid ranking approaches that set what an
exemplary HEI should be. Users can find suitable institutions
based on their needs rather than the needs dictated by the
one-dimensional ranking. This user-driven approach allows
institutions to excel at what they do and achieve the appro-
priate recognition and interest.

While the U-Multirank approach is getting recognition
for being a step in the right direction, it is still a work in
progress. It is proposed by a consortium of entities, which
might introduce bias or a limited view of the educational
landscape. The majority of participants are from European
institutions, which are present at least four times more than
other regions [28]. The consortium has to maintain the ser-
vice by governing and funding it, which might prove difficult
and introduce doubts as external entities are involved. For
instance, Web of Science (WoS) was chosen for bibliometric
data, even though it could be argued that using Scopus or
both of them is more suitable. As such, decisions are taken
based on the consortium’s views. This concern is magnified
by the lack of full transparency, as U-Multirank checks data
for consistency, missing data, and plausibility [28].

III. PROPOSED BLOCKCHAIN-BASED SOLUTION FOR
UNIVERSITY RANKING SYSTEMS
In this section, we present our proposed blockchain-based
solution that enhances the current university ranking systems.
We discuss our system design and its architecture, as well
as present the interaction details between the ranking system
entities. Figure 1 shows an overview of system entities,
highlighting the interactions for authenticating HEIs, curat-
ing data, conducting surveys, and validating their results.
We propose the solution based on a public permission-less
blockchain, as private permissioned blockchains limit access
which is required for such a proposed system.

A. SYSTEM DESIGN AND ARCHITECTURE
A blockchain-based solution is proposed to ensure that the
ranking process is decentralized, transparent, traceable, au-
ditable, and trustworthy. On top of the integrated blockchain
network, smart contracts are used to govern entity interac-
tions according to set policies. The smart contracts provide
the means to enforce the authenticity of transactions, while
the blockchain ensures their integrity, transparency, and au-
ditability. Oracles are employed to register and have their
data validated by the smart contracts after they execute their
tasks. The oracles are used to conduct surveys and fetch
data from open sources. To address the issue of limited data
storage, we use a decentralized storage system. The storage
system maintains the accumulated data gathered for HEIs.

Entities in the proposed solution register only when nec-
essary. All participants have to be part of the network with
a valid address to carry out transactions on the blockchain.
Each entity and its task are as follows:

• Higher Education Institutions (HEI): An HEI must
register before it can be rated, and an authentication
process takes place for each registration request. Fur-
thermore, HEIs should provide a path containing infor-
mation relevant to the institution, such as the number
of faculty, students, research centers, staff, events held,
awards gained, facilities, equipment, and any relevant
information that illustrates the institution’s goals and
capabilities. Moreover, part of the information is the

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3253948

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Register on SC as a HEI Upload University Statistics and Information

2 1

3
Add University

Information to SC
Governed Space

46

7
Initiate Employer and

Academic Survey
Select Surveyees and Share

Survey
8

Upload private
Anonymous Survey

9Validate, aggregate
and sign survey

results

10

11

Higher Education Institute (HEI)

Prospective Client Smart Contracts Oracles Decentralized Storage

Surveyees

Academic Data Sources

Query University
Performance

Send Signed Result

Exchange Academic
Data

13

12

Verify Result and
Signature

Fetch Academic
Bibliometric data

and Statistics

5

N - 1 NN - 2N - 3

FIGURE 1. Overview of system entities, highlighting the interactions for authenticating HEIs, curating data, conducting surveys, and validating their results.

anonymous faculty’s public keys, which can be used for
validation by the network. Unlike other entities to be
mentioned, HEIs are not anonymous and can be publicly
recognized. The smart contract authenticates an HEI
by validating that the Ethereum address corresponds to
the registering institute. To achieve this, the registering
institute needs to provide the account address on its
website under its valid SSL certificate, which the ora-
cles will check. Taking such an approach leverages the
existing certificate system, ensuring that the HEI is the
one providing the EA.

• Clients: A client is any entity interested in gauging an
HEI’s performance based on selected aspects. Such en-
tities may include prospective students, employers, re-
cruiters, researchers/lecturers, media, regulatory author-
ities, and national authorities. Clients are not required to
register, considering their varying availability and com-
puting capabilities. Furthermore, their communication
gateway with the network and its services would be the
decentralized application (DApp). The interpretation of
the indicators is dependent on the client’s needs. For
instance, a chemical engineering student would be in-
terested in how well the chemistry departments of each
HEI rank in terms of equipment and facilities, research
productivity, faculty qualifications, teaching quality, and

any additional relevant indicators.
• Smart Contracts: Smart contracts are the mediators

and governors of the network that replace the common
third party in traditional solutions. They can be seen as
a computerized transaction protocol that executes the
terms of a contract [29]. The contract are responsible
for maintaining the devised access control policies in
the proposed architecture. Moreover, the smart contracts
manage oracles and validate their transactions.

• Surveyees: Surveyees are end-users that ideally have a
low load in terms of communication, computation, and
storage. They do not need to register or have an EA. Sur-
veyees who contribute to the academic survey include
reputable academics such as professors, researchers, and
scholars. Likewise, employers and graduate recruiters
are surveyed for the employer survey. Surveyees are
contacted by smart contract-governed oracles for the
survey. Since survey results might be influenced by the
surveyee’s identity being revealed, survey submissions
are anonymous.

• Oracles: While smart contracts govern on-chain inter-
actions, off-chain activities are carried out by oracles.
Oracles are responsible for validating HEI registration,
sending, receiving, and validating surveys, and aiding in
the amalgamation of academic information in the decen-

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3253948

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

tralized storage. The decentralized oracles are grouped
into clusters that communicate using the peer-to-peer
(P2P) protocol to achieve their tasks in a trustworthy
manner through consensus. Furthermore, the oracles act
as a second layer to the blockchain by using threshold
signatures. Finally, a different type of oracle is used to
generate a nonce for use between oracles and surveyees.

• Storage and Data Sources: Off-chain storage is needed
to tolerate all the ongoing transactions of the system
without overloading the participants. We use the Inter-
planetary File System (IPFS) as a storage medium to
conduct surveys between oracles and surveyees. Fur-
thermore, the IPFS hosts the databases of HEIs, Oracles,
and academics. These different entities collaborate to
accumulate data and validate it when necessary. Ac-
cessible data is fetched by oracles when needed from
sources such as Scopus, Clarivate, Google Scholar, PAT-
SAT, CrossRef, Orcid, Researchgate, and similar rele-
vant sources that provide academic data. Such data can
be used to cross-check data provided by other entities to
ensure the constructed database’s validity.

B. ORACLES AND ENCRYPTION
The rapid advances in blockchain technology have led it
to offer more features. Scalability is a major concern when
implementing blockchain solutions. Our proposed approach
relies on oracles to handle external interactions that cannot
be carried out by the blockchain. However, external tasks are
not recorded on the blockchain.

To maintain trust throughout the entire process, oracles
commonly submit their results to the smart contract to
achieve consensus. As such, decentralization is maintained
even at the oracle level, and consensus is held on the
blockchain, which can be audited. However, this becomes in-
feasible with the high number of oracles that are consistently
used. While users require trustworthy transactions, it is not
required for each oracle to see every detail of every submis-
sion. An implementation that complements such a concept is
state channels [30]. Instead of multiple transactions, only two
transactions are required to open and close a channel while
the two concerned entities interact off the chain. To maintain
trust on the chain, the entities use multi-signatures to get
a consensus from the participating entities on the validity
of the transaction. The multi-signature contract validates the
signature before accepting it.

We employ a similar concept; however, unlike the com-
mon two-party settlement, we leverage utilization for oracle
consensus. Furthermore, we use a threshold signature scheme
that enables a single transaction to attain consensus after it
has been initiated. On the contrary, typical multi-signatures
require each individual entity to sign the transaction, creat-
ing the need for multiple verifications. This extends to key
refresh, where only a shared public key is sent by the par-
ticipating group. Threshold encryption is a subset of multi-
party computation that allows operation execution even in
an untrusted setting without revealing private data. Such an

approach is crucial as it reduces the number of transactions
on the chain, thereby reducing cost and increasing scalability.
The threshold determines how many m oracles are required
to generate a valid signature out of the total cluster n. In the
proposed solution, oracles are grouped into clusters, and each
oracle computes a secret key and a shared public key. The
public key is submitted when 1) a cluster is first formed, 2)
there is a change in the cluster, and 3) the set refresh time
limit is reached. Once there is a valid public key, the cluster
is able to transact and verify to have a consensus by using the
smart contract’s shared public key.

C. SYSTEM INTERACTIONS
Before deploying smart contracts, state variables are set to
what is appropriate. A chosen entity can do this through
voting or a decentralized autonomous organization (DAO).
Such variables could be the required stake value of oracles,
the maximum number of oracles in each cluster, and the
number of metrics to consider. The main contract handles
interactions between all entities described in the architecture
while enforcing the defined access control policies. An addi-
tional smart contract would be responsible only for handling
cryptographic verification. In the following sequences, we
focus on the main smart contract while the latter contract
concurrently functions in the background to validate trans-
actions.

1) Registration and Set Up
Once the contracts are added to the network, a registration
phase is opened for users. Every participating oracle (regular
and noncers) needs to register, as well as every HEI. Scholars,
on the other hand, do not have to register. The sequence of
a typical registration phase can be seen in Figure 2, and is
detailed as follows:

• An oracle registers the stake amount set during the
deployment phase. The SC prevents an account from
registering as an oracle if it is associated with any other
role on the network.

• A new cluster is generated if the oracle is the first
oracle to register or if the other clusters have reached
their full capacity. Otherwise, the oracle is assigned
to an existing cluster. While oracles register with the
appropriate stake, they get assigned to form a cluster to
execute tasks.

• Once a cluster has a set amount of oracles and is ready
to accept tasks, it employs a distributed key generation
(DKG) protocol such as what has been detailed by
Pederson [31]. The DKG protocol yields an aggregate
public key with individual confidential secret keys for
each oracle.

• The oracle head submits the aggregate public key, which
is associated with the cluster for future transactions by
the smart contract.

• During the registration phase, one of the users enlists
to become a storage space (IPNS) maintainer. While
fulfilling this role, the maintainer cannot assume any

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3253948

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

SC IPFS Oracles

Distributed key generation
between cluster oracles

University

University Website
Validate Ethereum Address and verify certificate

Register oracle with required stake

Register Oracles with stake and assign to cluster

Set IPNS (storage) link by an oracle with required stake

Request HEI registration and provide IPNS link and path to credentials

Submit public aggregated cluster key

Set Up IPNS of University

Authenticate and register university

Set up IPNS for oracles

Aggregate results and signature

Remove University from mapping and blacklist address

O
ra

cl
e

cl
us

te
r a

nd
 s

to
ra

ge
 s

pa
ce

 s
et

up
A

ut
he

nt
ic

at
in

g
an

d
re

gi
st

er
in

g
a

va
lid

 U
ni

ve
rs

ity

Generate an oracle cluster

On-chain
Off-chain

Share PeerID with oracles to update IPNS

FIGURE 2. Sequence diagram of the network’s registration and set-up phase, which details the generation of clusters, submission of keys, and authentication of HEIs.

other role and gains rewards for continuous cooperation.
The maintainer shares the PeerID with oracle heads so
that they can add data to the IPNS.

• Before an HEI registers, it sets up an IPNS with all the
relevant information regarding the institution, including
an anonymous list of the public keys of scholars and
their departments.

• The HEI proceeds to register, providing the name, IPNS,
and path to the account address on its website. The smart
contract keeps a record of the HEI but does not register it
yet. It then instructs the oracles to authenticate the HEI.

• Assigned oracles validate the account address’s cor-
respondence to the provided address and validate the

website’s authenticity through its SSL certificate. The
oracles aggregate their results and signatures to be sub-
mitted to the smart contract.

• If the number of oracles confirming the account’s au-
thenticity is below a certain threshold, it is not authenti-
cated and not registered.

2) Data Gathering
Once a few oracles, an HEI, and an IPNS maintainer have
registered, the smart contract then allows rating to com-
mence. Each HEI has an assigned oracle cluster handling its
survey, while any oracle on the network can submit other
data. When the survey period ends, the results are amalga-

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3253948

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Scholar SC Oracles IPFS Noncer

Initiate university survey

Submit shared public key

Upload Survey

Give ranking criterea

Send survey link

Send encrypted nonce (encrypted with scholar public key)

Request new nonce values for surveyees
Send hashed nonces

Remind surveyee to complete survey

Upload the encrypted survey

Share the survey link
Fetch the survey

Sign and send the result

Distributed key generation

Select surveyees for the survey

Sign survey & encrypt with scholar public key

Fill the survey with required information

Generate a hash of the survey

Encrypt with the oracles public key

Decrypt and validate the survey

C
lu

st
er

 s
ur

ve
y

In
iti

at
io

n
Se

nd
in

g
Su

rv
ey

C
om

pl
et

in
g

Su
rv

ey
Su

bm
it

Su
rv

ey

Verify signature and commit result
On-chain
Off-chain

FIGURE 3. Sequence diagram of the ranking phase focuses on the survey initiation, exchange, and submission.

mated and represented in the desired form. Figure 3 clarifies
the process, which occurs as follows:

• An oracle cluster requests to handle an HEI’s survey,
given that it satisfies the conditions for being able to
execute tasks.

• The smart contract assigns the task to the cluster if it
is fit and emits the type of survey that oracles have to

conduct.
• If the cluster does not already have a key or has not been

updated, a new one is generated. The cluster oracles
execute the DKG protocol, each having a secret key and
a part of the public key.

• The shared public key is then submitted to include all
the current participating oracles in the cluster.

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3253948

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

• Oracles select the surveyees, determining their public
keys and the type of surveyee.

• M-of-N oracles sign the survey with their secret keys,
and one oracle is assigned to encrypt it using the
scholar’s public key, ensuring that only the scholar
receives it.

• The survey is uploaded to IPFS by the same Oracle that
encrypted it. The oracle is accountable for the scholar
survey.

• Oracles then send a survey link to the scholar while
keeping time. The scholar is chosen from public records,
and the associated public key is unknown. Scholars
point to their public keys out of order and anony-
mously.

• An oracle from the cluster requests a set of nonces from
the noncers.

• Noncers generate the nonces, hash them, and send them
to the oracle cluster. Hashes are sent to the cluster to
keep track of misbehavior.

• The nonce is sent securely to the scholar, which the
scholar hashes and includes in the survey.

• The oracle cluster sends a reminder to fill out the survey
if the scholar has not completed it yet, ensuring that the
reminder is sent by a different oracle.

• Surveyees complete the survey as instructed, generate a
hash from the nonce, and encrypt the shared public key
with the oracle.

• Surveyees upload the survey to IPFS and share the link
with the oracles.

• Oracles fetch the survey, decrypt it, and validate the pro-
vided hash and signature. Moreover, the oracles validate
that the survey is filled out appropriately.

• Finally, M-of-N oracles sign the result and send the
transaction to the smart contract to verify and update
the state.

D. SCORE INTERPRETATION
The curated data, which constitutes the metrics and indicators
to evaluate HEIs, is stored in distributed storage. Once the
data is uploaded, it is maintained even if the uploader no
longer hosts the data. So, the participants still have access to
the data and can use the indicators to make a good evaluation.

To avoid the common issue of discrepancies in indicator
values, we can standardize the indicators by applying z-
transformations to generate z-scores [32]. Given the z-scores,
we represent each indicator based on a categorical or visual
representation for users through the DApp.

zi =
xi − x̄

s
(1)

Score =

∑n
i=1 ziwi∑n
i=1 wi

(2)

Equation 1 represents the z-function, where x is the raw
indicator value, x̄ is the indicator mean, and s is the indi-
cator standard deviation. The yielded z-score is utilized in

Equation 2, where each indicator z-score (zi) is multiplied
by its associated weight wi, and the result is standardized by
dividing by the sum of the weights wi. The above process
provides scores for each HEI, which can be used to devise
different rankings and representations.

As the literature review discusses, individual ranks are
focused on simplifying an HEI’s overall performance. The
overall score should be the primary metric on which different
representations can be built. U-Multirank utilizes a median-
based approach, where HEIs are assigned to a group based
on how far or close they are from the median score. THE
ranking uses a percentile rank approach, whereas ARWU
and QS assign a full score to the highest-scoring institute
and calculate the rest of the institutions as a percentage of
the highest score. In the approaches above, the ranking is
relative, creating a clear distinction between institutes even
if the actual differences are minimal. On the other hand, ap-
proaches like U-Multirank minimize the distinction between
institutes, even if there are significant differences.

As such, the end-user should assess the discrepancies of
institutes through non-complex representations of data. End-
users define and select the metrics and rankings that suit
them, and the system should be able to display the scores
of the institutes based on the selected indicators. We can
achieve this effortlessly with a weighted sum that has been
standardized, as indicators can be plugged into or removed
from the equation. Finally, the vast number of indicators are
reduced to a single score, but the end-users would still have
an absolute score that represents the performance of a set of
indicators rather than a ranking relative to other institutes. In
the end, the scores can be represented similarly to approaches
such as U-Multirank, which designates a category for each
institute based on the generated score by giving it a letter
grade or a visual representation.

IV. IMPLEMENTATION AND VALIDATION

In this section, we present the algorithms implemented in
our smart contracts. We validate their functionality using a
variety of tests. The validation is divided into phases that we
test individually and then integrate to test as a whole. We
implement the smart contracts required for our approach on
the Ethereum blockchain, which is a public permissionless
blockchain network. We enforce our solution’s conditions
using smart contracts to create the desired approach. We
employ the Solidity programming language for Ethereum
smart contract programming. As for the development envi-
ronment, we rely mainly on Hardhat for compilation, de-
bugging, deployment, and testing. We develop an automated
test that executes the default flow while also handling in-
tentional exceptions. Smart contracts run on version 0.8.15
of Solidity, and tests are written in Javascript with the aid
of the Waffle and Chai libraries. For the purpose of testing
our smart contracts, we use an aggregate signature scheme

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3253948

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 1: Oracle Registration

1 Require: value == stake, notOracle
2 if Cluster reached full capacity OR No clusters yet

then
3 function: generateCluster()
4 else
5 Increment cluster number of oracles
6 end
7 Create Oracle instance
8 Set Oracle cluster to current cluster number
9 Set Oracle number to order in cluster

10 Ensure Oracle gains no rewards for previous cluster
tasks

11 Add Oracle to registered mapping

implementation based on the BLS signatures2. Aside from
providing the required characteristics, we also select this
option because BLS signatures (BN254 elliptic curve) are set
to be a significant component of the upcoming merge.

A. SMART CONTRACT ALGORITHMS
Herein, we explain the main smart contract, which handles
oracle management, data management, and HEI rating.

The sequence starts with the oracle sign-up. In this phase,
each oracle executes a registerOracle function. Each oracle
has to send a value with the transaction equal to the required
stake. Furthermore, the oracle should have been registered
beforehand as something other than an oracle, a noncer, or
an HEI. If requirements are satisfied, the contract checks if
the last cluster reached its total capacity or if this is the first
cluster. If any of the conditions above are true, the smart
contract generates a new cluster, and the oracle is enrolled in
it. If that is not the case, then the oracle is added to an existing
cluster. After assigning the oracle to a cluster, it is initialized
with the cluster’s number. Finally, the oracle is added to the
registered mapping to ensure no overlap in roles, as shown in
Algorithm 1.

One of the oracles can also call the function
setIPNSLink to be the maintainer. The oracle has to pro-
vide a stake higher than an ordinary cluster oracle. The task
of the maintainer is to provide a peer ID to the participating
clusters. HEIs also have to register by providing the name
of the HEI, an identity validation path, and an IPNS link for
their curated data. An entry is created from the provided HEI
information so that oracles can authenticate it, but it is not
registered and cannot be evaluated. Before evaluating an HEI,
each cluster must submit its shared public key. The function
to submit the key can only allow the cluster head to submit.

Once the cluster completes that process, it can attempt to
authenticate an HEI. The cluster validates the provided path,
making sure it contains the same address and a valid corre-
sponding certificate. M-of-N oracles in the cluster do this,

2BLS contract: https://github.com/thehubbleproject/hubble-
contracts/blob/master/contracts/libs/BLS.sol

then they reach a consensus and aggregate their signatures.
As detailed in Algorithm 2, the cluster must provide the HEI
address, the result, and its signature. Only one oracle in that
specific cluster can execute the function. The smart contract
also ensures that the correct oracle address is used, that the
HEI is not already authenticated, and that the cluster has
the right to authenticate HEIs. The next step is to verify the
signature using the provided public key and the result. If it is
invalid, the transaction fails. If the signed message is greater
than 0, then the HEI is valid and can be registered. Otherwise,
the smart contract rejects the instance and deletes its entry
from the ledger. Finally, regardless of the resulting outcome,
the cluster is rewarded for submitting the result.

Algorithm 2: Authenticate HEI

1 Input: address _HEIAddress, uint _result, uint[2]
_thresholdSignature

2 Require: isOracle
3 Require: HEI address corresponds to valid HEI &&

HEI not authenticated yet && Cluster size >=
minimum required cluster size

4 Require: function:
verifySignature(_thresholdSignature, pubkey, _result)

5 if result > 0 then
6 HEI authentication flag← true
7 emit: "HEI is registered”
8 else
9 delete HEI instance

10 emit: "HEI failed to register”
11 end
12 Increment cluster completed tasks

Authenticated HEIs are now valid for surveys, and a cluster
initiates a request to handle the survey of the HEI. A valid
oracle requests a survey for an authenticated HEI, and the
cluster is assigned the task given that no cluster is already
assigned. The oracles conduct the survey as detailed in Fig-
ure 3 off the chain. As for the on-chain transaction, it is as
shown in Algorithm 3. An oracle specifies the HEI address,
survey result, aggregated value, message, and corresponding
signature. In this case, the signed message is the survey
result link, which has the aggregated values. A score instance
is created for the HEI if the signature is valid. The score
structure holds the metrics and links to their data, which is
respectively the submitted metric score and the submitted
metric data link. Afterwards, the smart contract increments
the cluster number of completed tasks to withdraw its reward.
Finally, the smart contract emits an event to notify the cluster
to update the metrics in the governed IPNS space.

At this point, we have data from surveys and the data
submitted by the HEI. Further data needed for metrics is
fetched from the aforementioned public sources by oracles
or submitted by network participants. Oracles or users call
the function newDataSubmission, which would include
the data, its source, the indicator, and the corresponding

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3253948

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://github.com/thehubbleproject/hubble-contracts/blob/master/contracts/libs/BLS.sol
https://github.com/thehubbleproject/hubble-contracts/blob/master/contracts/libs/BLS.sol

Algorithm 3: Submit Survey Results

1 Input: address_HEIAddress, string _surveyResults,
uint_aggregatedValues, uint[2]_ThreshSignature,
uint[2]_message

2 Require: isOracle
3 Require: function:

verifySignature(_thresholdSignature, pubkey, _result)
4 Create Score Instance
5 Score metrics← _aggregatedValues
6 Score metricData← _surveyResults
7 Increment cluster completed tasks
8 emit: UpdateMetrics(_HEIAddress, assignedCluster)

HEI. Once the request is out, the HEI’s assigned cluster is
responsible for validating the data. As shown in Algorithm 4,
the submitter address, the HEI address, the metric score and
its order, the metric data, the message, and its signature are
submitted by the cluster. The message to be verified is a con-
catenation of the data owner, HEI address, and the metric’s
order. Only an oracle registered with the assigned cluster
can execute the function. Once the signature is verified, the
metric score and metric data path are updated. As before,
the smart contract increments the completed task counter
to reward the oracles. Finally, the smart contract clears the
mapping of the submitted data and the cluster.

Each oracle can withdraw rewards from the smart contract
based on the completed tasks. The smart contract keeps
track of the number of withdrawals for each oracle and its
authorized rewards.

Algorithm 4: Commit HEI Data

1 Input: address _dataOwner, address _HEIAddress,
uint_metricOrder, uint _metricScore, string
_metricData, uint[2] _message, uint[2]
_threshSignature

2 Require: isOracle
3 Require: assignedCluster != 0 && dataOwner

assigned to this cluster
4 Require: function:

verifySignature(_thresholdSignature, pubkey,
_message)

5 _HEIAddress Score metrics← _metricScore
6 _HEIAddress Score metricData← _metricData
7 Increment oracle indivdual task count
8 Remove data owner from mapping

B. FUNCTIONALITY CORRECTNESS VERIFICATION
We validate our proof-of-concept using the Hardhat environ-
ment, carrying out an integrated test of the default scenario
of our approach. While going through the use case, we run
tests on the used function to validate correct behavior for
various parameters and enforce access control policies. In

FIGURE 4. A test sample validating the correctness through exception handling.

particular, we use the Chai library3 for advanced assertions
and exception handling and use Hardhat network helpers to
manipulate time4. Figure 4 gives an overview of some of the
handled exceptions in their respective phases.

We start with the expected functionality of this compart-
ment. A minimum number of oracles are required to register
to form a cluster. Also, a maintainer is required for the IPNS
used by the participants. Finally, HEIs can invoke registration
requests, which the oracles will handle. We depict some of
the most important exceptions to handle and required asser-
tions. We refer to assertions as (A) and handled exception as
(HE).

1) Oracle registration

Each oracle registers with the specified stake, determined
at smart contract deployment. Each oracle is automatically
assigned, and thereafter confined, to a cluster. In the test,
we registered 11 oracles successfully out of 15 registration
attempts. The four invalid registration attempts were ex-
pected and handled accordingly. The handled exceptions and
assertions of right behavior are as follows:

• A: The first oracle is assigned to the first newly gener-
ated cluster.

• HE: An oracle attempts to register with a stake lower
than expected. As such, it was rejected and not regis-
tered.

• HE: A registered oracle attempts to register again but is
prevented from doing so.

• A: The 11th oracle is assigned to a newly generated
cluster, as the maximum threshold has been set to 10
in this test.

3https://hardhat.org/hardhat-chai-matchers/docs/overview
4https://hardhat.org/hardhat-network-helpers/docs/overview

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3253948

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

• HE: A previous oracle attempts to register for the newly
generated cluster but is prevented from doing so.

2) IPNS setup
One of the registered oracles can be the maintainer of the
IPNS link. When registering as the maintainer, the stake is x
times greater than the original. For this test, we assume x is
5, and 4 attempts are taken for an oracle to register, given the
following cases:

• HE: An account is prevented from being the maintainer
for not being a registered oracle.

• HE: An oracle is prevented from being a maintainer due
to an invalid stake amount.

• A: A registered oracle with a valid stake amount regis-
ters as a maintainer.

• HE: An oracle is prevented from being a maintainer, as
there is already a valid maintainer.

3) HEI registration
For an HEI to be ranked, it must register and authenticate.
Each HEI submits its official name, a domain path with
its address, and an IPNS path. The smart contract creates
an entry for the HEI, which the oracles use to authenticate
the HEI. Furthermore, while this process is ongoing, the
HEI is prevented from initiating new requests to prevent
service denial attacks by malicious users. We start the test
with an accepted registration request, followed by two failed
attempts:

• HE: A previously registered HEI is prevented from
submitting new requests following the first accepted
request.

• HE: An oracle attempts to pose as an HEI and is pre-
vented from submitting the request.

We also submitted a request for a different HEI. Once an HEI
has requested registration, clusters can submit their authenti-
cation results. The first valid cluster with valid authentication
is assigned to the HEI.

4) Key submission
Most of this compartment is done off-chain, with oracles gen-
erating a public key and their secret keys. We also simulate
an invalid cluster, where one of the oracles signs an invalid
message. In the test, the following assertions and exception
handling occur:

• A: The generated signature from the valid cluster is
verified and considered valid.

• A: The generated signature from the invalid cluster
(with a faulty message) fails the verification.

• HE: An oracle that is not the head of the cluster attempts
to submit the shared public key and is prevented.

• HE: An account not part of the cluster attempts to
submit the key and is prevented.

• HE: An oracle from a different cluster attempts to sub-
mit a key for a different cluster and is prevented.

5) Authenticating HEI
HEIs that are viable for authentication can be authenticated
by any cluster that submits a valid request. The cluster must
have the minimum number of oracles defined upon deploy-
ment. Furthermore, they should submit a valid threshold
signature. We handle exception cases as follows:

• HE: An oracle from a valid cluster submits the authenti-
cation request but is rejected due to an invalid message.

• HE: An oracle from a valid cluster submits the au-
thentication request, but it is rejected due to an invalid
threshold signature.

• HE: An oracle from a cluster with a low number of
oracles submits an authentication request and is rejected
for not meeting the minimum number of oracles.

• HE: An oracle from a valid cluster submits an authenti-
cation request for an invalid HEI and is rejected.

• HE: An oracle from a valid cluster with signature details
submits an authentication request but is rejected due to
the timeout of the public key of the cluster.

After updating the smart contract’s shared public key, the last
cluster can verify the HEI.

6) Conducting surveys
A valid cluster initiates a survey, and the cluster is assigned
to the HEI if successful. The assigned cluster handles any
further requests for the HEI. The initiation does not require
the signature of the cluster. Moreover, the key timeout is also
checked before accepting the request. We test the surveying
of an HEI and handle exceptions as follows:

• HE: An account is prevented from submitting a survey
request if it is not a member of the cluster.

• HE: An oracle that is part of an invalid cluster is pre-
vented from initiating the survey request.

• HE: An oracle is prevented from initiating a survey for
an unauthenticated HEI.

• HE: An oracle from a different cluster is prevented from
initiating a request on the cluster’s behalf.

• HE: An oracle is prevented from initiating a survey
request since the public key needs to be resubmitted.

• A: The survey is initiated by a valid oracle from a valid
cluster.

• HE: An oracle is prevented from initiating a survey for
an HEI that has been assigned a cluster.

7) Submitting survey result
When submitting signed results, we use an N-to-N threshold
signature relationship in the tests. To ensure correct function-
ality, we simulate an oracle that generates a new pair and
attempts to join the cluster consensus. We handle the cases
as follows:

• A: A signature generated by Oracles is valid (off-chain).
• A: A generated signature by oracles, including an oracle

with a new key pair, is invalid (off-chain).
• HE: The survey result is rejected due to an oracle from

a non-assigned cluster being the submitter.

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3253948

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

• HE: The survey result is rejected due to selecting an
invalid HEI.

• HE: The survey result is rejected due to an invalid signed
message.

• HE: The survey result is rejected due to an invalid
threshold signature.

• A: The survey result submitted by a valid assigned
oracle with the appropriate parameters.

8) Submitting new HEI data
When an HEI is authenticated, data regarding the HEI can be
submitted by participants on the network. Such data is used to
bolster existing data and provide a separate set of information
for reference. The submitter invokes a request to submit new
data for the oracles to validate. We validate the function as
follows:

• A: A valid account invokes a new data submission
request for a valid HEI.

• HE: The account attempts to invoke a new request but is
prevented from doing so by an active request.

• HE: An account is prevented from submitting a request
for an invalid HEI.

9) Committing HEI data
An oracle from the assigned cluster has to submit a trans-
action with the signature of a set number from the cluster.
The transaction would be a validation of the submitted data,
which is committed to the blockchain through the transac-
tion. We test the function as follows:

• A: An oracles-generated signature is valid (off-chain).
• A: A generated signature by oracles, including an oracle

with a new key pair, is invalid (off-chain).
• HE: An oracle that is not part of the assigned cluster is

prevented from committing the data.
• HE: An oracle attempted to commit the data by provid-

ing a different data owner but was prevented.
• HE: Data commit rejected due to an invalidly signed

message.
• HE: Data commit rejected due to an invalid threshold

signature.
• HE: Data commit rejected. The cluster must submit a

new public key.

V. EVALUATION AND ANALYSIS
In this section, we present the cost, performance, and security
analyses to evaluate the proposed solution.

A. GAS COST ANALYSIS
We build our proposed solution on the Ethereum blockchain,
which offers advanced smart contract capabilities. The so-
lution is not constrained to Ethereum and can be migrated
to other networks that support smart contracts. Costs are
enumerated in terms of gas, the quantifiable unit that es-
timates the computational consumption on a machine [33].
The monetary costs depend on the price of a gas unit and the

chosen currency’s value. In our case, the average gas price
was 21 Gwei. While the price of ether keeps fluctuating, the
amount of gas is consistent for operations. As such, gas is
a more accurate representation of the cost efficiency of the
solution.

We generate the costs of the methods executed in our
validation and described in our algorithm sections, as seen
in Table 1. The average of the function costs was taken
based on the number of times it was called. As can be
seen, there is a drastic cost difference between the methods
due to signature verification. All the methods that internally
call the verification function start from 200, 000 gas, namely
authenticateHEI, commitHEIData and submitSurveyResult.
Such costs are necessary to maintain security seamlessly
between off-chain and on-chain transactions. Simple request
functions that do not require substantial oracle participation
come with modest gas costs, which are around 50, 60, and
80 thousand gas. Not only does this approach require only
one transaction, facilitating lower traffic, but using threshold
signatures also decreases costs considerably due to the low
number of calls. Regardless of the number of oracles, ini-
tiateSurvey and submitSurveyResult only have to be called
once to reach a consensus. If the smart contract handles the
consensus, the function would be called N times, which is
equal to the number of oracles N required for each survey
initiation and result submission.

B. THROUGHPUT AND LATENCY ANALYSIS

We examine the throughput of transactions because our so-
lution focuses on managing and curating data through smart
contract governance. Although the contracts are developed
using the Solidity programming language, they can be mi-
grated to other ecosystems. For the sake of our implemen-
tation, we inspect Ethereum and Polygon, which rely on
Solidity smart contracts. The PoW Ethereum network has an
average block mining time of 13 seconds, and the maximum
block size is 30 million gas. As for Polygon, the average
time is 2 seconds, and the maximum block size is also 30
million. The transaction latency depends on the priority fee
and current network traffic. A high priority fee with low
traffic provides the lowest latency, while a low priority fee
with high traffic yields the worst latency. Simulating for
the average block time gives us the provided transaction
throughput shown in Table 2. We define the throughput as the
number of actions per second and generate the throughput per
function. We run our default test on Hardhat’s development
network with instant mining; the test itself takes 7 seconds.
Rerunning the same test with a mining interval of 6.5 seconds
increases the test time to 15 seconds. The latency depends on
when the transaction is executed compared to when a block
is mined. In the typical case, the latency of the transaction
would be the average block time in a non-congested network.

VOLUME 4, 2016 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3253948

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

TABLE 1. Gas cost of implemented functions on Ethereum and Polygon

Method Average Gas Cost Ether Ethereum-USD (Average) Matic Matic-USD(Average)
authenticateHEI 205129 0.0043 7.52 0.0065 0.0060
commitHEIData 223133 0.0047 8.18 0.0071 0.0065
initiateSurvey 67454 0.0014 2.47 0.0021 0.0020
newDataSubmission 50897 0.0011 1.86 0.0016 0.0015
registerHEI 146639 0.0031 5.37 0.0046 0.0043
registerOracle 134936 0.0028 4.94 0.0043 0.0040
setIPNSLink 118028 0.0025 4.32 0.0037 0.0035

submitPubKey 78463 0.0016 2.87 0.0025 0.0023
submitSurveyResult 298019 0.0063 10.92 0.0094 0.0087

Deployment
Oracles () 2651451 0.0557 110.52 0.0838 0.0776

TABLE 2. Throughput of the implemented smart contract

Method Total Gas Cost Ethereum Throughput Polygon Throughput
authenticateHEI 205129 11.2 73.1
commitHEIData 223133 10.3 67.2
initiateSurvey 67454 34.2 222.4
newDataSubmission 50897 45.3 294.7
registerHEI 146639 15.7 102.3
registerOracle 674680 3.4 22.2
setIPNSLink 118028 19.6 127.1
submitPubKey 78463 29.4 191.2
submitSurveyResult 298019 7.7 50.3
Deployment 2651451 0.9 5.7

TABLE 3. Security vulnerability analysis of the smart contracts

Impact
Confidence Low Medium High

Low 0 3 0
Medium 0 4 0
High 0 0 0
Informational 0 7 32
Optimization 0 0 20

C. SECURITY REQUIREMENTS AND VULNERABILITY
ANALYSIS
We test our developed smart contracts using a vulnerability

analysis tool called Slither. Upon conducting the analysis,
we unveiled seven concerns, as shown in Table 3. Three
are reported as low impact with medium confidence, while
four vulnerabilities are categorized as having medium impact
and confidence. The low impact concerns pertain to using
timestamps in comparisons. However, we validate correct
usage and see no threat to the developed contracts. As for
medium impact vulnerabilities, the four concerns are for
uninitialized variables, which are our structures; however,
these were false positives, and we ensured correct instantia-
tion of the structure variables. The remaining messages of the
report were informational, and regarding code optimization,
no real threats were detected through the static vulnerability
analysis of the contract.

In the following, we present the critical required security
aspects of the proposed solution and highlight specific phases
or compartments of concern for each aspect:

• Anonymity: As the system relies on data submitted
by different entities, accountability may be a deterrent

to honest and unbiased data. As such, in our solution,
we preserve the anonymity of the surveyees and data
owners using the Ethereum blockchain, which ensures
pseudo-anonymity. We do not demand that surveyees
be on the blockchain, and the survey process off-chain
does not associate the survey with the identity of the
surveyees. During selection, only the key pair is se-
lected to encrypt data without associating it with an
identity. The smart contract sends an event to all HEI
participants, allowing the keypair owner to decrypt the
survey on IPFS. Once a surveyee completes a survey,
the file is encrypted with the oracle public key and its
associated nonce to ensure the surveyee is valid without
breaching anonymity. During submission, oracles sub-
mit the composite survey results on-chain while surveys
are kept off-chain. The surveys also do not contain PII,
so anonymity is preserved both on-chain and off-chain.

• Availability: The approach’s availability is a significant
advantage over traditional server-based approaches. De-
centralization is at the approach’s core, which we high-
light in the different utilized components. On the net-
work level, the blockchain is utilized for transaction
execution and on-chain storage. As for storage, the IPFS
is leveraged; it is a well-established distributed storage
peer network with many participants, making it very
difficult to disrupt its service. Furthermore, governance
is also decentralized through automated policies exe-
cuted by smart contracts, which are maintained by the
decentralized blockchain nodes, offering redundancy.
As for the oracle layer, we utilize a similar concept
where decentralized oracle clusters cooperate to validate

14 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3253948

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

the content and reach a consensus. Since the oracles use
threshold encryption to reach consensus, the cluster can
continue operation with M of N oracles in the cluster. As
such, attacking and disrupting the service of an oracle is
not enough; the number of oracles needs to go below the
minimum threshold to stop cluster operations. Further-
more, the smart contract can reassign a new cluster to
the task, so our approach offers high availability even at
the oracle level.

• Integrity: Lack of transparency and data integrity are
the main concerns in current ranking systems. Integrity
on the blockchain is maintained through the hashing
mechanism and digital signatures, which are generated
from participants’ keypairs. Smart contracts validate
off-chain data managed by oracles, and the oracles also
verify surveyee data. Any interaction between an oracle
and a surveyee is encrypted using asymmetric encryp-
tion. Moreover, a nonce is included in the encrypted
data to ensure a valid surveyee submits data without
breaching anonymity. Noncers generate the nonce, and
the hash of the nonce is shared with oracles to validate
them. Once data is submitted by the cluster and vali-
dated by the smart contract, it is immutably recorded on
the blockchain, preserving the data’s integrity.

• Transparency: The blockchain provides an immutable
audit trail of transactions saved in blocks. Current meth-
ods explain their methodology but do not provide tan-
gible insight into its operation, offering only a vague
description. In our approach, the composite indicators,
the participating oracles and the process of surveying
scholars are transparent through the blockchain. Fur-
thermore, off-chain, the data is stored on persistent
distributed storage, which is utilized for details of sur-
veys and HEI data. Finally, we manage clusters through
smart contracts to facilitate the blockchain’s intrinsic
transparency. The oracles can submit invalid data and
misbehave, but the misbehavior is then handled by the
smart contract, where an oracle can be penalized or
disqualified. Transparency is leveraged here by letting
misbehavior occur before taking action so that there is
an audit trail that serves as proof of misbehavior and
justifies retaliative action.

VI. CONCLUSION
In this paper, we have proposed a blockchain-based solution
to enhance the academic ranking systems in a manner that is
decentralized, transparent, traceable, auditable, and trustwor-
thy. We presented in detail the proposed system architecture
and sequence of interactions between the academic entities
involved in the ranking systems. We developed smart con-
tracts to enforce automated and decentralized governance.
We integrated the Ethereum blockchain with IPFS and ora-
cles to handle external data submission and scholar survey-
ing. Trust is enforced off-chain through consensus built by
threshold encryption, which is done in a scalable manner
by simplified state channels. We presented algorithms, val-

idated and tested our contracts, and analyzed the proposed
solution through cost, throughput and latency, and security
parameters. The evaluation results revealed that the proposed
solution is affordable and secure against attacks. In future
work, we will thoroughly test the prototype and enhance it
to be deployment-ready. Additionally, we will determine the
most desirable representation methods and incorporate them
into the DApp, as well as test this work on Ethereum 2.0.

VII. ACKNOWLEDGEMENT
This publication is based upon work supported by the Khalifa
University of Science and Technology under Award No.
CIRA-2019-001.

REFERENCES
[1] F. Selten, C. Neylon, C.-K. Huang, and P. Groth, “A longitudinal analysis

of university rankings,” Quantitative Science Studies, vol. 1, no. 3, pp.
1109–1135, 2020.

[2] K. Soh, “What the Overall doesn’t tell about world university rankings:
examples from ARWU, QSWUR, and THEWUR in 2013,” Journal of
Higher Education Policy and Management, vol. 37, no. 3, pp. 295–307,
2015.

[3] F. Anowar, M. A. Helal, S. Afroj, S. Sultana, F. Sarker, and K. A.
Mamun, “A critical review on world university ranking in terms of top
four ranking systems,” New trends in networking, computing, e-learning,
systems sciences, and engineering, pp. 559–566, 2015.

[4] M. A. Fauzi, C. N.-L. Tan, M. Daud, and M. M. N. Awalludin, “Univer-
sity rankings: A review of methodological flaws,” Issues in Educational
Research, vol. 30, no. 1, pp. 79–96, 2020.

[5] E. Hazelkorn, “Measuring world-class excellence and the global obsession
with rankings,” in Handbook on globalization and higher education. Ed-
ward Elgar Publishing, 2011.

[6] S. Marginson, “University rankings and social science,” European journal
of education, vol. 49, no. 1, pp. 45–59, 2014.

[7] M. M. Vernon, E. A. Balas, and S. Momani, “Are university rankings
useful to improve research? A systematic review,” PloS one, vol. 13, no. 3,
p. e0193762, 2018.

[8] I. Chirikov, “Does conflict of interest distort global university rankings?”
Higher Education, pp. 1–18, 2022.

[9] B. Kehm, “Global university rankings: impacts and applications,” Gaming
the Metrics, p. 93, 2020.

[10] A. Calderon, “New rankings results show how some are gaming the
system,” University World News, vol. 12, 2020.

[11] K. Soh, “Misleading university rankings: Cause and cure for discrepancies
between nominal and attained weights,” Journal of Higher Education
Policy and Management, vol. 35, no. 2, pp. 206–214, 2013.

[12] K. Soh, “Problems of indicator weights and multicolinearity in world
university rankings: comparisons of three systems.” Higher Education
Review, vol. 46, no. 2, 2014.

[13] M. P. Çakır, C. Acartürk, O. Alaşehir, and C. Çilingir, “A comparative
analysis of global and national university ranking systems,” Scientomet-
rics, vol. 103, no. 3, pp. 813–848, 2015.

[14] J. Berbegal-Mirabent and D. E. Ribeiro-Soriano, “Behind league tables
and ranking systems: a critical perspective of how university quality is
measured,” Journal of Service Theory and Practice, 2015.

[15] I. F. Aguillo, “Ranking web of universities.” [Online]. Available:
https://www.webometrics.info/en/Methodology

[16] L. Waltman, C. Calero-Medina, J. Kosten, E. C. Noyons, R. J. Tijssen, N. J.
van Eck, T. N. van Leeuwen, A. F. van Raan, M. S. Visser, and P. Wouters,
“The Leiden Ranking 2011/2012: Data collection, indicators, and inter-
pretation,” Journal of the American society for information science and
technology, vol. 63, no. 12, pp. 2419–2432, 2012.

[17] G. Chen, B. Xu, M. Lu, and N.-S. Chen, “Exploring blockchain technology
and its potential applications for education,” Smart Learning Environ-
ments, vol. 5, no. 1, pp. 1–10, 2018.

[18] L. Liu, M. Han, Y. Zhou, R. M. Parizi, and M. Korayem, “Blockchain-
based certification for education, employment, and skill with incentive
mechanism,” in Blockchain cybersecurity, trust and privacy. Springer,
2020, pp. 269–290.

VOLUME 4, 2016 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3253948

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.webometrics.info/en/Methodology

[19] IREG Inventory on International Rankings, available Online:
https://ireg-observatory.org/en/wp-content/uploads/2021/03/IREG-
Inventory-2021-final-report-2021-03-19.pdf, accessed: 2022-11-16.

[20] E. Gadd, R. Holmes, and J. Shearer, “Developing a Method for Evaluating
Global University Rankings,” Scholarly Assessment Reports, vol. 3, no. 1,
2021.

[21] L. Liyuan, H. Meng, Z. Yiyun, and P. Reza, “Eˆ 2 C-Chain: a two-stage
incentive education employment and skill certification blockchain,” in
2019 IEEE International Conference on Blockchain (Blockchain). IEEE,
2019, pp. 140–147.

[22] A. Garg, P. Kumar, M. Madhukar, O. Loyola-González, M. Kumar et al.,
“Blockchain-based online education content ranking,” Education and in-
formation technologies, vol. 27, no. 4, pp. 4793–4815, 2022.

[23] X. Yang, Y. Zhang, S. Wang, B. Yu, F. Li, Y. Li, and W. Yan, “LedgerDB: a
centralized ledger database for universal audit and verification,” Proceed-
ings of the VLDB Endowment, vol. 13, no. 12, pp. 3138–3151, 2020.

[24] I. Homoliak and P. Szalachowski, “Aquareum: A centralized ledger
enhanced with blockchain and trusted computing,” arXiv preprint
arXiv:2005.13339, 2020.

[25] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the thirteenth EuroSys conference, 2018,
pp. 1–15.

[26] M. Saisana, B. d’Hombres, and A. Saltelli, “Rickety numbers: Volatility
of university rankings and policy implications,” Research policy, vol. 40,
no. 1, pp. 165–177, 2011.

[27] F. A. Van Vught and F. Ziegele, Multidimensional ranking: The design and
development of U-Multirank. Springer Science & Business Media, 2012,
vol. 37.

[28] G. Kováts, “New Rankings on the Scene: The U21 Ranking of National
Higher Education Systems and U-Multirank,” in The European higher
education area. Springer, Cham, 2015, pp. 293–311.

[29] N. Szabo, Smart Contracts, Phonetic sciences, available Online:
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/
Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.
html, accessed: 2022-11-16.

[30] L. D. Negka and G. P. Spathoulas, “Blockchain state channels: A state of
the art,” IEEE Access, 2021.

[31] T. P. Pedersen, “A threshold cryptosystem without a trusted party,” in
Workshop on the Theory and Application of of Cryptographic Techniques.
Springer, 1991, pp. 522–526.

[32] K. Soh, “The seven deadly sins of world university ranking: A summary
from several papers,” Journal of Higher Education Policy and Manage-
ment, vol. 39, no. 1, pp. 104–115, 2017.

[33] G. Wood, “ETHEREUM: A Secure Decentralized Generalised Transaction
Ledger,” Aug 2022. [Online]. Available: https://ethereum.github.io/
yellowpaper/paper.pdf

16 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3253948

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://ireg-observatory.org/en/wp-content/uploads/2021/03/IREG-Inventory-2021-final-report-2021-03-19.pdf
https://ireg-observatory.org/en/wp-content/uploads/2021/03/IREG-Inventory-2021-final-report-2021-03-19.pdf
 https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
 https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
 https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

	Using Blockchain for Enabling Transparent, Traceable, and Trusted University Ranking Systems
	Recommended Citation

	Introduction
	Related Works
	Educational Sector Advancements
	Current Ranking Systems
	THE
	QS
	ARWU
	Webometrics
	Leiden
	U-Multirank

	Proposed Blockchain-based Solution for University Ranking Systems
	System Design and Architecture
	Oracles and Encryption
	System Interactions
	Registration and Set Up
	Data Gathering

	Score Interpretation

	Implementation and Validation
	Smart Contract Algorithms
	Functionality Correctness Verification
	Oracle registration
	IPNS setup
	HEI registration
	Key submission
	Authenticating HEI
	Conducting surveys
	Submitting survey result
	Submitting new HEI data
	Committing HEI data

	Evaluation and Analysis
	Gas Cost Analysis
	Throughput and Latency Analysis
	Security Requirements and Vulnerability Analysis

	Conclusion
	ACKNOWLEDGEMENT
	REFERENCES

