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Abstract: Autonomous vehicles and smart roads are not new concepts and the undergoing devel-
opment to empower the vehicles for higher levels of automation has achieved initial milestones.
However, the transportation industry and relevant research communities still require making consid-
erable efforts to create smart and intelligent roads for autonomous driving. To achieve the results of
such efforts, the CCAM infrastructure is a game changer and plays a key role in achieving higher
levels of autonomous driving. In this paper, we present a smart infrastructure and autonomous
driving capabilities enhanced by CCAM infrastructure. Meaning thereby, we lay down the technical
requirements of the CCAM infrastructure: identify the right set of the sensory infrastructure, their
interfacing, integration platform, and necessary communication interfaces to be interconnected with
upstream and downstream solution components. Then, we parameterize the road and network
infrastructures (and automated vehicles) to be advanced and evaluated during the research work,
under the very distinct scenarios and conditions. For validation, we demonstrate the machine learn-
ing algorithms in mobility applications such as traffic flow and mobile communication demands.
Consequently, we train multiple linear regression models and achieve accuracy of over 94% for
predicting aforementioned demands on a daily basis. This research therefore equips the readers with
relevant technical information required for enhancing CCAM infrastructure. It also encourages and
guides the relevant research communities to implement the CCAM infrastructure towards creating
smart and intelligent roads for autonomous driving.

Keywords: CCAM infrastructure; autonomous driving

1. Introduction

The advancement in sensor technologies, mobile network technologies, and artificial
intelligence has pushed the boundaries of different verticals, e.g., eHealth, and autonomous
driving. Autonomous driving has the potential to cope with major challenges in the
transportation industry such as road safety and traffic efficiency. According to the Society
of Automotive Engineers (SAE), ref. [1] there are five levels of autonomous driving (AD),
ranging from Level 1 (L-1) to Level 5 (L-5). The L-1 indicates no automation, whereas
L-5 indicates full automation; however, a fully automated vehicle will not have a driver’s
cockpit. The advancement of autonomous vehicles (AVs) has evolved through the early
stages of automation, and soon L-4 AVs will be observed operating on roads. The L-3
automation-equipped vehicles have already been manufactured by automakers such as the
Audi A8 Sedan [2]. The five levels of AD are discussed in detail in Section 2.1. The race
to L-5 AVs is still going on, and the stakeholders, including automakers and technology
(sensor and communication) experts, are constantly refining their approaches to reach
the necessary level of automation for their vehicles. The construction of testbeds and
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demonstrations all around the world is a new step toward the reality of AD. These testing
grounds play a crucial role in assessing the capabilities of AVs in various environmental
dynamics. The main goal of the testbed is the creation of a realistic environment that
accurately represents the world in which AVs will function.

The complex dynamic traffic environment on roads necessitates the cooperation be-
tween AVs, classical vehicles, road infrastructure, and other road users. Classical purely
sensor-based collaborative driving is vulnerable to line-of-sight limitations, processing lag,
and sensor mistakes [3]. The concept of AD is based on a vehicle’s perception—also known
as situational awareness—or its ability to comprehend its surroundings and respond to their
changing dynamics. The vehicles are capable to create a perception of their surroundings
using the knowledge and sensory data from on-vehicle sensors. Some degree of automation
is made possible by the perception of vehicles and their ability to communicate with other
vehicles, although it still relies on the visibility of the individual vehicle. How well the
AV can adapt to various circumstances and dynamics is unknown. Autonomous driving
promises to improve traffic safety. However, the promise of greater safety suffers because
the quality and scope of a vehicle’s perception is constrained by its sensors.

To cope with the above challenges, a paradigm shift known as cooperative, connected,
and automated mobility (CCAM) is required to enhance the environmental understand-
ing of vehicles in complex urban settings. The CCAM has the ability to advance current
automated driving to L-4 and L-5 vehicle automation. The deployment of CCAM infrastruc-
ture necessitates the upgrading of essential assets such as vehicles, network infrastructure,
roadside infrastructure, and cloud infrastructure to achieve greater AD performance in com-
plicated urban environments. The CCAM will shift the mobility paradigm towards mobility
as a service (MaaS), resulting in more reliable, comfortable, and safe transportation systems.
To realize this imaginative scenario, vehicular communications, automated driving, and
cooperative transportation systems are increasingly observed as the building blocks of
CCAM applications. To achieve this, standardizing and regulatory bodies, automotive
Original Equipment Manufacturers (OEMs), road operators, telecommunication operators,
and other interested stakeholders are collaborating to build massive infrastructures and
conduct field tests of cooperative intelligent transport systems, which will pave the way for
connected, automated, and cooperative vehicles.

In connection with this, we provide an overview of the recent state-of-the-art research
conducted on CCAM and highlight the need for this research. To address the issue of cross-
sector collaboration for connected, cooperative, and automated mobility, Geißler et al. [4]
proposed an integrated perspective. They analyzed the taxonomies from three different
perspectives; namely: the user, the vehicle, and the road infrastructure. The proposed
taxonomies are comprised of the user communication of automated driving, the SAE co-
operation classes, Infrastructure Support for automated driving, and levels of service for
automated driving. They concluded that the proposed taxonomies should be used and
applied as a shared knowledge that necessitates tight cooperation between the players
aiming to plan, prototype, test, and implements CCAM services in the upcoming decade. In
another study, Royuela et al. [5] presented a flexible and modular testbed, with a focus on
evaluating the CCAM applications. They demonstrated a use case leveraging a 4G system,
where an AV offloaded processing tasks to an edge server, which analyzed the images, pro-
vided routes, and sent guidance commands back to the vehicle, demonstrating the potential
of edge computing and wireless technologies. Kousaridas et al. [6] emphasized that the
challenges including interoperability among interested stakeholders, seamless connectivity,
and the uninterrupted supply of real-time services across borders need to be carefully
examined to successfully realize the cross-border CCAM services. To cope with these chal-
lenges, they presented a summary of the challenges, demands, technical difficulties, and
gaps from the standardization, regulatory, commercial, and legal perspectives that need to
be resolved for the quick and effective adoption of 5G-enabled CCAM services, particularly
in cross-border settings. Hosseini et al. [7] also researched the CCAM with an emphasis
on cross-border environments, and a novel architecture for CCAM service continuity was



Remote Sens. 2023, 15, 922 3 of 33

developed in the cross-border corridor that integrated a federation of multi-access edge
computing concepts to maintain the service continuity. Moreover, they developed an idea
for a simulative/emulative platform for C-V2X applications to make it easier to construct
complex CCAM use cases, particularly in cross-border or cross-domain environments.
Going over the literature, we found that CCAM infrastructure has been actively used for
various mobility applications. However, the literature still lacks in providing the right
set of sensory infrastructure, communication infrastructure, and machine learning-based
algorithms for traffic and road analysis. Therefore, there is a dire need for advanced CCAM
infrastructure. In what follows next, we provide the contributions of this research.

In this paper, we leverage the CCAM infrastructure for the development of smart
infrastructure, which helps in enabling higher levels of autonomous driving capabilities.
The aims and objectives of the paper are as follows:

• To describe the Level 5 autonomous driving relevant concepts,
• To identify the common challenges in the roadside infrastructure for AD,
• To lay down the technical requirements of the CCAM Infrastructure,
• To identify the right set of sensory infrastructure and communication interfaces,
• To parameterize road and network infrastructures for advancements and evaluations,
• To process data and execute intelligent machine learning algorithms,
• To validate CCAM infrastructure’s mobility applications for traffic flow and

mobility predictions.

With the view of highlighting the design goals of level 5 AD, challenges, and directing
the readers to the potential solution candidates, we carefully structured the paper. In
Section 2, we provide the background (tutorial) type information to equip the readers
with the needed information, enabling them to comprehend the contents of this article.
Following which, we dedicate a full section, Section 3, on the challenges that captures
the crucial challenges hampering the realization of level 5 AD. In Section 4, we provide
the literature review to provide evidence about achieving perception through information
available in the roadside units (RSUs). In Section 5, we proposed our CCAM solution,
which is an advanced infrastructure to realize the use-cases of autonomous driving in
complex and urban environments. Following which, we dedicate a full section, Section 6,
on the experiments to validate the CCAM solution for autonomous driving. In Section 7,
we conclude our research paper.

2. Level-5 Autonomous Driving—An Overview of the Relevant Concepts

In this section, we cover the basic definition of autonomous driving, levels of automa-
tion, usecase groups, and core layers of autonomous driving.

2.1. What Is Autonomous Driving?

Autonomous driving refers to the concept where a vehicle senses its environment and
performs maneuvers without human intervention. According to SAE J3016 [8], there are
five levels of autonomous driving, ranging from Level 1 (L-1) to Level 5 (L-5). The L-1
indicates no automation, whereas L-5 indicates full automation; however, a fully automated
vehicle will not have a driver’s cockpit. The development of numerous new features in
vehicles is necessary for the transition from L-1 to L-5 vehicles.

• L-1—Driver Assistance: In L-1 automation, the human operator must always be
present and engaged in the Dynamic Driving Task (DDT). Speed and steering cannot
be controlled by the vehicle simultaneously. Furthermore, the driver can monitor
any DDT performance decrease with the use of the L-1 automatic driving assistance
technology. Cruise control, lane departure warning, and emergency braking assistance
are a few L-1 examples.

• L-2—Partial Driving Automation: A human driver must be present at all times.
Similar to L-1, if any autonomous driving component fails, the driver notices the
failure and takes charge of the vehicle to meet the DDT performance standards.
However, the L-1 and L-2 differ in that the system is completely in charge of lateral
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and longitudinal vehicle motion within a constrained operational design domain
(ODD). The ODD is a representation of the physical and digital environment in which
AVs must operate. Examples of L-2 vehicles include adaptive cruise control, active
lane-keep assist, and autonomous emergency braking.

• L-3—Conditional Automation: When specific operational parameters are satisfied,
an L-3 vehicle is capable of assuming complete control and functioning for specific
segments of a route. In the event of an automated driving system failure, the system
may request to resume human intervention. The DDT operation can be carried out
by the L-3 AV in an area with heavy traffic; however, it cannot be performed at an
accident or collision site. The traffic jam chauffeur is an example of an L-3 vehicle.

• L-4—High Automation: The ability of L-4 vehicles to intervene in the event of a prob-
lem or system breakdown is the primary distinction between L-3 and L-4 automation.
In this way, these vehicles typically do not need human intervention. However, it is
still possible for a human to manually override, though. L-4 vehicles are capable of
driving autonomously. However, they are only able to do so in a limited region until
the regulations and infrastructure evolve.

• L-5—Full Automation: Since L-5 vehicles do not need human intervention, DDT is no
longer used. Even the steering wheel and the accelerator/brake pedal will be absent
from L-5 vehicles. L-5 AVs will be capable of handling unexpected situations without
human intervention and driving through extremely complex settings. In addition,
they will be unrestricted by geofencing and capable of performing any task that a
skilled human driver is capable of.

Although there is no single standardized definition of the Level-5 (L-5) autonomous
driving (AD) except that defined by SAE, our perception of the L-5 AD may be summarized
as: A vehicle capable of

• Creating perception of all the dynamics of the complex road traffic environment
including roundabouts, congestion, sharp turns, etc.,

• Dynamically adapting the local planing and control for any unprecedented event on
the roads,

• Driving in congested and pedestrian occupied regions of the roads,
• Driving on the unmarked roads,
• Selecting optimal, autonomic, efficient, and adaptive manoeuvres, i.e., increasing

and/or decreasing acceleration, overtake and lane change, and vehicle controls, e.g.,
steering wheel, speed, break, and gear change,

• Driving through extraordinary traffic conditions on the roads, i.e., bad weather (raining
and snowing), and emergency vehicles (police vehicle and ambulance).

A clear distinction between L-5 autonomous vehicles from the lower levels of au-
tonomous vehicles is the “broader canvas” that engages more stakeholders, e.g., OEMs will
no longer be the sole solution providers. The obvious consequence of this is evident from
the number of activities being carried out around the globe by various relevant stakeholders
(including mobile network operators, OEMs, sensor providers, authorities, etc.) to achieve
the objectives of higher automation levels. Yet another dilemma is the “transition period”,
which is the period where we may witness the mixed traffic on the roads. The scenarios
where autonomous vehicles (of level 4/5) coexist with classical vehicles, are expected to
add to the challenges of fully autonomous driving, as it will intensify the impact of complex
dynamics of the urban environments.

2.2. Autonomous Driving Usecase Groups

The autonomous driving scenarios are categorized in the following use case groups [9],
provided by the 3rd Generation Partnership Project (3GPP) standardization.

• Vehicle Platooning facilitates a dynamic group of vehicles to drive with a shorter
inter-vehicle gap (directly related to the communication latency).
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• Advance Driving facilitates collaboration among vehicles to perform complex ma-
noeuvres, i.e., speeding, breaking, overtaking, etc., in a safer manner.

• Remote Driving facilitates a remote driver to operate vehicles in areas/ situations
where high reliability and short low latency is achievable.

• Extended Sensors facilitates holistic understanding of the complex environment by
exchanging data (directly related to high data rate) gathered from all relevant road
users (vehicles, RSUs, IoT enabled devices, etc.).

• General Aspects and Vehicle QoS facilitates the aforementioned use case groups in
terms of communication coverage, service availability, service quality, and smoother
user experience.

These use case groups are expected to increase safety, traffic efficiency, collision avoid-
ance, and reduce fuel consumptions. The recently commercialized 5G network and its
variant standardized under 3GPP release 16 is expected to provide the latency of 1 msec,
ensuring the reliability of 99.999%, availability of 99.999%, and very high throughput of
10 Gbps [10].

2.3. Autonomous Driving Core Layers

To achieve the L-5 AD, we believe that a vehicle needs to drive fully autonomously in
a mixed traffic environment, e.g., complex urban road traffic environment, and meet the
requirements of all aforementioned use-case groups. Therefore, the L-5 enabled AV needs
more sophisticated versions of the basic layers, i.e., perception, planning, and control [10],
as shown in Figure 1.

• Perception layer captures the context of the vehicle’s environment, which may be
carried out through different techniques such as: fusion of the on-board sensory data,
information exchanges with other vehicles and infrastructure, localization, etc.

• Planning layer processes involve actions regarding mission, behavioral, motion, space-
time, and dynamic environment planning.

• Control layer executes the planned actions through traditional and prediction-based
control, i.e., steering, breaking, and trajectory tracking controls.

However, the higher levels of vehicle automation are proportional to the effective
implementation of functions and operations specific to the aforementioned three layers.
Research community and industrial partners are striving to achieve the solutions with the
desired sophistical levels.

Perception

Planning

Control

Autonomous 
Driving

Figure 1. The cycle of autonomous vehicle core layers.

3. Common Challenges in Autonomous Driving

In this section, we present a compact version of the common challenges of level 5
autonomous driving.

3.1. Narrow Perception

To create the perception of the environment, autonomous vehicles primarily rely
on onboard sensors and vehicle-to-everything (V2X) communication. The context of
the environment is created by processing the sensory data and information obtained
through V2X communication. However, the evident drawback of this approach is a limited
comprehension of the environment, i.e., the perception of the world is constrained by
the detection ranges and onboard deployed sensor capabilities. The scientific community,
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standardizing bodies, and stakeholders have developed different strategies to solve this
and related problems, such as creating a perception of the environment through external
sources referred to as external or extended perception and disseminating it as needed.
Despite addressing the core problem of narrow environmental understanding, a number of
research questions and challenges are the following:

• CH 1: How can a vehicle’s external perception be created accurately? Will the envi-
ronment’s dynamics be recorded and sent (wherever necessary) in real time?

• CH 2: Can the classical local dynamic map be improved? If so, what extra informa-
tion layers ought to be used and how will they help with the use cases of higher
automation levels?

• CH 3: Do the 3GPP Release 15 and 16 standardized interfaces and architectural com-
ponents support the protocols for the interchange and fusion of external perception
with onboard perception? If not, what could be the potential alternatives?

• CH 4: What fusion techniques could be employed to obtain a real-time and accurate
picture of the environment if the perception is generated externally on the RSUs and
then fused with the data from the onboard vehicles?

• CH 5: What is the optimal fusion strategy for accurately fusing the sensory data from
heterogeneous sensors?

• CH 6: Data on autonomous vehicles come from a variety of sources, including the
vehicle’s sensors, sensors on other vehicles, RSU, etc. How to synchronize them is a
significant challenge when dealing with a range of data sources. Should synchroniza-
tion be handled by the storage system beforehand, or should we let the application
developer do this?

3.2. Limited Computation

Operations such as creating environment understanding, sensory data fusion, finding
patterns based on data analytics for behavioral planning, and other operations of this nature
are extremely computationally intensive and require rich infrastructure in the vehicle. The
edge and Roadside Units (RSUs) may have computing-rich infrastructure owing to the
recently new idea of extended sensors and distributed decision-making for attaining the
goals of a higher level of autonomous driving. This entails significant expenses, which
led to an increase in vehicle pricing. Therefore, sharing the computation, i.e., creating the
perception on the road and sharing it in real-time with the vehicles, may be one approach
to reduce such high costs. More processing will be directed toward the RSUs, and little is
kept inside the vehicle. Although it looks appealing, it might be challenging to implement
solutions that are reliable, real-time, and highly available. Some of the obvious challenges
of this category are discussed below:

• CH 1: What perception information is to be provided, and to which vehicle? It is
crucial since the RSU may cover a large geographic area with numerous vehicles,
which creates the perception. It goes without saying that not all vehicles need to have
access to every piece of information.

• CH 2: Can on-road deployed sensors generate environmental understanding as excel-
lent, as it is produced by on-board sensors?

• CH 3: Can demand estimation for computation in the vehicle or at RSUs be conducted
using artificial intelligence (AI) approaches? This is significant because new ideas
could include virtualized network functions, machine learning as a service (MLaaS),
data analytics as a service (DAaaS), information as a service (IaaS), and others that
depend on the availability of computing infrastructure at regular times and locations.

3.3. Communication

The communication plays an important role of data sharing for both autonomous
vehicles and roadside units. The data, i.e., information, knowledge, perception, etc., is
generated over vehicles through onboard sensors and over roadside units through on
road deployed sensors. However, the existing communication approaches lack in properly
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communicating the complex dynamics of the environment. The ongoing research and
development from both the academia and industry is producing various strategies to
address this and similar issues. Inspired by which, a number of research questions and
challenges are as follows:

• Ch 1: How can a vehicle accurately communicate with other vehicles and roadside
infrastructure? Will the vehicles be able to achieve real-timeliness in their communica-
tions with other vehicles and roadside infrastructure?

• Ch 2: Can the information generation over a roadside unit be improved? If so, how
will they realize the higher automation levels and the usecases therein?

• Ch 3: Can the generated maps either on vehicle or roadside unit be transmitted and/or
received in long ranges?

• Ch 4: What could be the potential alternatives, if the existing communication interfaces
lack support of the integration of external (roadside unit) and local (vehicle) information?

• Ch 5: What strategy is to be followed from updating the roadside unit’s information
with onboard vehicle’s information or vice versa.

• Ch 6: What is the optimal communication strategy for accurately transmitting and
receiving the sensory data from heterogeneous sensors available at the vehicle and
roadside unit.

• Ch 7: Data over vehicle and roadside unit come from a variety of sources. How to
communicate and synchronize the complex and challenging data.

• Ch 8: The communication infrastructure entails significant expenses. What are the
vitalized alternatives for communication infrastructure?

• Ch 9: The engagement of communication infrastructure components in upstream and
downstream operations is variable. How to segregate or decide what operations to be
handled and when. Which connectivity needs to be highly available, the upstream or
the downstream?

• Ch 10: How reliable will the communication between vehicles and RSUs be?
• Ch 11: It is not necessary to communicate every piece of information. What informa-

tion needs to be communicated and how to prioritize that information.

One of the directions that these challenges can be addressed is creating the external
infrastructure, which enhances the perception and decision making of the vehicle. The
similar research direction has been approached by the research community from around
the globe. In what follows next, we will analyze the research literature in this direction.

4. Literature Review

Perception is one of the core layers of autonomous driving. The perception is generated
through the edge dynamic map (EDM) by the roadside unit (RSU or Edge) available in the
external infrastructure. The most generic challenges of EDM include:

• Challenging representation of various events (data) happening over the road,
• Right communication bit-pipes that meet the dynamically updating requirements,
• Processing the data to have conclusive outcomes, e.g., recommendation, warning, etc.

Obviously, it is difficult to update information (maps) frequently given the constrained
transmission and computing resources at the vehicle. Therefore, researchers are focusing
on generating information (maps) over the RSU. It should also be highlighted that these
challenges kept evolving as we progress to achieve the goals of higher automation levels.
Research community and relevant stakeholders have been active in evolving the EDM
by enhancing the data representation, processing, transforming the data into events and
driving relevant information, etc. The Table 1 shows a quick overview to the reader about
achieving perception through information (map) generated over RSU. In what follows next,
we discuss the most relevant approaches that falls nearer our domain.
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Table 1. Achieving perception through information available in roadside units.

Study and Year Challenge Contribution/Focus Solution Approach Architecture Use Case/Scenario Shortcomings

EdgeMap Year 2022

Frequent updates of HD Maps
under limited network

resouces, i.e., transmission
and computation resources.
Maintaining up-to-date map

through specialized collection
vehicles. Vehicular offloading

and resource
reservation problem

A new HD map (EdgeMap)
by Crowdsourcing data in

MEC, Design and
Implemenation of DATE

Algorithm, Minimum
resource utilization and

offloading decision
presented via extensive

network simulations.

A crowdsourcing HD Map
(EdgeMap) for minimum

network resouces with
balanced latency requirement.
A DATE Algorithm based on

multi-agent deep
reinforcement learning for
vehicular offloading and

Gaussian process regression
for resource usage

Architecture: Yes
Experimental Setup: Yes

Simulation: Yes
Real-Experimentation: Yes
Performance Metrics: Yes

Urban micro (UMi—Street
Canyon) channel model,

Scenarios of Machine
Hall 01–05

Not clear.

CAMINO Year 2021

Real flexible and modular
platforms for hybrid

communication. Different
communication technologies

between different vehicles
from different OEMs.

Enabling cross-technology
vehicular communication to

support CCAM services,
Monitoring and logging of

valuable information,
Helping OEMs

towards management
and integration.

Integration of different V2X
technologies, devices,

interfaces, and services (i.e.,
C-V2X PC5, ITS-G5, 4G/5G

C-V2X Uu,
vehicle/infrastructure sensors,
actuators, HMIs, and external

service providers)

Architecture: Yes
Experimental Setup: Yes

Simulation: No
Real-Experimentation: Yes
Performance Metrics: Yes

Highways in Flanders,
E313 highway (Belgian),

A16 highway (Amsterdam)
Not clear.

5G-MEC Year 2021
V2V sharing data creates

communication overhead and
latency issues

Holistic understanding of
the surrounded

environment. Cooperative
perception between Avs.

Enabling streaming-based
CAM application

through MEC

MEC provides the exact
information required for the

AVs with low
communication latency.

Architecture: No
Experimental Setup: Yes

Simulation: No
Real-Experimentation: No
Performance Metrics: No

See-Through Application of
Extended Sensors

Not clear if MEC is able to
prioritize between vehicles

for information sharing
when two vehicles request

at the same time.

SLL-VS Year 2020

In time live video (data)
delivery. Continous live video
streaming with no disruption

(outage) during handover
operation. High

glass-to-glass latency

Low latency live video
streaming for AD use cases.
Mimimize the video stream

outage during handover.
Smooth video playback

A live video streaming
solution that ensures a low
E2E latency. A solution to

minimize video stream outage
during handover process

between two different
network operators. Resuming
the stream automatically after

a network outage due to
handover operation.

Architecture: Yes
Experimental Setup: Yes

Simulation: No
Real-Experimentation: Yes
Performance Metrics: Yes

Remote Driving,
See-What-I-See in

Platooning,

No comparison with
V2V-based streaming for

latency and recovery time,
No details over the practical

implementaions (location
etc.), Lack of modularity for
other CCAM applications
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Table 1. Cont.

Study and Year Challenge Contribution/Focus Solution Approach Architecture Use Case/Scenario Shortcomings

CarMap Year 2020

Difficult vehicle localization
due to infreqent HD map

updates. Large map size and
dynamic environmental

dynamics. Effective feature
matching in feature maps. No

fast map-updates,

Developed feature map, i.e.,
CarMap. Reduced map size

by lean representation.
Improve localization by

using position information
obtained through feature

search. Developed
algorithms for dynamic

object filtering, map
segment stitching, and

map updates.

A crowd-sourced 3D
feature-map (CarMap) with

near real-time updates over a
cellular network.

Architecture: Yes
Experimental Setup: Yes

Simulation: Yes
Real-Experimentation: No
Performance Metrics: Yes

Real-world traces and
simulated traces in CarLA

(i.e., sub-urban street,
freeway roads, downtown
roads), Scenarios such as

static scene, dynamic scene,
and multi-lane.

Edge is not taken into
account for storage and

compute resouces, Stitching
operation becomes

expensive for cloud service
in real-time experiement.

SURROGATES Year
2019

Continuous data gathering
and processing of OB sensors
is challenging. Mobility and

processing needs are issues in
vehicular domain,

Intermediate cache and
processing layers are required

for data gathering

Virtualization of
end-devices in ITS

ecosystem. Improve system
efficiency and adaptability

by virtualization
in vehicular environemnts.
End-to-end architecture for

NFV and MEC. Real
implementation,

deployment, and validation
tests of the architecture

Virtualize vehicle OBUs into
VNFs and create MEC layer

for offloading processing and
data-access requests. Real

OBUs virtualization in MEC
to create always
available OBUs

Architecture: Yes
Experimental Setup: Yes

Simulation: No
Real-Experimentation: Yes
Performance Metrics: Yes

Testbed at the Espinardo
Campus, University of

Murcia, Spain

Introducing Edge layer is
not a novel idea since the

literature exist with studies
that are using edge layer

between device and cloud
layer; however, virtualizing

OBUs in edge layer is a
novel approach
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The EdgeMap [11] explores crowdsourcing data from connected vehicles to HD map
as a way to minimize the usage of network resources while maintaining latency. This
is accomplished by designing the DATE (distributed adaptive offloading and resource
reservation) algorithm and formulating offloading decisions and resource usage. In order to
minimize resource usage and maintain latency, they proposed a vehicular offloading agent
(e.g., subseconds) based on multi-agent DRL technique and a resource reservation controller
(e.g., minutes) based on Gaussian process regression (GPR). However, the minimization
problem can be difficult from three perspectives, namely, the unknowable latency function,
the Markovian nature of the problem, and the heterogeneity of time scales associated with
the coupling optimization variables. They used the ORB algorithm to extract features from
sensor images for relocalization, which results in creating a global map (the latest point
clouds are broadcasted to all vehicles) based on the SLAM technique (which divides the
computation between edge and vehicle components). To implement the EdgeMap, the
following steps are taken:

• A fully-connected neural network with Leaky Recifier and sigmoid activation func-
tions is used for multiple DRL agents using PyTorch.

• The GPR model is build using scikit-learn.
• The Machine Hall 01–05 scenarios are used with the EuRoC dataset.
• A time-driven network simulator is build for experiments, which consists of vehicles,

servers, and a wireless transmission (based on an open-source 5G simulator) modules.
• A desktop (AMD Ryzen 3600 3.8 GHz, 32 GB RAM) and a laptop (Intel i7-6500U 2.5 GHz,

8 GB RAM) were used as compute vehicles and edge servers in the experiments.

On the desktop and laptop, the mean computation latency is 286.54 ms and 609.27 ms,
respectively. With EdgeMap, 0.31 MHz is used for uplink, 0.02 MHz for downlink, 19.4%
of computation resources (1.94 server capacity), and 9.2% of average resources, and an
average latency of 502.8 ms is obtained. This translates to a 33% reduction in average
resource usage when compared to other approaches.

The CAMINO framework [12] supports hybrid cellular technologies, which are better
suited to low latency use cases (e.g., truck platooning) and throughput-intensive passenger
infotainment applications. In this way, the framework supports a multitude of services
and enables dynamic management of technologies and integration of devices, interfaces,
and services (with the help of DUST framework). The proposed framework manages
C-ITS messages via controller, controls the data flow between interfaces, and interconnects
different V2X wireless technologies. For example, communication of custom messages and
standardized messages (i.e., CAM, DENM and IVIM) with C-V2X PC5 and ITS-G5 modules
via UDP sockets and with an MQTT broker via TCP over wired (or cellular) networks. By
using a publisher/subscriber architecture, DUST framework enables interconnection of
devices, services, and interfaces for CAMINO. Hence, C-ITS services testings is possible
over hybrid communication technologies. The proposed framework provides:

• The logging service for post-processing information.
• The forwarder service for external messages exchange using MQTT.
• The GNSS service for positioning and timing information (using GPS daemon).
• The GeoCasting services for messages distribution (using geo-tiling technique).

For implementation and validation in real-life environments, the Smart Highway
testbed used the Vanetza library (C-ITS protocol suite) for services, DUST publisher for real-
time information access, public Belgian Government datasets for fetching traffic sign values,
JSON message format for relevant information, DUST subscriber for relevant decoded
information publishing, InterCor logging format for positioning/speed data, and entities,
i.e., RSUs, MEC, OBUs for evaluating V2X technologies. For packet-loss evaluation, the
Packet Delivery Rate (PDR) performance is almost equal by both short-range technologies
and more stable (up to 600 m distance). For latency, ITS-G5 outperforms C-V2X PCS.
The former takes 4 ms and the latter takes 33 ms to transmit 95% of the packets. For
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interoperability, it is evaluated through the V2X communication equipment, considering
highways such as the E313 highway in Belgian and A16 highway in Amsterdam.

The 5G-MEC [13] approach enables a cooperative perception between AVs in a spec-
ified targeted area. The AVs are registered with MEC and share their information in a
periodical manner, which are stored in a database. Therefore, the vehicles do not share their
information with each other to introduce latency and communication overhead. When an
AV request for the holistic understanding of the environment, e.g., See-Through use case of
Extended Sensors, the MEC provides the exact information of the other vehicle to achieve
the cooperative perception with low latency communication. However, it is not clear if the
MEC is able to prioritize between vehicles’ information when responding to the query of the
requested vehicle. In other words, since the database connected to MEC has a time-series
structure, it could contain records of vehicles with the same time stamp. Furthermore, the
existing solution approach only covers streaming-based CAM applications.

In [14], the authors present live video streams (data) delivery while ensuring low
latency and study how it can be applied for AD use cases such as remote driving and
platooning. To ensure smooth video playback, their solution minimizes video stream
outages during handovers between two different network operators (cross-border). The
use of live video feeds can assist drivers in making timely decisions. However, timely
video delivery is only possible with a low glass-to-glass latency (<500 ms), which depends
on the available bandwidth, hardware, and technologies. Remote driving makes use of a
computer in the vehicle that is connected to the vehicle’s OBU (5G connectivity) and an HD
webcam. Whereas, platooning makes use of cloud-based media server for providing live
video streams to follower vehicles. The RTSP protocol is used to deliver streams to receivers
(streams are announced via REST API calls) in real time. There are three main streaming
scenarios (i.e., cloud-based, fog-based, and V2V-based) supported by their architectural
entities (i.e., sender, server, and receiver).

The experimental setup is two-fold: (1) fog-based includes entities connected via
local wired network; (2) cloud-based includes entities connected via 4G LTE network and
OpenStack cloud platform. The experimental machines are:

• Jetson TX2, GPU with 256 NVIDIA CUDA cores, Quad-Core, 8GB LPDDR4 RAM, and
Ubuntu 18.04.

• A virtual machine (in OpenStack cloud server), 4 cores Intel Processor (Haswell, no
TSX, IBRS), 4GB RAM, and Ubuntu Server 18.04.

• Intel(R) Xeon(R) CPU E31230@3.20 GHz, 8 GB RAM, and Ubuntu Desktop 18.04.

The authors leveraged the NVIDIA GPU hardware encoder (H.264/H.265) in Jetson
TX2 for achieving low end-to-end latency. A recovery module (written in C language that
used GStreamer framework) is implemented to cope with failure cases such as network
disruption. As video streaming in the aforementioned AD use cases requires low latency
(<500 ms) in order to achieve a safe experience, the authors conducted 11 different exe-
cutions which resulted in latency of 80–100 ms in the fog-based scenario and 105–125 ms
in the cloud-based scenario. In order to guarantee smooth playback during handover, 30
handover operations resulted in recovery times less than 300 ms, satisfying requirements
of no disruption during network outage.

The CarMap [15] creates a lean representation of the 3D feature-map using crowd-
sourcing and updating the map in near real-time on a cellular network. The idea behind
crowdsourcing is to leverage the vehicles’ sensors, so that each vehicle is able to upload
map updates to a cloud service, making the updated map available to other vehicles.
Among the features of CarMap are the following: lean representation of feature maps,
use of approximate position information (e.g., from GPS), localization based on dynamic
object filtering via resource-aware algorithm, map diff (differences) algorithm, and stitching
algorithm. These features address challenges such as map size, environmental dynamics,
effective feature matching, and fast map-updates. The CarMap’s architecture collects data,
generates segments via map segment generator, filters objects, performs stitching for map
reconstruction in the cloud, and then shares with other vehicles for localization. Most of
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the above-mentioned entities in the CarMap architecture rely on GPS position (a radius of
50 m) and keyframes. The implementation consists of:

• An alienware laptop (Intel i7 4.4 GHz CPU, 16 GB DDR4 RAM, NVIDIA 1080p GPU
with 2560 CUDA cores),

• MobileNetV2 (DeepLabv3+) for semantic segmentation,
• OpenCV for image transformations,
• The Point Cloud Library (PCL) for point cloud operations,
• QuickSketch for stitching,
• The C++ Boost library for serializing and transferring the map files over the network,
• Software modules for the aforementioned architectural components,
• Modification to ORB-SLAM2 (feature extraction, index generation, and feature match-

ing modules),
• The open-source visual odometry algorithm for mono, stereo, and RGB-D cameras in

the KITTI vision-based benchmarks.

In the CarMap simulations, three scenarios are considered and map data are taken for
validation of end-to-end latency and map updates. In addition, the accuracy of end-to-end
localization with reduced map size is assessed for localization scenarios. Latency is as low
as less than a second (<1 s) in CarMap, since the integration of map updates (50 ms) and
stitching/reconstruction (500 ms) is 550 ms. Localization accuracy is 28× (50×) better for
the static (dynamic) map as compared to ORB-SLAM2 and QuickSketch. Map size is 75×
reduced. CarMap is also capable of localizing in situations where other approaches fail.
It is notable that CarMap does not consider denser (high-dimensional) representations of
maps, which is a challenge that needs to be addressed for future autonomous vehicles.
Additionally, the CarMap does not rely on road-side units for storage and processing,
which can improve latency and localization.

In SURROGATES [16], a physical OBU is virtualized into a VNF (i.e., vOBU) within
the MEC layer to make it available for performing computationally-intensive tasks and
caching data. The contributing factors of the study include: OBUs virtualization; NFV and
MEC architectures; and real-world implementation, deployment, and validation of the
system. The architecture consist of entities from vehicle and virtualized edge-&-cloud such
as OBUs, RSUs, OBU manager module, REST protocols and API, virtualized infrastructure
manager (VIM), cellular base stations, 802.11 OCB and 4G technologies, WiFi access points,
and an IPv6-based network middleware. The middleware is used to share navigation
data, monitor statistics, etc. A MANO entity orchestrates the vOBUs as VNFs that utilize
the network node’s computing capabilities and feed user applications such as traffic effi-
ciency, safety, pollution monitoring, tracking, and healthy mobility. It is noteworthy that
the physical OBUs proactively communicate with vOBUs to feed a set of services (user
applications) by providing monitoring parameters. Accessing and processing data takes
place at three locations: the data analytics module, the vOBU, and the physical OBU. Thus,
it addresses the issue of multiple services requiring data from the same vehicle, reduces
request resolution delays, and saves wireless resources.

Using the 5GINFIRE project ecosystem, SURROGATE is deployed and tested at the
University of Murcia, Spain (UMU). The authors deployed three network services (NS)
for vOBUs, platform management, and final services. Using open source MANO and
OpenStack, it performs resources virtualization and data gathering from in-vehicle sensors.
It allows the implementation of software services (VNFs) by using x86_64 (CISC) equipment.
To further the implementation process, the following steps were taken:

• An On-Board Diagnosis (OBD)-II interface (OBDLink SX) was used to connect a
Laguna LGN-20 OBU (with a TP-LINK MA-180 modem) with in-vehicle CAN bus for
gathering vehicle (Renault Clio 4th generation) state data.

• An OpenVPN tunnel (router) managed the IPv6 network mobility since the telecom
operator does not support IPv6 traffic.
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• A Dell Poweredge R430 server (Intel(R) Xeon(R) CPU), CentOS 7 using OSM v4,
Debian 9 OS (GNU), and OpenStack Pike is used to run the infrastructure, which
include four VNF types, i.e., vOBU, OBU, data analytics, vehicle monitoring service.

• A MySQL database is used to store data, Grafana tool for monitoring services,
and an Android application (on Samsung Galaxy S7) to access vehicle data from
a mobile device.

The vOBUs are evaluated by analyzing the request RTT in different network segments.
In this connection, the RTT is maintained at around 230 ms by vOBU, while it ranges from
400 ms to 22 ms for OBU. When a delay threshold of 300 ms is reached, the vOBU software
provides the cache data to measure the requests. Meaning thereby, 90% of the requests are
solved by the vOBU at 300 ms. With the 4G connection, the new vehicle registers itself in
just 400 ms.

Based on what has been mentioned above in the literature review, we provide the most
relevant directions to design our differentiator. In this connection, the relevant research
contributions are directed:

• To techniques of data fusion,
• To approaches for enabling the specific AD use-cases (e.g., remote driving),
• To creating the high level perception/map through crowdsourcing techniques,
• To focusing on the information collected from automated and connected vehicles,
• To solutions for addressing the computation limitation,
• To the limited services with no contribution towards CCAM infrastructure, etc.

On the contrary to the above and similar approaches, our work provides the differen-
tiator by: (i) creating the enriched perception through images, videos, and sensory data
captured by the sensory devices mounted in the RSU; (ii) approaches to utilize the gener-
ated enriched perception for enabling new AD use-cases; (iii) suggesting the computation
and communication-rich infrastructure in the classical roadside unit to enable the creation
of enhanced roadside unit; (iv) contributing with enabling concepts that help realize the
advanced use-cases of autonomous driving.

5. Proposed CCAM Solution for Autonomous Driving

The motivation to contribute to the proposed CCAM infrastructure is driven by the
needed solutions to realize the use-cases of autonomous driving in a complex and urban
environment. It should be highlighted that challenges of urban and open environments are a
lot different then those of controlled, rural, and highway environments. Hence, the classical
methods of creating local perception, finalizing the trajectory, local planning, etc., may not
cope with the use-cases of the higher automation levels. Enriched perception and support
for decision making is required, which will be provided by the CCAM infrastructure.

This section focuses on detailing the proposed CCAM infrastructure and relevant
enabling technologies therein. It should be highlighted that the proposed infrastructure
is based on the experience collected by the authors in practical implementation of the
concepts (as PoCs) in Europe and UAE. The readers are referred to [17] and Table 17 in [3]
for engagement and contribute in such activities. In what follows next, we provide the
details of the needed CCAM infrastructure. The core idea is to extend the classical roadside
unit to a more sophisticated and intelligent edge infrastructure that does not only perform
the task of relaying the messages between and among vehicles and infrastructure. To
understand the need and gains of the CCAM infrastructure, let us discuss the big picture,
as shown in Figure 2. The figure shows three layers, where the middle layer provide the
details of the CCAM infrastructure. Meaning thereby, the evolved roadside unit with
the CCAM infrastructure is the intermediate level and it hosts compute hardware and
communication interfaces.

We propose that roadside infrastructure should go beyond serving as the roadside unit
of an existing vehicular network to develop it in a manner that allows for the development
of the following features:
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• The ability to create dynamic segments for roads.
• The ability to adapt and understand dynamic and complex environments.
• The ability to process raw data and build intelligent machine learning pipelines.
• The ability to perform layer-to-layer communication using upstream and down-

stream channels.
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Figure 2. Details of the CCAM and evolved roadside unit.

An evolved roadside unit with CCAM infrastructure, with its features and applications,
is shown in Figure 2. The following categories may describe a result of using on-road de-
ployed sensors to capture data, applying ML/AI methods, and making relevant decisions:

• Categorization—AI/ML methods can be used to categorize vehicles based on the
sensory data captured by the on-road sensors.

• Activity Analysis—The data can be processed and analyzed using AI/ML methods to
create heatmaps of various activities across the road segments.

• Tracking—AI/ML methods can be used to track the objects, once the objects are
properly detected, for creating an enrich perception of the complex road segment.

• Traffic Analysis—AI/ML methods can process raw data to provide useful insights on
traffic signs, traffic signals, speed, mobility patterns, and traffic density.

In what follows next, we provide the details of the design, involved technologies,
and interfaces. The proposed CCAM infrastructure may broadly be categorized into the
following major technological and solution categories:

• Sensors and devices—This category contains all the devices and sensors that are used
for collecting the right set of information/data from the road segment, i.e., devices
that help capture the dynamics of the road segment. More details about this for the
proposed CCAM infrastructure may be found in Section 5.1.

• Computation—This category corresponds to the right set of accelerators, e.g., GPUs,
CPUs, TPUs, FPGA, etc. More details about this for the proposed CCAM infrastructure
may be found in Section 5.2.

• Communication—This category defines the set of communication technologies that
help achieve the objectives of the right communication bit-pipes for executing different
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use-cases of the autonomous driving. More details about this for the proposed CCAM
infrastructure may be found in Section 5.3.

• AI/ML tools and platforms—This category encamps all the relevant AI/ML tool
boxes, platforms, and approaches that help in creating the perception and context
awareness for the specified road segment covered by the set of sensors deployed on
the roadside unit. More details about this for the proposed CCAM infrastructure may
be found in Section 5.4.

In the rest of this section, we provide the details of each of the above categories.

5.1. Sensors and Devices

The right set of information is imperative for an autonomous vehicle to drive through
a complex dynamic environment. To capture the information, we can make use of various
types of sensors and devices. For our proposed CCAM infrastructure, we choose to have
cameras, LiDARs, RADAR, etc. The reasons behind using these sensors and devices are
as follows. The camera-based sensors perform capturing in the form of images and/or
videos, These visuals capture the road segments, vehicles, pedestrians, traffic signals and
sign-boards, and real-time events happening in the vicinity of the RSU. The LiDAR sensors
perform 3D mapping the world around the RSU. A LiDAR’s measurements become more
precise as its layer count increase. The RADAR sensors perform reliable object detection and
can locate stable or moving objects. Consider Figure 3, which illustrates the components of
the proposed architecture at this layer.

Through the implementation of sensory data fusion and filtering approaches, we
can create patterns for different use cases of the collected environmental data (via on-
road sensors) as well as data from vehicles. This is accomplished by deploying an IoT
middleware, an optimization and machine learning toolbox, and a decision toolbox in
the eRSU (cf. Figure 2). By analyzing data from connected on-road deployed sensors
and vehicles, the eRSU creates information (map) at the edge. The eRSU creates new
information (map) based on the information collected from connected road sensors and
vehicles. The information gained from external environments is termed Perception at Edge
(PAE). Hence, more informed decision making is performed when PAE is shared with
vehicles. An illustration of the components of the proposed architecture at this layer can be
found in Figure 3.
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Figure 3. An overview of the Edge architecture for CCAM infrastructure.

It is imperative to select the right set of sensors, computing infrastructure, and com-
munication infrastructure carefully to meet the aforementioned capabilities. A technical
description is given in Table 2, along with the features and technologies of the selected
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sensors. The last column describes the measurements made by each sensor. Please note
that the sensors’ selection is based on the practical implementation of similar projects.

Table 2. Types and descriptions of the sensors.

Sensor Type Description Parameters Measured

Car Parking

In parking lots, these sensors can be of various use, including
finding a preferred parking space for drivers, identifying

wrong parking, parking violations and expired tickets. Up to
300 spaces can be covered by one sensor and the range can be
as long as 400 m. The raw video streams are only processed

on-board in an effort to increase privacy.

Total parking spots, free spots, and occupied
spots

Traffic Analysis

In highways, the crowded traffic can be caught/recorded via
these sensors and it can capture as wide as four lanes per

camera. The frequency with which the data are recorded can
be modified according to needs, e.g., per month, week, day,

hour, or per minute. The user can view the evaluations
through camera image on a display, via email reported

regularly by a reporting engine or sent through CSV file.

Classification of vehicle types and automatic
counting of vehicles

Activity Analysis

These sensors can recognize/distinguish different automobile
activities at certain geographical locations. Information

regarding motion and most lingered places can be traced via
analysis of sensory data. The information of activity patterns
(pedestrian walking, cycling etc.), gathered via these sensors

may assist in dynamic decision making for AD, e.g.,
scheduling traffic light controls or LDM trajectory planning.

Visualization of motion and dwelling time,
objective measurement of hot spots,

compilation of statistical evaluations with
adjustable duration and intervals

of evaluation.

Environmental

The effects of AD on the environment can be analyzed via
these sensors. Moreover, different parameters and their
relationship can be studied through interpretations and

evaluations of sensory data collected from environmental
and traffic analysis sensors.

Air quality index, NO2, NO, O3, particulate
matter (PM1, PM2.5, PM10)

Road condition

These sensors are installed on masts (e.g., streetlamps) or
bridges and can be used as optical technologies for the

purpose of visual information of site and measure
remote temperature.

Road status (dry, damp, wet, ice, snow, and
chemically wet), road surface temperature,

snow height, and water film height

Traffic Light

These sensors are integrated with the existing traffic control
system and use DSRC communication technology for short

range messages delivery between traffic light, vehicles,
pedestrians, and other road users.

Traffic light status, e.g., red, yellow, green

Camera-based Sensors

The type of sensors visually scans its surroundings and
capture images and videos that contains important and
relevant information. The information is then used for
perception creation, object detection, context or scene

understanding, object tracking, etc.

Object detection, road status, and
classification.

LiDAR Sensors

These sensors are popular to perform 3D mapping of the
surroundings. The 3D mapping is in point-cloud format and
operations over these point-cloud depends over the number

of layers in the sensor. This is to say, LiDAR comes with
various layers detailing the objects it scans.

Field-of-view, point density, and depth level
based on scanning layers

RADAR Sensors
These sensors are usually used for detection objects that are
moving or stable. Through radar, the object can be tracked by

determining their distance, angle, and velocity.

Range and distance to the detectable object
and object tracking.

As shown in the following figures, the suggested set of sensors at the edge provides the
perception (in addition to detecting and tracking objects). The activity analysis outcomes
are depicted in Figure 4a, the environmental parameters are shown in Figure 4b, and the
generated perception can be visualized in Figure 4c.
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(a) Activity parameters’ visualization of the on-road deployed sensor.

(b) Environmental parameters captured at edge.

(c) Perception created at the edge.

Figure 4. A look into some of the visualizations of activity and environmental sensors.
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5.2. Computation

It goes without saying that the sensory data collected through on-road deployed
sensors need to be processed and analyzed in the roadside unit. Pushing it to the central
clouds of webscalers is contradictory to the fundamental concept of the proposed CCAM.
This asks for the compute infrastructure, accelerators in the roadside unit. For this, we
suggest to have a greater set of GPUs than CPUs and other accelerators. This is due
to the nature of analytics that are expected at the roadside unit of the proposed CCAM
infrastructure. The on-road deployed sensors collect the video stream, photos, radar data,
lidar data, etc., which require strong GPU equipped computer infrastructure.

5.3. Communication

(i) Communication bit-pipes for Autonomous Driving: To achieve the objectives of
AD, the concept of effective, efficient, and real-time communications between vehicles,
infrastructure, and other road users is crucial. Hence, the operations of an autonomous
vehicle in a complex environment can be autonomously operated if and only if the commu-
nication bit-pipes are right. The cellular technologies of 3GPP support the communications
between vehicles, infrastructures, and road users. The cellular-V2X (C-V2X) technology
performs well in high-dense traffic areas and provide high reliability and real-timeliness in
communication between entities. For instance, Figure 5 depicts the communications be-
tween entities, i.e., vehicles, pedestrians, networks, and infrastructures. C-V2X is expected
to be instrumental in enabling more sophisticated ITS and infotainment services, when it
comes to autonomous vehicles paradigm such as vehicle diagnostics, connected infotain-
ment, pay-as-you drive insurance, autonomous driving, co-operative driving, platooning,
remote driving, and other safety features, etc., by leveraging the mix-ranges module,
etc. [18]. However, the true potentials of C-V2X technology may not be explored unless the
proper coordination amongst right stakeholders is achieved, as shown in Figure 6.
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Figure 5. Communication technologies for CCAM Infrastructure to enable L-5 autonomous driving.
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Figure 6. Inter-stakeholders relationship for L-5 AD.

These entities and their interaction generate a large amount of data and distributed
decision engines, which require reliable and fitting communication bit pipes. C-V2X and
B5G technologies are expected to pave the path towards achieving the objectives of L-5 AD.
For instance, to achieve enhanced perception and informed decision making, 5G pledges
the enhanced mobile broadband (MBB) and ultra reliable low-latency communication
(URLLC) bit-pipes. The 5G- and B5G-based communication are some of the core enablers
for achieving L-5 AD. Therefore, the C-V2X communication services are expected to play
an important role in placing the right enablers for implanting AD capabilities in AVs [10].
Since 5G- and B5G-enabled the C-V2X communications support are yet to be realized, the
existing 4G (LTE) and 5G-Non-Standalone (5G-NSA) technologies by 3GPP supported the
usecase groups relevant to realizing AD capabilities.

(ii) Communication to Realize Inter-stakeholders Relationships: Considering the
need for communication to realize the envisioned inter-stakeholder relationship, we believe
that the fully autonomous driving would ask for a new eco-system with new stakehold-
ers, i.e., OEMs will no longer be the only stakeholder to drive the future transportation.
Based on our earlier work, work with operators, and industry, we believe in the new
stakeholders’ relationships. It goes without saying that for such a inter-stakeholder relation-
ship, there needs to be communication bit-pipes existing, hence, with communication for
inter-stakeholder relationship. It should be highlighted that not for all the communication
bit-pipes, we need the same QoS. Hence, we need QoS aware communication, for which,
we rely on 5G both in upstream and downstream. This section discusses the potential rela-
tionship between the inter-stakeholders that can be created dynamically by leveraging the
envisioned CCAM infrastructure. The roles and responsibilities outlined in [19] may pro-
vide inspiration for how multiple stakeholders would work closely together to realize the
L5 AD. We take into account six roles: MNO, CIP, CA, RIO, and OEM/Automobile Maker
and believe that the proper interaction of these roles will contribute to the development of
the appropriate CCAM infrastructure and solution enablers for the development of smart
roads and the realization of L5 autonomous driving. Consider Figure 6 and its description
in the Table 3 to comprehend how each stakeholder contributes to the envisioned solutions
of higher autonomy.

It is evident from Table 3 and Figure 6 that new entries into the autonomous driving
ecosystem are necessary. This is to say that the goals of L5 AD can only be met by using a
CCAM infrastructure that is enhanced with external information. This calls for the avail-
ability of the right set of (processed) data sources at the proper time and location, as well as
a reliable and almost real-time communication bit-pipe. Assume that the network opera-
tors have made communication bit-pipes available along with an evolved CCAM system
incorporating a road infrastructure with intelligent edges. In this case, the regulations and
policies are undoubtedly the first to appear. Still, the more significant task is finding tech-
nology solutions that permit the composition of dynamic inter-stakeholder relationships.
Therefore, the solution component should ideally achieve the design objectives.



Remote Sens. 2023, 15, 922 20 of 33

Table 3. Inter-stakeholders relationship for envisioned.

Relationships Denotation Description

MNO to CA or RIO or OEM 1

(i) MNO provides communication infrastructure,
(ii) CA, RIO, and OEM are MNO tenants, (iii) CA
controls the data, which it exchanges with other

stakeholders in accordance with predetermined rules.

MNO to Users 2
MNO provides the services to the users. For

infotainment, this relationship still holds true, but not
for autonomous driving’s communication services.

OEM or CA or RIO to Users 3

OEM/CA/RIO provide services to the users. The
services provided by CA, OEM, and RIO could include

perception-as-a-service (PaaS). It could be the data
which is gathered from outside sources such as

on-road sensors, OEM backends, etc.

CIP to CA or RIO or OEM 4
The communication infrastructure is installed by CIP,

and it is run by CA/RIO/OEM.

(iii) C-V2X Communication from Standardization Perspective: The 3GPP has been
one of the standardization organizations contributing to the technological standardiza-
tion for implementing various AD use cases, as described in Section 2.2. In this regard,
3GPP initially outlined the fundamental use cases and potential requirements for ad-
dressing safety and non-safety aspects through environmental awareness and warning
messages [20]. These use cases require different needs such as latency of 100 ms, message
size of 50–1200 bytes, mobility performance (absolute speed of 160 km/h and relative ve-
locity of 160–280 km/h), a response time of 4 s, the maximum frequency of 10 messages/s,
high anonymity and integrity, high reliability, communication (message transfer, message
received, authorization via MNO or RSU, etc.), as well as other requirements such as battery
and power consumption, and location. The readers are directed to the authors’ previous
research work [21], which provides a summary of the basic safety and non-safety use cases
organized according to V2X communication technologies and a comparison of the potential
requirements for each use case.

Standardization of 4G and 5G technologies has mostly addressed the important V2X
communication concerns, enabling the stakeholders to achieve the design objectives of L5
AD. The C-V2X has drawn a lot of interest from the industry, academic world, and research
community in recent years. As a result, there are several documents, design methods,
and reports on solution-related components. These documents are not mutually exclusive,
and their information tends to overlap (though the degree of overlap may vary). There
is no classification of technical reports and specifications in the literature. For instance,
Ref. [22] offers broad perspectives rather than an exhaustive study to cover all components
of V2X applications. To cope with these challenges, we thoroughly examine the 3GPP
standard documents pertinent to AD in general and C-V2X communication in particular.
In this regard, we did the categorization of technical documents that are motivated by
V2X services. Moreover, we proposed a straightforward yet descriptive taxonomy of
the standard documents, as illustrated in Figure 7 to align the standard documents with
current developments and direct readers to the right documents. We do believe that
the proposed categorization would considerably help to direct the stakeholders in their
research and industrial operations. It is important to highlight that the standard documents
include comprehensive V2X applicable guidance for future use cases, although they are
dispersed throughout several different documents. The identified use cases and other
crucial information from the 3GPP standards documents for 4G (before) and 5G (now) V2X
communication services are analyzed in our most recent work [3,10].
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TS 22.185 Requirements for V2X Services
TS 22.186 Enhancement for V2X Scenarios
TR 22.885 LTE support for V2X Services 
TS 23.285 Architecture enhancements for V2X Services 
TR 23.785 Architecture enhancements for V2X Services 
TR 23.795 Application Layer for V2X Services 
TS 24.385 Management Object (MO) for V2X Services 
TS 24.386 Protocol Aspects for UE to V2X Control Function 
TS 24.486 Protocol Aspects for V2X Application Enabler (VAE) Layer 
TS 29.387 V2X Control Function to V2X AS Aspects
TS 29.388 V2X Control Function to HSS Aspects 
TS 29.389 Inter-V2X Control Function Signaling Aspects 
TR 33.885 Security Aspects V2X Services
TR 36.786 UE Radio Transmission and Reception for V2X
TR 36.787 New Band Combinations for V2X 15.0.0 2018-07
TR 36.788 UE Radio Transmission and Reception for V2X
TR 36.885 LTE-based V2X Services

TR 22.886 Enhancement of V2X Services for 5G 
TS 23.286 Functional Architecture and Information Flows for V2X Services 
TR 23.764 Enhancements to Application Layer for V2X Services
TR 23.776 Architecture Enhancements for aV2X Services 
TR 23.786 Architecture Enhancements of aV2X Services for the EPS and 5GS 
TR 26.985 Media Handling and Interaction for V2X 
TS 29.486 V2X Application Enabler (VAE) Services
TS 33.185 Security Aspect for V2X Services
TS 33.536 Security Aspects aV2X Services 
TS 33.836 Security Aspects aV2X Services 
TR 37.875 Band Combinations for Uu and V2X con-current Operation
TR 37.885 Evaluation Methodology of new V2X Use Cases for LTE and NR
TR 37.985 RAN Aspects for V2X based on LTE and NR

TS 23.287 Architecture Enhancements of V2X Services for 5GS 
TS 24.587 V2X Services in 5GS 
TS 24.588 UE Policies for V2X Services in 5GS
TR 38.885 NR-based V2X 
TR 38.886 UE Radio Transmission and Reception for NR-based V2X 
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Figure 7. Taxonomy and 3GPP technical documents for autonomous driving.

In order to provide frequency details from 3GPP Release 14 to Release 17, we created a
Figure 8, which presents a number of technical documents supporting 4G, 5G, and 4G-&-5G
communication technologies. The complete set of these technical documents is shown in
Figure 7 and details of technical specifications (TS) can be found for each communication
technology: For 4G, the specifications are TS 22.185 [23], TS 22.186 [9], TS 23.285 [24], TS
24.385 [25], TS 24.386 [26], TS 24.486 [27], TS 29.387 [28], TS 29.388 [29], TS 29.389 [30];
For 5G, the specifications are TS 23.287 [31], TS 24.587 [32], and TS 24.588 [33]; For 4G
and 5G together, the specifications are TS 23.286 [34], TS 29.486 [35], TS 33.185 [36], and
TS 33.536 [37]. The readers are encouraged to look into the given specifications links for
details such as title, status, type, release, and versions of the technical specification. When
taking into account all releases, the frequency rate for 4G continued to decrease, was
normal for 4G-&-5G, and began to increase for 5G (more technical documents are expected
in release 17). Similar to this, the breakdown of technological support, the number of
technical documents, and pertinent cellular communication technologies are presented in
Figure 9. It is important to note that this breakdown is influenced by the 3GPP Technical
Specification Groups (TSG), such as the radio access network (RAN), service and system
aspects (SA), and core network and terminals (CT). It provides an easy-to-navigate approach
for naive readers to equip themselves with exact support categories rather than following
the puzzling structure of the standardization documentation.
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Figure 9. Frequency of system and network support for AD usecase groups through
cellular technologies.

5.4. AI/ML Tools and Platforms

This is a crucial component of the proposed CCAM infrastructure. The idea is to enable
performing various data analytics operations, execute decision making instances, and infer
different autonomous use-cases at the roadside unit level. Given that the proposed compute
infrastructure ensures the required resources to conduct analyses of the data, train/retrain
model, host pre-trained models, and conduct inferencing by deploying the right inferencing
engine, we propose to deploy an automated flow of the MLOPS, enabling the frequent
training/selection of models for different data sets generated in different road segments
and for different use-cases of autonomous driving. For object detection, tracking, clustering
of the vehicles and objects on the road segments, congestion prediction, etc., we rely on TF,
PyTorch, and other reinforcement, neural networks, etc. Readers are encouraged to refer to
some of our proposed RL-based and self-learning approaches in this regard [38,39].

6. Validation of the CCAM for Autonomous Driving

This section discusses the experimental design, implementation details, machine learn-
ing algorithms for traffic analysis, and a use-case to find the impact of external perception.

6.1. A Use-Case Experiment

In this experimental use-case, we discuss how a use-case can be implemented in order
to investigate the impact of the external perception created by the on-road deployed infras-
tructure. This work is supported by the CCAM infrastructure, which is fully developed
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(physically through SCAD Lab in UAEU, UAE), and will be deployed in the near future.
For different use-cases of autonomous driving, we have conducted a set of experiments
to study the impact of external information. These experiments were carried out over a
dataset from Berlin. The dataset captures a famous Berlin roundabout and is relevant to
the CCAM infrastructure. A noteworthy point here is that parts of the deployment that
collects the data do not track the vehicles, and there are no sensors for road conditions.
Additionally, the different cameras could not track vehicles throughout their path through
the intersection. As a further point to be noted, activity analysis sensors capture the highest
degree of detail. For the purpose of creating valid simulation models, this tracking is ex-
tremely useful. The vehicle count is performed by traffic analysis sensors on the configured
segments of roads. A one-minute interval is used to aggregate counts and a classification
by vehicle type is available for some segments.

We started with the manual data analysis and carried out some sanity checks. This led
us to inspect the data for visually validating the expected patterns. Further, a consistency
check was carried out and an assessment of the system accuracy was conducted by:

• Analyzing properties, data type, aggregation, and time resolution of the data,
• Statistic aggregation and comparison of reference values,
• Using spatial correlations to analyze time relationships and constraints in the data.

Next, we performed vehicle counting. The number of vehicles is counted through ex-
tracting the vehicles from the image streams. Similarly, we performed vehicle classification.
The types of vehicles are detected in the image streams. It is note worthy that the vehicle
types change drastically at certain times in the data. As a result, we opted to focus on the
vehicle count (aggregated) for now and furnish our future research work with vehicle type
classification. After accumulating the recorded data in minute intervals for traffic analysis,
we expected the following:

• To perform matching between data sources, e.g., working days vs. holidays, normal
hour of the day and peaks, daily averages, etc.,

• To detect temporary closures without difficulty,
• To have simple correlations between sensor stations,
• To perform accurate detection of traffic lights.

With the help of interactive plots, we visualized the dataset by selecting time range,
sensor locations, and smoothing options that we could freely select. Next, we selected a
simple Neural Network (NN) regressor for traffic volume predictions. The NN regressor
was trained for first 20 days and the total available data size is 38 days. We aim to have a
simple and small network for producing acceptable predictions. Therefore, the experiments
consider various input formatting, number of layers, and neurons. Consider Figure 10,
which shows the predictions. It goes without saying that the nature of an application decide
about the required accuracy. In what follows next, we provide details about the neural
network and some features, as follows:

• A total of 100 neurons;
• Solver (L-BFGS);
• Activation function (tanh);
• Minute of the day (0–1439);
• Day of week (Monday–Sunday (0–6));
• Is a holiday (true, false);
• Vehicle count of that minute (number)—the class label/output.

Though the above mentioned features are important, there exist other promising
features as well. For instance, the prediction accuracy can be improved when the data
contain weather information, and/or seasonal vacations of school. As the data are recorded
for less number of days, we decided to avoid considering these additional features.
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Figure 10. Response of neural network regressor trained on 2 weeks of data. Predicting the traffic
volume given the minute of day. The two curves are predictions for workday (Monday–Tuesday in
cyan) and weekend (Saturday/Sunday in red) with correspondingly colored training instances in the
background.

6.2. Dataset Cleaning and Visualization

The considered dataset is a collection of road dynamics measurements, which are
recorded on a set of road intersections using three distinct types of sensors deployed at
various locations on and around the target areas. The three types of sensors used are Kiwi
Traffic Analyzer, Cisco Aironet Wi-Fi & CMX, and Clever Citi Parking Sensor. The Traffic
measurement was conducted over a set of road segments leading up to an intersection at
the Ernst-Reuter Square (ERS), where the traffic sensors are deployed. These road segments
are as follows:

• AmpelHardenbergstrvon-BHN2-Outbound;
• VorplatzHardenbergstrvon-BHN3-Inbound;
• Otto-Suhr-Allee-TEL1-Inbound;
• Bismarckstrasse-TEL3-Outbound;
• Ernst-Reuter-PlatzGeb-A1-Outbound;
• Bismarckstrasse-TEL3-Inbound;
• VorplatzGeb-AF1-Rotary;
• Strdes17Junivon-EB1-Outbound;
• Marchstrasse-A2-Inbound;
• Strdes17Junivon-EB1-Inbound;
• Ernst-Reuter-Platz-TEL2-Rotary;
• MarchvonGeb-A2-Outbound;
• Ernst-Reuter-Platzvon-EB2-Rotary;

For mobile devices with Wi-Fi connectivity, the number of devices was measured in six
different areas and recorded using deployed sensors. Next, the recorded data was stored
into comma separated files one per each sensor that was deployed. The data are recorded
for a total of forty-one days in the case of traffic flow and for five days for Wi-Fi devices.
For parking areas, the data were recorded over a total of twenty-four days. Next, the traffic
flow dataset is cleaned by removing the unused features and records. Furthermore, it is
changed into the correct format of time and date that allows us to use it easily. Next, we
created a subset of the larger all-encompassing dataset for a single day traffic recording
and visualized it in Figure 11.

This helped us to graphically see the traffic flow throughout the day. This step also
helped in performing informed data cleaning tasks. The goal of this machine learning (ML)
exercise is to predict the number of vehicles by learning the traffic flow patterns from all the
recorded features in the dataset. Understanding these features helped us in understanding
how to best utilize these features for our ML approaches. We normalized our dataset for
training purposes and discarded all large values that are present in the vehicle count. Next,
the ML regression algorithms were trained on the running average of the total vehicles
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throughout the day, where we kept an average sum window of 60 units of time-steps.
Using this method, traffic counts were averaged over an hour and significant differences
between maximum and minimum values were reduced.
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Figure 11. Scatter plot of five minute average vehicle count of two selected locations highlighting a
traffic interruption on 25 January 2020.

To visualize the dataset, the traffic flow is visualized for three days, as shown in
Figure 12. Therefore, we may observe that the traffic flow increases steadily in the early
hours of the day, after which it reduces and builds up again in the late afternoon, remaining
consistently high during the evening hours. It reduces once more in the late hours of the
night as the day ends. In addition to measuring traffic flow counts for the intersections,
we also recorded parking space availability for a parking area next to the intersection.
Next, we measured the number of available parking areas in the lot. Thus, it provided
an additional layer of mobility monitoring and helped us in visualizing the mobility
management requirements in terms of parking spaces. To this end, we used parking
sensors to measure the number of parked cars and recorded the values for an interval of
every hour during the day and every minute during the hour, as observed in Figure 13.
The parking lot measurements indicate that the parking spots are occupied throughout the
day but are vacant as the day progresses. The density of WiFi-enabled devices for each
hour of a day are shown in Figure 14.
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Figure 12. Average traffic volume (number of vehicles per hour) data as provided by the system over
a period of three days.
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Figure 13. Heat maps of parking spaces for spot #6. For every hour of the 25 days (Left). For every
minute of the 20 h (Right).

Figure 14. Heat maps of number of WiFi devices at two selected locations.

The total Wi-Fi device counts over a period of a single day is shown in Figure 15. It
shows that the number of Wi-Fi devices increase starting at 6 A.M. and continue to be so
until 7 P.M. in the evening, where it reaches a peak between 12 P.M. and 5 P.M. This aligns
with everyday foot traffic as expected in a campus setting. Thus, it shows that there is
much foot traffic during those hours and the need for connectivity is increased during these
peak hours. As observed, it is steady in the early hours of the day and steadily declines as
the day progresses, indicating that earlier in the day communication requirements tend to
be high.
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Figure 15. WiFi density for a single day at each location.

6.3. Experimental Setup

We applied machine learning algorithms to our recorded dataset and predict the
real values as closely as possible. To do so, we selected two types of datasets from our
consolidated dataset bank. First, we tried and prepared a model to predict as accurately
as possible the vehicle counts at a particular intersection, drawing from a subset of the
original dataset that consists of over twenty-four days of records. For this, we selected a
window of three consecutive days of data and perform data cleaning tasks on it to develop
a sub-sample that our models may consume for training tasks. In addition to this, we
also prepared an ML model that predicts the Wi-Fi device counts and help us model a
mobility requirements prediction model. In this section, we described and discussed the
detailed working of how we developed machine learning-based models to predict Wi-Fi
communication prediction and vehicular number prediction models.

For the vehicle count prediction model, the selected data are traditionally in an unclean
format for ML models. Therefore, we initially tackled the task of predicting vehicle counts.
To this end, we cleaned our dataset by removing all unwanted features. For instance, these
are speed and station identifier. The cause for speed feature being dropped is the lack of
data points for every vehicle in the dataset. To use the full potential of the ML regression
algorithms, we prepared a subset of the dataset for our considered usecase. Next, we
prepared a set of indexes to correctly align any inconsistencies in recorded samples, as they
are recorded.

Therefore, we created an index column that is sorted by the unix timestamp value.
Therefore, it is much easier to calculate preceding and succeeding values. It is also important
to mention that unix timestamp values were only used for our experimental purposes.
Otherwise, the results are shown in 24-h format. Next, we created a list of features that
we deemed important in predicting the vehicle count. We selected the features, namely,
hour, minute, second, type of vehicle, and a onetime step forward shifted lag feature. The
decision to create a lag feature is based on the importance of lag features being able to
contribute much to predicting time series values, which is the case herein. This technique
is used to increase model accuracy and they are used on the assumption that prior events
may contain useful patterns or hidden contextual information that may be indicative of the
patterns exhibited.

The experimentation was conducted on a single intersection to highlight the potential
of mobility management using machine learning. These ML models were trained using a
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two-day subset of the overall dataset. Next, we split the selected data into 80% for training
and the remaining 20% for evaluating purposes. Therefore, we used two days of traffic
count measurements and features to train our regressor models. Next, we evaluated and
calculated the model score as an evaluation category. To predict the time series dependent
vehicle counts, we rely on a linear regression ML technique. These techniques are: linear
regression, random forest linear regression, and gradient boost regressor. All of these
techniques are available from the Scikit Learn ML library. Therefore, we used the library in
conjunction with a few other libraries, i.e., Python Pandas data science library, Seaborn, and
Matplotlib, for data visualizations and graph creation. Next, we run the experiments on a
machine with an Intel core i7 6700HQ processor with 16 GBs of primary memory. Hence,
the training took three minutes, on average.

For the WiFi device count prediction model, we develop an XGBoost-based linear
regression for the Wi-Fi devices. In this connection, we took the recorded values for a total of
five days of the data. Next, we selected features that would be best suited to the considered
task. These features are: hour, minute, second, and lag shifted count. Furthermore, we
divided the dataset into two parts, i.e., 80% for training and 20% for testing. Next, we used
the Scikit XGBoost library to perform our training tasks. To complete the training task over
the above mentioned machine, it took less than 5 min on average.

6.4. Results and Discussions

For vehicle count, there are three different linear regression models used and for each
of them, the results are given, as follows. Using linear regression, we trained our model to
learn the average traffic count pattern for each hour of the day. The Figure 16 shows how
the model performs compared to the real traffic counts. For linear regression, we reported
an accuracy of 65% for the prediction of the vehicle count. The training data were split into
training and testing sub-samples, as is the case with ML models and then the predictions
for the rest of the three days were predicted using the linear regression model. We can
observe the actual vehicle count graph in the Figure 10.
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Figure 16. Linear regression prediction of vehicle count.

For the Gradient Boosted regressor, we performed the experimental setup and trained
the model using the following hyper parameters: loss was set to mean squared error,
learning rate was 0.1, number of Boosting stages was 100, sub-sample value was 1.0,
whereas the split quality measurement criterion was set to the Friedman Mean Squared
Error (FMSE). The accuracy for this method is reported as 94.3%. Similarly, for random
forest linear regression hyper parameters used are as follows: the number of tree was
100, split quality criterion was squared error, maximum tree depth was set to 2, minimum
sample split was 1, sample weight function for leaves was equal, maximum features for split
selection was the same as the features allotted. The accuracy for this method is reported as
93.8%. The results from these training experiments are presented in Figure 17.
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Figure 17. Random forest and gradient boost regressors when trained on partial day dataset, and
tested for predicting two days of traffic.

The experimental results indicate a repeating pattern for traffic intensity for the road
sections, as predicted by our models, and as the general patterns shown by Figure 10. Our
trained models predicted the running average of this traffic density accurately. The traffic
flow is low in the early morning, gradually increasing, and then reducing to a midday low
as it then climbs back around the evening hours. These results demonstrate that traffic flow
density can be modeled by artificial intelligence and be accurately predicted given enough
information about the traffic features and conditions. These models are helpful in making
informed decisions about our autonomous perception proposals. These create a known
tangible outcome-based result that can be known ahead of time to be prepared for and
given the resources at our disposal for communication infrastructure.

For Wi-Fi device count, the Figure 18 shows that we had an accuracy of 41.82% when
trained on vanilla hyper parameters and an accuracy of 91% when trained with the gradient
boost regressor. These results, however, visually do represent a similarity between what
the actual trend is and what the model predicts it to be in the case. These values are
incredibly important.
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Figure 18. WiFi devices’ prediction. Gradient boost model predictions for five days (Upper). The
training dataset with prediction based on XGBoost model (Lower).



Remote Sens. 2023, 15, 922 30 of 33

From a mobility point of view and to help us better understand the mobility patterns
of the people around us, in this case, the SHapley Additive exPlanations (SHAP) values are
selected for our regression model, where the features are divided into two groups: red and
blue. As shown in Figure 19, SHAP values in the red group are positive, meaning they had
a positive impact on the prediction. Similarly, there are negative SHAP value in the blue
group, meaning it negatively affected the prediction. Hence, the SHAP values present the
explainablility of the features contributed with the predicitons and used in the regression
model. We believe that this will help the reader to understand the predictions of the model
in a more specific and explainable manner. The glossary of frequently used terms are listed
in Table 4.

Table 4. Glossary list.

Term Definition

3GPP

The 3rd Generation Partnership Project (3GPP) is the collective name for several
standard bodies that develop mobile telecommunications protocols and standards.
3GPP specifications cover cellular telecommunications technologies, such as radio

access, core networks, and service capabilities, which offer a comprehensive system
definition for mobile telecommunications.

Camera
These offer more thorough information and aid in comprehending depthless objects,

which are typically overlooked by other types of sensors. Such depthless objects
include speed limit boards, stop signs, slow signs, traffic lights, etc.

CCAM
Stands for cooperative connected and automated mobility. It enables the capabilities

of autonomous driving by allowing sensory infrastructure, communication
infrastructure, and computation infrastructure.

C-V2X Stands for a cellular vehicle to everything communication, which allows the vehicles
to communicate with each other, pedestrians, the cloud, and their environment.

EDM Stands for edge dynamic map, which is built over the edge for facilitating road users
with external information.

LiDAR

The type of sensor that sends and receives signals using a laser beam to detect
objects. It also fires laser pulses at specific targets to produce a depth map. These
sensors are reliable and real-time. Since LiDARs are depthless sensors, they are

unable to distinguish depthless objects, such as traffic lights, signs, etc.

OBU
The onboard unit mounted on the vehicles is designed to exchange messages and

communicate with other OBUs and RSUs leveraging dedicated short-range
communication or the PC-5 communication.

Perception
The component of an autonomous vehicle responsible for collecting information

from different onboard sensors and external sources; extracting the relevant
knowledge and developing an understanding of the environment.

Radar

The RADAR sensor functions very similarly to the LiDAR, except using radio waves
rather than laser. However, when radio waves come into contact with objects, they

absorb less energy than light waves. Thus, they can operate over a relatively
long distance.

RSU The roadside unit can be mounted along a road or on the vehicle. It broadcasts the
data to OBUs or exchanges data with OBUs in its communications zone.

TS
The Technical Specification documents are created by 3GPP. The TS covers the Core
Network and radio component in addition to billing details and speech coding right

down to the source code level. These TS are then transferred into standards.
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Figure 19. SHAP values for linear regression model to show features’ contributions.

7. Conclusions

It is undeniable that autonomous driving is a complex and problematic technology,
which requires an intelligent environment. In this paper, we focused on enabling an
intelligent environment by augmenting the CCAM infrastructure to create smart roads
for autonomous driving. Meaning thereby, autonomous driving advances rely heavily
on the CCAM infrastructure. Therefore, we identified sensory infrastructure, integration
platforms, and communication interfaces for interconnections between components of the
infrastructure. In addition, we parameterized the road and network infrastructures for
advancements and evaluations under various conditions. The CCAM solution approach is
validated by a set of experiments, which considered machine learning algorithms, i.e., linear
regression model, gradient boosted regression model, and random forest linear regression
model, for vehicle count (for road traffic analysis), mobility monitoring (for parking spaces),
and WiFi devices count (for foot traffic analysis) using the external information.

The results, in the form of an accuracy metric, obtained by the above experiments for
vehicle count predictions and WiFi device count predictions, are provided as follows: the
linear regression model resulted with 65% accuracy, the random forest linear regression
model resulted with 93.8% accuracy, and the gradient-boosted regression model resulted
with 94.3% accuracy for vehicle count predictions; the linear regression model resulted
with 41.8% accuracy, and the gradient boosted regression model resulted in 91% accuracy
for WiFi devices count predictions. Hence, the traffic count patterns, traffic intensity, traffic
flow density, foot traffic analysis, and mobility monitoring and management requirements
can be accurately predicted given the right external information about traffic features
and condition. Our goal is to make roads of United Arab Emirates University smarter
by deploying our solution approach for augmented CCAM infrastructure. Therefore, we
plan to find inter-stakeholder relationships and smarter collaborations between CCAM
(on-road) and vehicle (on-board) infrastructures. Consequently, these relationships and
collaborations will introduce new challenges and ask for new effective solutions from the
relevant stakeholders, research communities, and industry.
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