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ABSTRACT Iron deficiency in plants causes iron chlorosis which frequently occurs in soils that are alkaline
(pH greater than 7.0) and that contain lime. This deficiency turns affected plant leaves to yellow, or with
brown edges in advanced stages. The goal of this research is to use the deep learning model to identify a
nutrient deficiency in plant leaves and perform soil analysis to identify the cause of the deficiency. Two
pre-trained deep learning models, Single Shot Detector (SSD) MobileNet v2 and EfficientDet D0, are used
to complete this task via transfer learning. This research also contrasts the architecture and performance of
the models at each stage and freezes the models for future use. Classification accuracy ranged from 93% to
98% for the SSD Mobilenet v2 model. Although this model took less time to process, its accuracy level was
lower. While the EfficientDet D0 model required more processing time, it provided very high classification
accuracy for the photos, ranging from 87% to 98.4%. These findings lead to the conclusion that both models
are useful for real-time classifications, however, the EfficientDet D0 model may perform significantly better.

INDEX TERMS CNN, iron chlorosis, plant disease, transfer learning.

I. INTRODUCTION
For early recognition of nutrient deficiency Aleksandrov [1]
proposed an Artificial Neural Networks (ANN) approach
based on chlorophyll fluorescence data. By exposing a leaf
to the light of a certain wavelength and calculating the quan-
tity of light emitted at longer wavelengths in response, the
fluorescence yield may be calculated [2]. It would be diffi-
cult sometimes to extract features by following this method
because not all molecules are fluorescent. An experienced
farmer would know if there were any nutrient deficiencies in
the plants by having a look at the leaves. With the goal to
make a model that would have a farmer’s eye, scientists came
up with a methodology that involves feature extraction using
digital image processing [3], [4]. A study [5] developed a
system that would identify a nutrient deficiency in fruit plants
using a dataset with digital images of fruits.

A plant should not have too little or too much of iron
as it is a micronutrient. If the plant receives too much iron,
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it becomes iron toxic. Classic symptoms of iron toxicity are
leaf discoloration (bronzing) and a stunted root system [4].
The ability to identify iron deficiency requires a dedicated
eye. We need to address the question ‘How to train an AI
model which will be able to identify iron chlorosis?’. So, the
idea itself is interesting to train a model that can successfully
classify the outcome. The results of this study will help
farmers with a lack of knowledge regarding various plant dis-
eases. Remote farming emphasizes remote robot control and
remote field monitoring in addition to the use of information
and communications technology (ICT) to increase production
efficiency and cut expenses [6]. This research will also have
a direct influence on the business of remote farmers. Remote
farmers that cannot visit farms on a daily basis can depend
solely on digital photos of plants to monitor the business.

Often, iron deficiency is not a direct result of a lack of
iron in the soil. A variety of soil conditions may affect the
availability of iron to plants. Conditions such as high soil
pH, high soil moisture, low temperatures, high phosphorus,
and high concentrations of competing elements, such as zinc,
calcium, and manganese, may reduce the availability of iron
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to plants. Therefore, applying iron without considering soil
conditions might not help in correcting the deficiency. Our
test is important because before doing Alexandrov’s test we
need to be sure which nutrient is actually missing in the soil.
For example, in remote farming, if iron deficiency can be
predicted in the soil prior to the soil test, then a short-range
soil test will be sufficient. Once the proposed model iden-
tifies the lack of iron in leaves, we can proceed with soil
analysis to identify which conditions are the reasons for iron
deficiency. The aim will be to work on datasets consisting
of digital photos of plant leaves. The first iteration involves
a training model to identify leaves. The following iterations
involve training the model to distinguish between healthy and
diseased leaves. Once this is done, the next iterations will
involve training it to identify iron-deficient plants.

II. LITERATURE REVIEW
For years, scientists have been researching the standardiza-
tion of laboratory techniques for soil analysis [7]. While they
provided the most concrete insights on identifying nutrient
deficiencies, Aleksandrov [1] proposed a new way to deter-
mine plant illness through the analysis of the rapid fluores-
cence of chlorophyll α. In their research, bean plants were
grown on a nutrient medium and compared with another
medium. The second medium leaks either nutrients like N,
P, K, which are required in large quantities (more than a
thousand mg/kg), or micronutrients like Fe, Zn which are
needed in small quantities (less than a hundred mg/kg). The
deficiency was evaluated by the stress response of plants
estimated by leaves’ ‘‘Photosynthetic Activity’’ which was
estimated by analyzing chlorophyll fluorescence. For the pur-
poses of this study, plants’ immediate fluorescence signals
were examined, and the signals served as input data for a
neural network. However, in the training period, a Hoagland
nutrient solution was needed to preprocess the sample plants.
Also, the temperature was given along with a pH level of
5 and a photoperiod circle of 16/8 (Day/Night) in the training
period. The plants were grown in dark glass pots. Solutions
were supplied with oxygen by electrical pumps which had
to be replaced every two days. If we take remote farming
into consideration where some or all parameters are different,
the training period can be over a week, therefore making the
process difficult for the farmers.

Because the study of chlorophyll fluorescence discussed
previously is nearly impractical for remote farming, we need
the help of other branches of science to make it possible to
diagnose the disease from a distance. Several research was
already being conducted by scientists where the approachwas
to use artificial neural networks to sample images and outline
plant diseases. Back in 2017, a reliable deep-learning-based
method for the identification of illnesses and pests in tomato
plants was proposed by Fuentes et al. [8]. They integrated
each of the deep feature extractors—Visual Geometry Group
(VGG) net and Residual Network (ResNet)—with region-
based Convolutional Neural Networks (R-CNN), Region-
based Fully Convolutional Networks (R-FCN) and Single

Shot Detector (SSD) as deep learning meta-architectures.
Their method was able to distinguish between nine distinct
pests and illnesses. To identify and categorize grape leaf
disease, Kothawale et al. [9] employed image processing
techniques and the Support Vector Machine (SVM) classifier
approach. On 90 photos of both healthy and damaged grape
leaves, they trained their algorithm. They got an output result
with an accuracy of 89.90%. Using photos of tomato leaves
and two pre-trained deep learning algorithms (AlexNet and
VGG16 net), Rangarajan et al. [10] classified tomato crop
illnesses (6 diseases and a healthy class). For the VGG16
net and AlexNet, they obtained classification accuracy of
97.29 and 97.49 percent, respectively. In the same year, Horea
and Mihai [11] provided a fresh, high-quality dataset with
55244 photos of fruits divided into 81 distinct groups. They
also tested with deep neural network fruit recognition. Fruit
frames were then retrieved from the video after the fruit’s
dataset had been rotated for filming. For various network
configurations on the dataset, they got diverse results; they
got a maximum training accuracy of 99.42 percent and a
maximum test accuracy of 96.52 percent. In 2019, Francis
and Deisy [12] published a paper demonstrating usage of
convolutional neural network to detect and classify plant
diseases. Four convolution layers each followed by a pooling
layer were proposed where two fully connected dense layers
and a sigmoid function were used. As a result, a previous
overfitting problem was successfully removed, setting the
dropout value to 0.2. The researchers managed to achieve
an accuracy of 87%. However, they confessed that bringing
change in the architecture might result in higher accuracy.
Their model supported parallel processing, so a Graphics
Processing Unit (GPU) can be used to increase the speed
and accuracy. In 2020, a new family of object detectors
called EfficientDet was introduced. Tan et al. [13], in his
paper, proposed a weighted bi-directional feature pyramid
network (BiFPN), which allows easy and fast multi-scale
feature fusion. In the same year, Younis et al. [14] used Single
Shot Detector (SSD) architecture combined with Mobilenet
to detect objects and got an average precision of 99.7 percent.
These two studies conducted in the same year require an
in-depth comparison.

In general, there are two ways to train a deep neural
network: either from scratch on the desired dataset, which
is referred to as ‘‘training from scratch,’’ or by adopting an
existing network that has been pre-trained and retraining it
on the desired dataset while making some modifications,
which is referred to as ‘‘transfer learning.’’ To appropriately
restrict optimization, deep neural networks must be trained
with millions of parameters and millions of samples [15].
This has led researchers to adapt pre-trained networks to the
desired task domain with domain-specific data by means of
transfer learning, which applies the knowledge learned from
one problem to another, different but related problems [15].
Training these networks from scratch requires large amounts
of training data and high computational resources. The trans-
fer learning approach was selected to fine-tune the model

46950 VOLUME 11, 2023



M. Majdalawieh et al.: Using Deep Learning Model to Identify Iron Chlorosis in Plants

FIGURE 1. Proposed methodology.

parameters of diagnosing iron deficiency in plants since the
dataset utilized for this job in this article is not a very
huge dataset to train a deep neural network from scratch.
So, two pre-trained COCO-Tensorflow object identification
models [16] for deep learning, labeled SSDMobileNet v1 and
EfficientDet is used. For the identification of plant nutrient
deficiency considering these two pre-trained models, we will
use the concept of transfer learning and retrain those models
using datasets of leaves and compare speed with average
precision. The goal of this research will be to identify nutrient
deficiency and freeze the models for future use. Also, the
focus will be to contrast the architecture and performance of
the models at each stage.

III. METHODOLOGY
The suggested approach for identifying and classifying plant
deficiencies accepts input in the form of pictures represented
by a 3D matrix. Images are scaled, labeled, and then run
through the model during the data pre-processing step. The
model is trained using photos of leaves in various field con-
ditions and two object identification models as base models:
SSD Mobilenet v2 and EfficientDet D0. All the photos of
healthy and deficient leaves are collected from the Google
image database. The dataset is evaluated after training. Data
validation occurs during the evaluation process. Bothmodels’
parameters are adjusted, training is repeated until it improves,
and the evaluation is then sent to the classifier. For the
leaves that are used for detection and classification, the model
categorizes the labels. The proposed system methodology is
shown in Figure 1.

IV. ARCHITECTURE
A. SSD MOBILENET V2
In 2016, Liu et al. [17] introduced this object-detecting
method called Single Shot Detector (SSD). This is based
on feed-forward CNN [18]. SSD combines the principles of
various networks, including RPN in faster R-CNN, YOLO,
and multi-scale CONV features, to produce quick detection

FIGURE 2. SSD network structure [20].

FIGURE 3. MobileNet v2 architecture [23].

speeds while preserving excellent detection quality [17], [19].
It produces a fixed-size collection of bounding boxes that
scores for the presence of object class instances in the boxes.
SSD combines single-stage regression prediction ideas and
anchoring mechanisms by using VGG as the base feature
extraction network. Figure 2 illustrates the network structure.

The base network contains a truncated version of VGG16
which will be used for image classification. The advantage
is that the operation speed is improved while maintaining the
accuracy of detection.

A convolutional neural network design calledMobileNetV2
[21] aims to function well on mobile devices. It is built on
an inverted residual structure where the bottleneck layers are
connected by residual connections. Lightweight depth-wise
convolutions are used in the intermediate expansion layer
as a source of non-linearity to filter features. The design of
MobileNetV2 includes a 32-filter initial fully convolution
layer as well as 19 additional bottleneck layers. Figure 3
provides an illustration of the architecture. It performs sig-
nificantly better than many other well-known models. Fol-
lowing 1 × 1 convolutions, which aggregate these filters
into a collection of output features, depth-wise separate
convolutions first apply a single filter to each input to filter the
input data. These depth-wise separable layers essentially do
the same task as conventional convolution layers, but signifi-
cantly more quickly and with a small variation. For this study,
on the COCO (Common Objects in Context) dataset [22],
a Single Shot Multibox (SSD) model with the MobileNet
detector and classifier have been coupled. To perform direct
regression prediction, the detector will adopt full convolution,
ultimately improving the speed. However, in some cases,
it might conduct a false detection. For this reason, we will
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FIGURE 4. EfficientDet D0 architecture [26].

adopt the second and comparatively latter network which is
Efficientdet D0.

B. EFFICIENTDET D0
The second model used is a lightweight, scalable detection
network known as EfficientDet [24]. The accuracy and tem-
poral complexity of the model grows with model size from
D0 to D7. The eight models may accommodate a variety
of resource limitations. EfficientNet [25], which uses a lot
of deep separable convolution to make the model lighter,
is the foundation of EfficientDet. Additionally, the network’s
neck section makes use of a bidirectional weighted feature
pyramid network (BiFPN). After the BiFPN, a class and box
prediction network processes all the fused data to identify and
indicate flaws. The network’s structure is seen in Figure 4.
Depending on the size of each model, the BiFPN, box, and
class prediction networks will be iterated several times. The
eight EfficientDet models are composed of different-sized
backbones, BiFPNs, and prediction networks and can adapt
to various computing resources. One of the base models that
we’ll adopt is the D0 architecture.

V. DATASET PREPARATION
A. IMAGE PRE-PROCESSING
According to Li et al. [27] image pre-processing serves two
purposes. The first is to improve image quality to ensure
sharp contrast and remove noise. Examples of this include
using techniques like histogram equalization and grey scale
transformation to enhance contrast and median filtering and
adaptive filtering to remove noise. The second step is to
segment the picture to make feature extraction easier, such
as threshold, edge, and area segmentation. The flow of this
procedure is shown in Figure 5.
To build the experiment dataset, more than 100 sample pic-

tures were collected from the internet. Pictures were picked
to train the model after several blurred, dusty, and hazy exam-
ples were removed. Images that contained obscured light
were avoided because those would be reduced into smaller
resolutions in the data augmentation section. By doing so,
the system meets computational requirements. Some sample
picture data that were used to train the model are shown in

FIGURE 5. Image pre-processing flow [27].

FIGURE 6. Sample images of leaves (Healthy leaf on the left, Iron
deficient leaves on the right).

TABLE 1. List of labels.

Figure 6. An open-source graphical image annotation appli-
cation named Labelimg was used to label and annotate the
test pictures [28]. As XML files, the annotations were stored.
After that, CSV files were created from the XML files. The
tfrecord format was created from the CSV files. To train the
CNN models, the tfrecord files were utilized as input data.

The tree leaves utilized in this experiment were labeled
or categorized in Table 1, along with the leaf parts that
were stained. A single class object was used to detect iron
chlorosis, while a different class was used to identify the
discolored areas.

B. DATA AUGMENTATION
As the inputs for the training, the photographs were reduced
to 300 × 300. With little information loss, this size can lower
the computational requirements for training. The dataset was
then expanded to include more photos and make it ready
for K-fold cross-validation. The following operations were
targeted during data expansion: rotation, horizontal flip, ver-
tical flip, scaling, and tangential transformation. By doing
so, CNN would be able to pick up more invariant visual
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FIGURE 7. A sample image of leaf after data augmentation.

FIGURE 8. Capturing objects for ‘healthy’ class.

characteristics without over-fitting. Figure 7 shows nine
versions of an image after applying data augmentation.

C. LABELING IMAGES
After importing and installing the dependencies, two classes
were made. A package called LabelImg [28] is used to per-
form the labeling. On each training data, several object boxes
were captured and included in either the ‘‘healthy’’ class or
in the ‘‘deficient’’ class. Figure 8 exhibits two object boxes
for the class ‘‘healthy’’.

It is possible to capture several boxes in one image. The
package has the following dependencies: pyqt5 and lxml.
After labeling each object box, a matching annotation file
will be generated for each image. The models will look into
specific folders for both the images and the annotations.

VI. EXPERIMENTAL RESULT AND DISCUSSION
To leverage a custom OD model fine-tuning or training a
new computer vision model is needed. The most important
dependency is TensorFlow model garden [29] which ensures

FIGURE 9. Accuracy and Loss graph of SSD Mobilenetv2.

FIGURE 10. Accuracy and loss graph of EfficientDet D0.

TABLE 2. Speed and mean average precision score of several pretrained
models.

State-Of-The-Art (SOTA)models are invoked. GPUwas used
instead of CPU in the training of the model. The first model,
SSD Mobilenetv2 was taking approximately 22 milliseconds
to process each object box. Before fine-tuning, 10 epochs
were run after adding a classifier on top of the convolution.
The first 10 epochs were conducted on the top-level classifier.
Doing so, a 93.6% accuracy was obtained. The rest of the
iterations were conducted while weights of the pre-trained
network were updated. The model was training faster but it
was taking more steps to increase a little bit of accuracy.
There are 154 layers in the base model and the top 54 layers
were fine-tuned. The final accuracy was approximately 98%.
Figure 9 illustrates epoch accuracy and loss after 9821 itera-
tions where the gray line indicates the train, and the orange
line indicates validation.

The second model, efficientdet D0 took relatively more
time to train than the previous model. Despite completing the
first 10 epochs with an accuracy of 87.2% which is less than
the previous model, it obtained slightly higher accuracy in the
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FIGURE 11. Result of detection (Model: SSD Mobilenetv2).

FIGURE 12. Result of detection (Model: EfficientDet D0).

validation phase (98.4%) and reduced loss ratio. The number
of layers in the base convolutionwas 237 and the top 37 layers
were fine-tuned. Figure 10 shows the accuracy and loss graph
where the orange line indicates the training phase and the blue
line is the validation phase.

After the training is done, the mean average precision is
calculated for both models. The number of true positives is
divided by the summation of true positives and false positives
to calculate the precision. True positive means the model is
successfully detecting the leaves whereas the false positive
refers to the identification of wrong objects. It shows the ratio

of correct and wrong detection. SSD mobilenetv2 obtained
mAP score of 22 and a speed being 22.2ms. Figure 11 shows
SSD mobilenetv2 detecting nine sample images.

When the same amount of image was provided to the sec-
ond model, Efficientdet D0, the processing time was slightly
longer, 39ms. The mAP score, on the other hand, was also
better, being 33.6. This proves if a model detects an object
faster, it will have lower accuracy and vice versa. Figure 12
illustrates nine more images successfully detected by the
model. In Table 2, the properties of some pre-trained models
along with discussed models are illustrated. Efficientdet D0
has better precision than several popular models.

VII. CONCLUSION AND FUTURE WORKS
Real-time iron deficiency detection is performed with images
that were collected from the internet. The work in this paper
was conducted on two pre-trainedmodels- SSDMobileNetv2
and EfficientDet D0 using Tensorflow object detection API.
After training the models on the same datasets, they had
speeds of 22.2ms and 39ms respectively. Despite the SSD
Mobilenetv2 being a slightly faster convolution, it has a lower
precision (COCO mAP: 22). On the other hand, despite tak-
ing more time on training, EfficientDet D0 was more precise
in detecting the class of image. It is concluded that both the
models are usable in the real-world scenario but EfficientDet
D0 will have leverage over SSD mobilenetv2 because of
having a higher COCO mAP score.

The pre-trained models used were box-based detection
systems. But a leaf is commonly round or oval. So, when
the object boxes were prepared, 30-35% of the space of the
box was occupied by the background. So, the chances of
having background noise were high. There are some other
pre-trained models which are based on masks and key points.
Using those convolutions might result in higher accuracy
in the training phase. Also, the images of the leaves were
generalized, meaning there are 2 classes implemented in total
in this research. Future work may include categorizing all
plant species. Then the number of total classes become two
times higher, one each for healthy and deficient leaf. Also,
we have used GPU for all the tasks executed. A TPU (Tensor
Processing Unit) may be used, and performance may be
compared with that of a GPU in the future for this specific
dataset.
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