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B W N e

Abstract: This study aimed to investigate whether there are structural differences in the brains of
professional artists who received formal training in the visual arts and non-artists who did not have
any formal training or professional experience in the visual arts, and whether these differences can
be used to accurately classify individuals as being an artist or not. Previous research using functional
MRI has suggested that general creativity involves a balance between the default mode network and
the executive control network. However, it is not known whether there are structural differences
between the brains of artists and non-artists. In this study, a machine learning method called Multi-
Kernel Learning (MKL) was applied to gray matter images of 12 artists and 12 non-artists matched
for age and gender. The results showed that the predictive model was able to correctly classify
artists from non-artists with an accuracy of 79.17% (AUC 88%), and had the ability to predict new
cases with an accuracy of 81.82%. The brain regions most important for this classification were the
Heschl area, amygdala, cingulate, thalamus, and parts of the parietal and occipital lobes as well as the
temporal pole. These regions may be related to the enhanced emotional and visuospatial abilities that
professional artists possess compared to non-artists. Additionally, the reliability of this circuit was
assessed using two different classifiers, which confirmed the findings. There was also a trend towards
significance between the circuit and a measure of vividness of imagery, further supporting the idea
that these brain regions may be related to the imagery abilities involved in the artistic process.

Keywords: magnetic resonance imaging (MRI); visual arts; creativity; supervised machine learning;
artists; gray matter; multi-kernel learning; imagery

1. Introduction

Creativity is one of the cognitive processes that allows humans to make art, and
it drives cultural and technological progress in our society [1-5]. In addition, creative
ability has an important role in individual subjective well-being at any age [6-8] since
it has therapeutic value [9] and is a predictor of academic success [10] as well as artistic
prowess [11]. The artistic process functions as a cohesive communicative system. It conveys
cultural, emotional, and aesthetic information, often through symbolic means which are
culturally and context-specific [12]. Visual art, including drawings and sculptures, is a
particularly important form of creative expression that has a long history dating back to (at
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least) the Upper Paleolithic period [13,14]. There is rich evidence of its practice across all
cultures and, diachronically, throughout human history.

Because of these factors, visual art is a particularly interesting subject for the study of
the cognitive and neural processes underlying creativity. The science of creative cognition
has traditionally focused on the study of behavior, including convergent and divergent
thinking [15,16]. Over the past few decades, the literature has branched out by shifting the
focus to a more complex construct of creativity [17,18], accounting for the many different
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manifestations of creativity and the enormous variability in the capacity of being creative
among individuals. Since then, an increasing number of studies have made considerable
progress, applying neuroimaging techniques to explore how creative thinking is manifested
in the function and structure of the brain [17,19,20], with a growing interest in studying
specific domains such as the visual domain (e.g., [21-23]). However, creativity research
has been identified as a critically poorly studied field in neuroscience [24], and the dif-
ferences in human brain anatomy underlying visual artistic creativity have only scarcely
been examined [25-28].

Most previous research on the neurocognitive processes of creativity has used func-
tional magnetic resonance imaging (MRI) to observe brain networks and identify spatially
distributed brain regions that show a specific pattern of activity during rest or creative
tasks [29]. Several studies have consistently identified a pattern of functional connectivity
between two major large-scale brain networks, the executive control (ECN) and default
mode (DMN), during creative performance [23]. The ECN mainly encompasses lateral
nodes of the dorsolateral prefrontal cortex (DLPFC) and posterior parietal regions [30].
The ECN activation has been found to mediate planning and abstract reasoning, including
the capacity to enable the retrieval, retention, inhibition, integration, and evaluation of
mental representations [31-35]. The ECN has been shown to play a significant role in visual
generative processes [21-23]. In contrast, the DMN was found to be active in the absence
of current external stimuli and linked to highly integrated and complex behavioral func-
tions, including self-referential or spontaneous thought, such as mind-wandering, episodic
and semantic memory, as well as visual-spatial information and visual imagery [36-38].
These processes, fundamental to visual creativity, are mainly mediated by regions within
the medial prefrontal cortex (MPFC), the posterior cingulate cortex (PCC), the temporal
lobes (TL), the precuneus, and the temporoparietal junction (TPJ) [38]. Recent studies
have found that TL activates during drawing tasks [21,39]. Activation in the left anterior
hippocampus of the TL has been linked to the formation of novel conceptual combina-
tions [40]. A recent meta-analysis [41] found that drawing creativity unveiled a variety
of significant activations related to visual imagery and motor control, including but not
limited to the inferior parietal lobule (IPL), the superior occipital gyrus (SOG), and the
middle and inferior frontal gyrus (IFG). Together, these findings indicate that regions such
as the cingulate and parietal, occipital, and temporal regions within the DMN and ECN
support visual creativity and imagery processes that are known to be shaped by expertise
and training.

An interesting aspect of visual creative ability is the differences that exist between
individuals, such as experts and non-experts. Creative individuals build on existing knowl-
edge to form novel conceptual associations [42]. For instance, visual imagery, drawing
skills, and abilities in fields such as science or sports can all be improved with expertise
and training. This is because the brain has a strong capacity for plasticity, meaning it can
constantly change its structure and function in response to the environment [43].

However, studying experts or individuals with training in art may not be the same as
studying professional artists who have been recognized by critics and experts in their field.
Professional artists may possess more developed and unique creative skills that may not be
present to the same extent in other skilled or trained individuals. Our group previously
conducted one study comparing the brains of professional artists, recruited in collaboration
with a museum of contemporary art, to non-professional artists using functional MRI. The
results showed that professional artists had enhanced connectivity between regions of the
DMN and ECN compared to non-professionals [23].

However, despite functional differences, it is also interesting and important to consider
whether the brain structure of artists is different from that of non-artists. There have been
relatively few studies on the structural differences between professional artists and non-
artists. Most research in this area has used functional MRI to examine the creative process
in non-professional artists as a state-level variability. However, brain morphology is known
to organize much of the functional activity observed with functional MRI [44]. Therefore,
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measuring brain structure, which is thought to underlie functional neural signals and
behavior [45,46], is an appropriate way to investigate differences between individuals at the
trait level. Such differences could reflect neural plasticity, in terms of expertise developed
over years of practice, or also pre-existing neural predispositions towards certain artistic
activities, or “talent” [47,48].

Previous studies have explored the relationship between visual artistic creativity
and brain anatomy. Several studies have applied major emphasis on the study of brain
injuries [14] and suggested that visual creativity is mainly mediated by the right lateral
prefrontal cortex [49], the right neocortex [50], the left ventral thalamus [51], the bilat-
eral frontal temporal lobe, the anterior hippocampus, the bilateral temporal pole, the
inferior temporal gyrus, MTG, and the left amygdala [52]. This line of research has led
to inconsistent findings, and advances in neuroimaging techniques have given new in-
sights on structural patterns of the creative brain, measuring regional gray and white
matter (e.g., [20,53-55]).

To date, only a few studies have examined how structural connectivity relates to visual
creative capacities [25-27]. A recent study by Schlegel and colleagues [27] demonstrated
a reorganization of prefrontal white matter in the artist compared to the control group.
Another study has identified a positive relationship between artistic training and gray
matter density in the cerebellum and medial frontal gyrus (MFG), and particularly in the
right precuneus [25].

More recently, Shi and colleagues [26] compared artistic and scientific creativity, as
assessed by the Creative Achievement Questionnaire, to gray volumetric matter (GMV)
measures. The authors found that artistic creativity was negatively associated with GMV
within a core region of the Salience Network, the anterior cingulate cortex (ACC) and
SMA, whereas scientific creativity was positively associated with the ECN and semantic
processing regions. Finally, a recent study used voxel-based morphometry (VBM) to
identify different behavioral and brain mechanisms between art major students and non-art
major students by using the figural Torrance Test of Creative Thinking. The authors found
a correlation between figural scores and GMYV of the left ACC and the left MFG [28]. These
findings suggest that brain structure may play a role in our understanding of visual creative
cognition and mental imagery. Although there have been a few morphometric studies
conducted on this topic, they are relatively recent and limited in number, and a definitive
conclusion has not yet been reached. Therefore, more extensive research is needed to gain
a comprehensive understanding of the anatomical foundation of visual creativity.

While there are several mental abilities that can differentiate visual artists from non-
artists (such as emotional sensitivity, visual memory, motor abilities, etc.), these aspects are
beyond the scope of this study; rather, the specific purpose of this study is to determine
whether there are structural differences in the brains of professional artists compared to
non-artists, and whether these differences can be used to classify individuals as artists or
non-artists. To the best of our knowledge, no previous study has examined these structural
differences between professional artists and non-artists. Despite some progress in this
field [25-28], studies exploring whether differences in brain morphology characterize visual
artistic creativity and mental imagery are lacking. In the present study, we capitalized on
the previous study [23] by analyzing the same participants but focusing this time on the
structural properties of the brain, e.g., gray matter (GM) volume.

In addition to univariate approaches, such as voxel-based morphometry, machine
learning techniques, also known as multi-voxel pattern analysis (MVPA) in the context of
neuroscience, can be used to reveal important insights into brain activity and structure.
MVPA is inherently multivariate, taking into account information from multiple voxels and
being sensitive to spatially distributed effects [56], thus allowing a better categorization
of whole-brain distributed networks. Importantly, supervised machine learning (SML)
can be used to predict continuous or categorical data, for example, separating patients
from healthy individuals [57-60], or specific categories of individuals, thus enabling the
discovery of specific functional or structural features that separate one category from the
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other. As such, SML techniques build high-dimensional classifiers based on multivariate
methods that assess multiple voxels within the brain space [59,61].

One algorithm used in supervised machine learning is Multiple Kernel Learning
(MKL), which is a sparse machine learning method that identifies the most relevant features
for classification. MKL is a form of Support Vector Machine using kernels to implement
a priori anatomical knowledge, reduce computational complexity, and avoid overfitting.
As such, MKL can make predictions based on anatomical localization and determine the
most important brain regions contributing to group classification through a hierarchical
model that estimates the weight contribution of each region to the model [62]. This
algorithm allows us to estimate the contribution of each area in a whole-brain approach. The
estimation follows a hierarchical organization from the most important region contributing
to the model (in terms of explained variance) to the least important regions. By considering
the most important regions, a “brain circuit” that mostly enables the statistical model
to correctly classify and predict the groups (labels) of interest can be outlined. Another
advantage of supervised machine learning models is that their ability to generalize to
the general population is not assumed, but rather empirically tested through predictive
accuracy. This means that these models can be used to predict new, unobserved cases.

We expect that professional visual artists will have developed more efficient brain
function in areas involved in planning and creating artworks, since they are trained for
years in complex tasks entailing decision making such as selecting, evaluating for visual
saliency, comparing, rendering, and simplifying. Nine out of twelve participants, in fact,
were trained in formal artistic education (art school and/or academy), which is a three-
to four-year course of study teaching the fundamentals of visual elements such as color,
form, line, shape, space, texture, and value. Typically, students have to master sketching,
drawing, and painting from real models, understanding and rendering proportions, color,
and tone and mastering pencil control, brush strokes, modeling, building, and shaping
three-dimensionally in different materials. Self-taught artists practice the same skills,
although in their own time and through a less structured approach.

Therefore, the areas that we focused on are the parietal regions, and areas related to
visual and imagery abilities such as the occipital lobe and thalamus, as well as semantic
areas such as the temporal lobe. These areas are also included in the ECN and DMN. This
would provide further evidence for the role of these networks in the creative process as
demonstrated by professional artists. In addition, we predicted that professional artists
would show brain structure differences in emotion-related areas such as the amygdala,
basal ganglia, and cingulate. Artistic products are often thought to convey emotions in the
viewer [63], and we expected that professional artists would have structural changes in
these areas due to their heightened emotional sensitivity.

To further investigate the relationship between the brain circuits that distinguish pro-
fessional from non-professional artists, we included a measure of the vividness of imagery
in our analysis. Our choice of measure was purely explorative, and it was informed by
studies which found significant relationships between image vividness and visual art
involvement, as well as spatial abilities and mental synthesis tasks [64,65]. We used the
Vividness of Visual Imagery Questionnaire (VVIQ-2) to assess the vividness of imagery in
both professional artists and control participants. We expected to find a positive correla-
tion between the imagery measures and brain structure, based on previous results using
different tasks and measures.

2. Materials and Methods
2.1. Participants

This study included a sample of 24 participants. The experimental group consisted
of 12 professional artists who were recruited with the assistance of the Museum of Mod-
ern and Contemporary Art (MART) in Rovereto, Italy. The control group consisted of
12 non-artists who were not involved in artistic activities and were recruited through local
advertisements. To ensure that the control participants did not have any involvement in
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visual artistic activities, we asked them before the study if they were professional artists or
had any involvement in visual arts, and they confirmed that they did not. Additionally,
in the previous functional study with these same participants [23], all participants were
required to make a drawing after the MRI session. This allowed us to verify that none of the
control participants had any graphical or drawing ability at a professional level. The two
groups were matched for age (mean age of artists = 30.9, mean age of non-artists = 29.76,
p = 0.58) and gender (4 female artists, 8 male artists; 6 female non-artists, 6 male non-artists,
p = 0.43). All participants were right-handed and had no history of psychiatric or neuro-
logical disorders. This study was approved by the University of Trento Ethics Committee
and all participants provided informed consent. Moreover, the participants consented to
be included in a museum exhibition detailing the anonymized experiment findings and
the resulting sketches and artworks (In Resonance: Snapshots of Creativity in the Brain.
MART, Rovereto, Italy) [66]. They received reimbursement for travel expenses. As a further
incentive, their work was featured in the forenamed exhibition and its illustrated catalogue.

2.2. Imagery Questionnaire

All participants were screened using the Vividness of Visual Imagery Questionnaire
(41), a self-assessment of visual imagery ability. Participants were asked to rate their
experience of visual imagery on 16 questions, ranging on a scale from 1 to 5, where
1 signified “Perfectly clear and as vivid as normal vision” and 5 represented “No image at
all (only “knowing” that you are thinking of the object)”.

2.3. Brain Data Collection

Participants were screened for MRI compatibility by a medical doctor, and if suit-
able, took part in the MRI scanning session. The scan consisted of both anatomical and
functional imaging data. Anatomical data were collected for the first 6 min of the session,
followed by functional imaging in the experimental session (please refer to [23]). Brain data
were acquired using a 4 T Bruker MedSpec Biospin MR scanner and a birdcage transmit,
8-channel radio-frequency head receiver coil. Head motion was restricted using foam
padding surrounding the head. T1-weighted anatomical scans (MP-RAGE; 1 x 1 x 1 mm?3;
FOV, 256 x 224 mm?; 176 slices; GRAPPA acquisition with an acceleration factor of 2; TR,
2700 ms; TE, 4.18 ms; inversion time (TI), 1020 ms; 7° flip angle) were acquired.

2.4. Preprocessing

The T1-weighted images were pre-processed through SPM12 (Statistical Paramet-
ric Mapping, https://www.fil.ion.ucl.ac.uk/) [67] and CAT12 toolbox (Computational
Anatomy Toolbox for SPM, http:/ /www.neuro.uni-jena.de/cat/) [68]. First, all the images
were re-oriented by placing the anterior commissure as the origin. Then, the segmentation
into gray matter, white matter, and cerebrospinal fluid was performed. The registration was
computed through Diffeomorphic Anatomical Registration using Exponential Lie algebra
tools for SPM12 (DARTEL) [69]. Finally, the normalization to the MNI space with a spatial
Gaussian smoothing of 10 was performed.

2.5. Supervised Machine Learning Procedure

The voxels belonging to the gray matter (GM) images of every subject were entered
into a Multi-Kernel Learning classification model (MKL), a form of Support Vector Machine
that relies on kernels to reduce computational complexity and reduce the possibility of
overfitting, as implemented in PRoNTo toolbox (version 2.1, http:/ /www.mlnl.cs.ucl.ac.uk/
pronto). To allow the classifier to learn the predictive function that separates the groups,
two categories were created: artists and non-artists (first step). Then, the GM images
were entered and paired with the correct labels. In a second step (feature extraction),
voxel-based values representing local GM volume were extracted from raw brain scans
and aligned as vectors and then transformed into similarity matrices (kernels) to avoid
the “curse of dimensionality problem”, allow a separation between classes, and simplify
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calculations [62]. MKL generates kernel matrices by using the GM voxels of every region
(as specified by the anatomical atlas selected). In other words, the kernels incorporate
anatomical a priori knowledge (not one general kernel matrix for the whole brain, but
116 kernel matrices, one for every anatomically specified brain region). This allows the
system to compute the contribution of every region to the statistical model in the end.
Kernel-based methods in machine learning have been shown to be valid methods enabling
high predictive accuracy [70], even in the case of relatively small samples [71]. In the
third step, the MKL was trained to associate the brains to their label categories to define a
decision boundary. MKL has been shown to enhance the interpretability of the decision
function and improve performance. Whole-brain analyses were performed using a general
mask provided inside PRoNTo. Data were mean-centered and normalized, and age and
gender were regressed out to avoid these potential confounds. The predictive function was
defined during a training phase where the algorithm learned patterns from the provided
data to predict a label (artist vs. non-artist). During a test phase, the algorithm was used to
predict outcome in an independent dataset. Given the small sample size, we decided to
use the Leave-One-Subject-Out (LOSO) cross-validation (instead of the k-folds method)
to allow for generalization to new cases. The dataset was partitioned into “training” (all
subjects minus 1) and “test” sets (the remaining subject). During the training phase, the
MKL learned mapping between brain features and labels (artist vs. non-artist) on the
training set. During the test phase, the learned function tried to predict the labels from the
test set [72]. This step was repeated 24 times so that every subject was used as a test. The
performance of the MKL was obtained by averaging the results from all the subfolds. Total
accuracy, balanced accuracy, and predictive accuracy were considered to assess the classifier
performance, as well as the area under the curve (AUC) of the receiver operator curve. The
AUC is a summary measure of classifier performance, where higher is better (1 represents
perfect performance, 0.5 represents random performance). In PRoNTo, the ROC and AUC
are estimated within each iteration and then averaged across all the iterations. AUC is
computed by using the proportion of true positive rates (TPR) against the false positive
rates (FPR).

Hyperparameters were optimized as suggested by PRONTO developers with soft-
margin C spanning 0.0001, 0.01, 1, 10, 100, and 1000 to compute the inner loop and
the outer loop (model performance). PRONTO distinguishes two loops in the cross-
validation scheme. The inner loop is used to train and test the model with each value of the
hyperparameter specified by the user. The parameter leading to the highest performance
in the inner loop (balanced accuracy for classification problems) is then used in the outer
loop. For each fold of the outer loop, the model is trained using the “optimal” value of the
hyperparameter and tested on the data that were left out.

Statistical significance of the classifications was estimated using 200 permutations
with random assignment of group class to input image. For each iteration, the classification
labels were randomly permuted across all participants and the cross-validation procedure
was repeated. In the fourth step, the contribution of every brain region to the statistical
model was computed. Of note, MKL is a whole-brain hierarchical model, meaning that the
statistical contribution of every region (segregated by the atlas) is estimated from the best
to the worst, i.e., regions are ordered according to the proportion of explained variance of
the effect, from largest to smallest. However, to provide insight on the main regions leading
to a correct classification, we consider only the regions with a percentage of contribution
to the model equal or superior to 1%. Surf Ice software was used to plot the brain maps
(https:/ /www.nitrc.org/projects/surfice/).

3. Results

The MKL returned a total and balanced accuracy of 79.17% (p = 0.024), with a class
accuracy of 75% for artists and 83.33% for non-artists. The class predictive value was
of 81.82% for artists and 76.92% for non-artists, and the AUC was of 88% (Figure 1A).
The model performance significantly exceeded the threshold of randomly guessing the
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labels, thus confirming that the algorithm successfully learned a predictive function [73]
that can be used to predict new unobserved cases. Although MKL is a whole-brain
estimation of the contribution of each of the 116 regions included in the atlas, we focus on
the regions explaining at least 1% of the variance. GM regions were identified according
to the Automated Anatomical Labeling (AAL) atlas (available on the WFU-PickUp Atlas
toolbox of SPM12, [74]), a manual macroanatomical parcellation of single-subject MNI-
template brain consisting of 116 brain regions. Regions with a larger contribution to the
model were in the following order of importance: the right Heschl area, the left superior
temporal pole, the left amygdala, the left mid-temporal pole, the left thalamus, the left
inferior parietal, the right posterior cingulate, the left pallidum, and the right superior
occipital areas. Cerebellar regions were also present but played a minimal role (below 1%).
See Figures 1 and 2.

0.8, Confusion matrix: all folds 1 (—Reosiver Oparstor Gurve / urve = 0.88
— ;
0.7 e CTRL. 08 i_ _____
08 1
0.8 -
o7y |
0.5 08
0.4 ga.a
0.3 é 0.4
03
0.2
0.2
01 o
a@ -2 1 L] 1 2 3 4 o 02 04 08 o8 1
function value Faise positives
ROI WEIGHT (%) ROI SIZE (VOX)
Cerebelum_Crus2_R Cerebelum_Crus2_R
Cerebelum_Crusl_ R | Cerebelum_Crus1l_R
Cerebelum_8_R | Cerebelum_8_R
Occipital_Inf_R | Occipital_Inf_R  mmnn
Vermis_1_2 Vermis_1_2
Vermis_10 Vermis_10
Occipital_Sup_L Occipital_Sup_L
Temporal_Pole_Sup_R 1| Temporal_Pole_Sup_R s
Olfactory_L 1 Olfactory_L
Temporal_Pole_Mid_R M Temporal_Pole_Mid_R |
Cerebelum_10_R ™ Cerebelum_10 R ™
Occipital_Sup_R Occipital_Sup_R
Pallidum_L — Pallidum_L
Cingulum_Post_R Cingulum_Post_R
Parietal_Inf_L Parietal_Inf_L I —
Thalamus_L Thalamus_L —
Temporal_Pole_Mid_L Temporal_Pole_Mid_L
Amygdala_L B Amygdala_L =
Temporal_Pole_Sup_L Temporal_Pole_Sup_L B
Heschl_R I— Heschl_ R Il
0 5 10 15 20 25 0 1000 2000 3000 4000 5000 6000

Figure 1. Performance of the MKL classifier and main regions contributing to the model. Multiple
Kernel Learning machine classification based on structural (GM) features. (A) Left, density version
of histogram plot of function values; center, confusion matrix; right, receiver operator curve, areas
under the curve = 0.88. ROI weights in percentage and in voxel size are displayed in the two bar
plots. (B) Bar plots with ROI weights (left) and voxel size (right) of the most predictive regions.
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Figure 2. Surface plot of the circuity that correctly classified artists vs. non-artists. At a cortical level
(upper part), the Heschl area, the temporal pole, the superior occipital, and parietal regions were
the main contributors to the predictive model. At a subcortical level (lower part), the amygdala, the
cingulate, the pallidum, and the thalamus were the most predictive regions. Note that cerebellar
regions are not displayed as their weight contribution was below 1%. The bar plot indicates ROI
weight values.

To provide additional evidence that the circuit found in the MKL classifier was truly
predicting being an artist, we re-ran the MKL classifier, this time removing the brain features
belonging to that circuit. To execute 