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Abstract: DNA methylation acts as a major epigenetic modification in mammals, characterized by the
transfer of a methyl group to a cytosine. DNA methylation plays a pivotal role in regulating normal
development, and misregulation in cells leads to an abnormal phenotype as is seen in several cancers.
Any mutations or expression anomalies of genes encoding regulators of DNA methylation may lead
to abnormal expression of critical molecules. A comprehensive genomic study encompassing all
the genes related to DNA methylation regulation in relation to breast cancer is lacking. We used
genomic and transcriptomic datasets from the Cancer Genome Atlas (TGCA) Pan-Cancer Atlas,
Genotype-Tissue Expression (GTEx) and microarray platforms and conducted in silico analysis of all
the genes related to DNA methylation with respect to writing, reading and erasing this epigenetic
mark. Analysis of mutations was conducted using cBioportal, while Xena and KMPlot were utilized
for expression changes and patient survival, respectively. Our study identified multiple mutations
in the genes encoding regulators of DNA methylation. The expression profiling of these showed
significant differences between normal and disease tissues. Moreover, deregulated expression of
some of the genes, namely DNMT3B, MBD1, MBD6, BAZ2B, ZBTB38, KLF4, TET2 and TDG, was
correlated with patient prognosis. The current study, to our best knowledge, is the first to provide a
comprehensive molecular and genetic profile of DNA methylation machinery genes in breast cancer
and identifies DNA methylation machinery as an important determinant of the disease progression.
The findings of this study will advance our understanding of the etiology of the disease and may
serve to identify alternative targets for novel therapeutic strategies in cancer.

Keywords: DNA methylation; epigenetic modification; breast cancer; genomics; in silico analysis

1. Introduction

Among the various types of epigenetic modifications of the genome, DNA methylation
is the first and highly characterized one that involves addition of a methyl group to the fifth
carbon of the cytosine residue at CpG dinucleotides [1–3]. DNA methylation is carried out
by the action of a group of enzymes called DNA methyltransferases (DNMTs), which are
also termed as writers of this modification and are conserved in various species including
bacteria, plants and mammals [4]. DNA methylation has a critical role in regulating the gene
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expression in various physiological processes; for example, in X-chromosome inactivation,
genomic imprinting, repetitive elements repression and silencing of potentially active
transposable elements [5,6]. Various techniques have been developed for detection of
DNA methylation, including sodium bisulfite conversion, methylation-sensitive restriction
enzymes and methylated DNA immunoprecipitation. The choice of DNA methylation
detection technique depends on several factors such as the scale of analysis (gene-specific
vs. genome-wide), the resolution required and the availability of resources [7]. While
methylation at the CpG sites is the most frequent one, recent studies in the brain and
embryonic stem cells have identified methylation beyond the CpG context [8,9]. Dynamic
regulation of genome methylation is a general attribute of early mammalian development
that is characterized by highly regulated methylation and demethylation of lineage specific
genes [10,11]. The dynamics of DNA methylation during early development necessitates
the high expression of DNA methyltransferases such as DNMT3A and DNMT3B, which are
de novo methyltransferases, and DNMT1, which is maintenance methyltransferase [12,13].

DNA methylation in gene promoters affects gene expression by regulating the re-
cruitment of methylated DNA binding proteins (MBPs), also called readers of DNA
methylation, which influence binding of transcription factor and overall chromatin struc-
ture [14]. Methyl CpG binding protein 2 (MeCP2) was the first methylated DNA binding
protein that was identified by its ability to bind DNA sequences when they are methy-
lated at CpG [3]. MeCP2 contains a methyl-CpG-binding domain (MBD) that comprises
70–85 amino acids [15] that was used to identify other proteins with methylated DNA
ability to bind [16]. To date, a number of methyl-CpG binding proteins have been identified
that are classified based on methylated DNA binding domains [17]. After binding to the
methylated DNA, MBPs relay the DNA methylation signal into various functional states
through interactions with diverse partners that eventually regulate gene expression by
specific mechanisms, such as chromatin organization and epigenome maintenance [18].

DNA methylation is considered relatively stable epigenetic modification compared
with most histone modifications; however, active loss of DNA methylation was mecha-
nistically described recently. The discovery of ten eleven translocation protein 1 (TET1)
and its ability to modify methylcytosine and remove methyl group from DNA provided
initial insights regarding active demethylation [19]. TET1 belongs to a family of three
enzymes namely TET1, TET2 and TET3, that are involved in the stepwise oxidation
of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC)
and 5-carboxylcytosine (5caC) [20,21]. These enzymes are collectively called “erasers” of
DNA methylation.

One of the hallmarks of cancer is the disruption of epigenetic profiles including DNA
methylation patterns. Abnormal DNA methylation is one of the most critical epigenetic
factors directly linked with tumorigenesis, because aberrant methylation can contribute
to transcriptional changes of tumor suppressors and oncogenes [22–24]. Disruption in the
activities of members of “readers”, “writers” and “erasers” of DNA methylation has been
reported [25,26]. DNA methyltransferases coordinate mRNA expression in normal tissue
and tumors [27]. Moreover, elevated expressions of DNMTs have been reported for hepatic,
prostate and breast cancers [28–31].

Although multiple reports that have focused on the role of one or a few regulators of
DNA methylation in cancer progression have significantly enhanced our understanding
of the role of this important epigenetic modification in cancer [32–34], to our knowledge
a comprehensive study that provides overarching molecular and genetic profile of DNA
methylation machinery is lacking. This study provides a genomic and molecular land-
scape of writers, readers and erasers of DNA methylation in breast cancer. The majority
of molecules show significant expression anomalies in breast cancer. Additionally, we
identify that deregulated expression of some of the molecules have prognostic potential in
breast cancer.
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2. Materials and Methods
2.1. Writers, Readers and Erasers of DNA Methylation

The genes coding for writers, readers and erasers of DNA methylation are listed in
Table 1. The list was compiled using data from earlier studies [17,35]. All the genes listed in
the table were used for mutational analysis, expression changes and patient overall survival.

Table 1. This is a table showing list of genes encoding for writers, readers and erasers used in
the study.

Category Gene Symbol Protein Function

Writer

DNMT1 Maintenance methylation

DNMT3A De novo methylation

DNMT3B De novo methylation

DNMT3L Assists the de novo methyltransferases

Reader

MeCP2 Methylated DNA binding

MBD1 Methylated DNA binding

MBD2 Methylated DNA binding

MBD3 Methylated DNA binding

MBD4 Methylated DNA binding

MBD5 Methylated DNA binding

MBD6 Methylated DNA binding

BAZ2A Methylated DNA binding

BAZ2B Methylated DNA binding

SETDB1 Methylated DNA binding

SETDB2 Methylated DNA binding

UHRF1 Methylated DNA binding

UHRF2 Methylated DNA binding

ZBTB33 Methylated DNA binding

ZBTB4 Methylated DNA binding

ZBTB38 Methylated DNA binding

ZFP57 Methylated DNA binding

KLF4 Methylated DNA binding

EGR1 Methylated DNA binding

WT1 Methylated DNA binding

CTCF Methylated DNA binding

Eraser

TET1 DNA demethylation

TET2 DNA demethylation

TET3 DNA demethylation

TDG DNA demethylation

2.2. Genetic Alterations

To identify mutations in various genes encoding DNA methylation regulators, we
utilized the Cancer Genome Atlas (TCGA) (https://www.cancer.gov/tcga, accessed on
10 April 2022) data using cBioportal [36,37]. Breast cancer datasets from multiple sources
are accessible at cBioportal. We selected the latest “TCGA Breast Invasive Carcinoma
(TCGA, Pan-Cancer Atlas)” dataset that consisted of 996 patient samples with copy-number
alterations (CNAs) and mutation data. Therefore, following genetic alterations were

https://www.cancer.gov/tcga
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identified in these 996 breast cancer patients’ datasets: (1) copy-number alterations (CNAs)
and (2) mutations.

2.3. Changes in the Transcriptome

We employed Xena to compare transcriptome changes between normal tissue and
breast cancer samples [38], which assimilates data from TCGA and GTEX to draw a
comparison [39]. The heat map was generated using the gene list in Table 1. After launching
Xena, all the genes in the list were incorporated. We selected the first variable phenotype
“main category” and “gene expression” as the second genomic variable. All the genes
encoding writers, readers and erasers of DNA methylation were incorporated to generate
the heatmap. The transcription changes in the individual genes were obtained from the
“view chart” tool to generate box plots that compare GTEX and TCGA breast cancer patients’
datasets. We used Xena specifically for generating heatmap and box plots because Xena
employs the same pipeline for TCGA and GTEx samples to eradicate batch effects [38].

2.4. Survival Analysis

The Kaplan–Meier Plotter [40] was used to generate Kaplan–Meier plots utilizing
multiple microarray expression datasets from 7462 breast cancer patients. For overall
survival (OS), the analysis was run on 2879 breast cancer patients that were split by median.
For the best probe selection, “Jetset” was selected, and patient survival was analyzed for
the indicated time spans [40].

3. Results
3.1. Mutational Analysis of DNA Methylation Regulators in Breast Cancer

In our previous study on the genomic analysis of TCGA datasets, we reported that
several genes encoding molecules related to nucleocytoplasmic shuttling were mutated [41].
In the current study, using cBioportal and selecting breast invasive carcinoma (TCGA, Fire-
hose Legacy) datasets, we carried out mutational analysis of the genes encoding proteins
corresponding to writers, readers and erasers of the DNA methylation. The characterization
of TCGA datasets using cBioportal led to the identification of various mutations in breast
cancer patients. The frequency genetic alteration for various genes differed markedly (rang-
ing from 0.6% in EGR1 to 11% in SETDB1) (Figure 1A) amongst various genes under study.
The most prevalent genetic alteration was found to be the gene amplification. Additional
mutations detected were deep deletions, base substitutions and multiple alterations. Inter-
estingly, alteration frequency in all the genes related to DNA methylation was found to be
in 371 (37%) of queried patients, representing significance of DNA methylation dynamics
(Figure 1), though with variable rates and mutation types, genetic alterations in these genes
were detected in all breast cancer subtypes. We used PIK3CA, TP53, CDH1 and GATA3
genes as controls to validate our analysis. Consistent with the literature, higher mutation
rates were found in these genes (Figure 1A). One of the olfactory receptor genes, OR5AL1,
with no known connection with breast cancer, was used as a negative control.

We stratified breast cancer patients into subtypes and analyzed mutation frequency.
Alteration frequency was variable depending on subtypes, and amplification was non-
existent in breast invasive mixed mucinous carcinoma (Figure 1B). Interestingly, the genetic
alterations in DNA methylation machinery were not specific to breast cancer. Querying
10,953 patients/10,967 samples in 32 studies from TCGA Pan-Cancer Atlas Studies identi-
fied comparable trends in mutations in the majority of cancers. This reveals that mutations
in the genes coding for writers, readers and erasers of DNA methylation span a spectrum
of cancers (Figure 2).
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Figure 1. Genes encoding writers, readers and erasers of DNA methylation show genetic alterations
in breast cancer. (A) Frequency of genetic alterations in these genes are in breast cancer patients.
Individual lines in the horizontal bars are 996 breast cancer patients. Color schemes in the figure
correspond to various genetic alterations including missense mutation, deep deletion, amplification,
in frame mutation and truncating mutations. PIK3CA, TP53, CDH1 and GATA3 are used as positive
controls, while OR5AL1 is used as a negative control with 0% mutation rate. (B) Subtypes of breast
cancer showing various genetic alterations in DNA methylation regulators genes.
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Figure 2. Frequency of genetic alterations in genes encoding DNA methylation regulators in a wide
variety of cancers. TCGA Pan-Cancer Atlas datasets employing 10,953 patients/10,967 samples in
32 studies. Genes encoding DNA methylation regulators are mutated in 4213 (38%) of samples.

3.2. Expression Anomalies in Breast Cancer

Recent studies have shown that transcriptomic anomalies underlie tumor development.
Aberrant gene expression may potentially serve as a biomarker in breast cancer. Therefore,
we analyzed transcripts of all the genes under study in the TCGA and GTEx datasets. As can
be seen in Figure 3A, several genes under study showed significant expression deregulation
in breast cancer. There has been a mixed trend regarding over- or under-expression of
DNA-methylation-related genes in cancer patients compared with normal tissue samples.
MBD1 and MBD3 showed clear loss of expression, and this trend correlated with high rates
of deletions as shown in Figure 1A. Similarly, overexpression of UHRF1 correlated with
genetic amplification. Figure 3B shows expression changes in the individual genes between
TCGA and GTEx datasets. Overall, our results show that the majority of genes encoding
DNA methylation writers, readers and erasers go through massive expression deregulation
in breast cancer patients.
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Figure 3. Expression level of genes that encode writers, readers and erasers of DNA methylation.
(A) Red/blue bars represent over/under-expression of the genes under study. Expression levels
are compared between GTEx and TCGA datasets. As control, TOP2A and CCND2 are employed.
(B) Expression comparison of individual gene transcripts in normal vs. breast cancer patients. Welch’s
t-test was used to calculate the p-values for individual genes. DNMT1 p = 5.781 × 10−74 (t = −22.11),
DNMT3A p = 1.981 × 10−39 (t = −15.12), DNMT3B p = 1.076 × 10−33 (t = −13.78), DNMT3L
p = 0.07770 (t = −1.770), MECP2 p = 0.000 (t = 17.54), MBD1 p = 0.000 (t = 34.01), MBD2 p = 0.00002861
(t = 4.248), MBD3p = 0.000 (t = 12.02), MBD4 p = 4.561 × 10−30 (t = −12.52), MBD5 p = 0.1683
(t = −1.381), MBD6 p = 0.000 (t = 23.56), BAZ2A p = 0.000 (t = 13.08), BAZ2B p = 0.000 (t = 10.07),
SETDB1 p = 1.064× 10−31 (t =−12.98), SETDB2 p = 2.190× 10−8 (t = 5.781), UHRF1 p = 6.499 × 10−120

(t = −47.29), UHRF2 p = 0.000 (t = 29.62), ZBTB33 p = 4.126 × 10−94 (t = −30.02), ZBTB4 p = 0.000
(t = 17.21), ZBTB38 p = 0.005314 (t = 2.800), ZFP57 p = 0.05441 (t = 1.933), KLF4 p = 0.000 (t = 37.18),
EGR1 p = 7.124 × 10−11 (t = 6.803), WT1 p = 1.442 × 10−106 (t = −28.61), CTCF p = 4.217 × 10−65

(t = −21.70), TET1 p = 0.01331 (t = 2.491), TET2 p = 0.06953 (t = 1.821), TET3 p = 5.981 × 10−48

(t = −17.60), TDG p = 5.148 × 10−49 (t = −17.12), TOP2A p = 6.588 × 10−156 (t = −58.62), CCND2
p = 0.000 (t = 20.99).
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3.3. DNA Methylation and Patient Overall Survival

After establishing that genetic alterations and expression changes have significantly
high prevalence in cancer patients, we next determined whether these changes in gene
expression have prognostic potential. The Kaplan–Meier (KM) Plotter [40] has integrated
microarray datasets that can be used to calculate overall survival (OS) of breast cancer
patients according to expression levels of DNA methylated related genes. The current
analysis was run on 2879 breast cancer patients. We tested all the genes and found that
overexpression of MBD1, MBD6, BAZ2B, ZBTZ3B, KLF4 and TET2 correlated with better
overall survival, while DNMT3B and TDG overexpression were correlated with poor patient
overall survival (Figure 4). TOP2A was used as a control in our analysis, and, consistent
with its published role as a marker for poor patient survival, the results were replicated in
our analysis. The other genes under study were not significantly correlated with patient
survival (Supplementary Figure S1). Collectively, our analysis identified several molecules
regulating DNA methylation dynamics that might have potential for prognostication in
breast cancer.
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Figure 4. Expression of genes encoding DNA methylation machinery correlate with breast cancer
patients’ overall survival. Kaplan–Meier plots indicate patient overall survival. The X axis denotes
patient overall survival percentage, while the Y axis represents months after the diagnosis. Black
color represents the low expression group, while the high expression group is indicated by the red
color. The patients were split by median. The log-rank test is used to determine p-values.

4. Discussion

In the current study, a comprehensive genomic and molecular landscape of genes
encoding writers, readers and erasers of DNA methylation in breast cancer is provided. Our
data show that these genes are not only genetically altered but show expression anomalies
in breast cancer patients. Almost all the genes in the above categories are genetically altered
to varying degrees. Mutations and expression deregulations in these genes may have a
variety of effects on various signaling pathways. As myriads of genes are regulated by DNA
methylation, alterations in DNA methylation regulators have far-reaching consequences.

The role of DNA methylation in cancer became apparent when the role of DNA
methylation in the inactivation of tumor suppressor genes was revealed [42]. While earlier
studies mainly focused on the genetic aspects of cancer, the epigenetic regulation in cancer
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became pivotal with our understanding of DNA methylation in cancer development [43]
and its connection with gene regulation quantitatively. DNMT1, DNMT3A and DNMT3B
are the major DNA methyltransferases, but, surprisingly, the mutation rates in these
genes remained low (Figure 1). However, consistent with other studies, we found major
expression elevations in all these methyltransferases that may contribute to significant
alterations in DNA methylation [44–47].

In addition to changes in DNA methylation, equally important is the mechanisms that
relay the DNA methylation information. The methylation marks are read and interpreted by
the action of “reader” proteins that can recognize and bind to the methylated DNA regions.
Out of all the readers under study, SETDB1 showed highest levels of genetic alterations
with 11% of patients having gene amplifications. However, other readers had massive
expression deregulations, mostly showing loss of expression, despite having relatively low
representation in genetic alterations. Diversity in proteins that interpret methylation signals
indicates the variation of the downstream signaling, e.g., MBD1 directs histone methylation
to sites of DNA methylation, MeCP2 is involved in heterochromatin clustering, MBD2-3
dictate transcriptional silencing through NuRD/Mi-2 complexes, MBD4 maintains correct
DNA methylation by suppressing CpG mutability, SETDB1 is involved in heterochromatin
formation and BAZ2A is a component of the nucleolar remodeling complex NoRC [18].
Additional functions of MBPs have also been identified that are independent of methylated
DNA binding. ChIP-seq studies for both MBD3 and MBD2 have shown that both proteins
bind at transcriptionally active and unmethylated promoters [48,49].

The erasers of DNA methylation also showed dramatic expression differences. Consis-
tent with earlier studies, TET1 and TET2 were modestly downregulated [50,51]. However,
TET3 and TDG showed massive upregulation in the TCGA data. Differential regulation
of TET and TDG also had opposing outcomes. While TET2 expression was correlated
with better overall survival, TDG overexpression correlated with poor patient survival.
TET2 has been reported to act as an anti-tumor factor, and its decreased expression has
been associated with solid malignant tumors, such as colorectal, gastric, ovarian, prostate
and breast cancers [52–56]. TET2 regulates the PD-L1 gene in breast cancer cells without
altering the DNA methylation and hydroxymethylation (hmC) level at the promoter region
pointing to functions that are independent of DNA demethylation [56]. TDG, on the other
hand, has contradictory roles. Based on its ability to potentiate p53 signaling [57] and posi-
tively regulate p15 (ink4b) expression [58], it was suggested to act as a tumor suppressor.
However, it is overexpressed in human colorectal cancer (CRC) patients, and knocking
down TDG in several CRC cell lines inhibited cell growth [59]. Moreover, TDG knockdown
suppressed tumor formation of melanoma cell lines in xenograft models, indicating that
TDG activity is important for tumorigenesis [60]. Our data evince its potential oncogenic
function in breast cancer.

DNMT3B was the only “writer” of DNA methylation that was not only overexpressed
but also had poor prognostication. This is consistent with earlier studies wherein DNMT3b
was proposed to be a prognostic biomarker for breast cancer [33]. Interestingly, the majority
of the readers of DNA methylation showed better overall survival that included MBD1,
MBD6, BAZ2B, ZBTB38 and KLF4. While the functions of many DNA methylation readers
are now clear, more research is needed as some of these proteins are still less explored [17].
Future work on these candidates will unravel their anti-tumorigenic functions and under-
lying mechanisms. Molecular studies using cellular and xenograft models are required to
understand the functions of these molecules.

5. Conclusions

In conclusion, the role of DNA methylation regulation in cancer therapeutics has
gained attention in recent years after their role became apparent in various tumors. Loss of
function studies have further substantiated their potential as therapeutic targets. Currently,
FDA-approved DNMTis include 5-aza-2′-deoxycytidine (decitabine) and 5-azacytidine,
which are cytidine analogs with a nitrogen atom replacing carbon in the fifth position of the
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ring. However, the lack of specificity of these therapeutic agents remains a major challenge.
To overcome this challenge, the combination of traditional treatments with epigenetic drugs
and the latest genomic tools is necessary to confer target specificity. Additionally, our
study has identified several molecules such as DNMT3B, MBD1, MBD6, BAZ2B, ZBTB38,
KLF4, TET2 and TDG in the DNA methylation pathway that have potential prognostic roles.
This is the first study to unravel a comprehensive molecular and genetic profile of DNA
methylation machinery genes in breast cancer and identifies DNA methylation machinery
as an important determinant of disease progression. However, future research is needed to
validate and target these molecules using cellular and animal models. These efforts will
advance our understanding of the underlying mechanisms of DNA methylation in cancer
and pave the way for the development of novel targeted therapeutic strategies.
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