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A B S T R A C T

We develop a unifying approach to estimating climate impacts and adaptation, and apply it
to study the impact of climate change on local air pollution. Economic agents are usually
constrained when responding to daily weather shocks, but may adjust to long-run climatic
changes. By simultaneously exploiting variation in weather and climate, we identify both
the short- and long-run impacts on economic outcomes, and measure adaptation directly as
the difference between those responses. As a result, we identify adaptation without making
extrapolations of weather responses over time or space, and overcome omitted variable bias
concerns from prior approaches.

1. Introduction

Failure to achieve climate mitigation goals puts increasing pressure on climate adaptation strategies.2 Therefore, it is crucial
to develop methods to measure climate impacts and adaptation. Inspired by the macroeconomic literature on the effects of
unanticipated versus anticipated shocks on the economy (e.g., Lucas, 1972), the labor literature on the importance of distinguishing
transitory versus permanent income shocks (e.g., Solon, 1992), and the properties of the Frisch–Waugh–Lovell theorem (Frisch and
Waugh, 1933; Lovell, 1963), we develop a unifying approach to measuring climate impacts and adaptation. The proposed approach
is then applied to examine the impact of climate change on ambient ‘‘bad’’ ozone concentration in U.S. counties over the period
1980–2013. Ozone is not emitted directly into the air, but rather formed by a Leontief-like production function of Nitrogen Oxides
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(NOx) and Volatile Organic Compounds (VOCs) in the presence of sunlight and warm temperatures; hence, affected by climate
change (e.g., Jacob and Winner, 2009).

Our unifying approach overcomes key challenges of the literature by decomposing meteorological conditions into climatic
variation and weather shocks, and estimating climate and weather effects in the same panel fixed-effects equation. The pioneer
cross-sectional approach to estimate the impact of climate change on economic outcomes (Mendelsohn et al., 1994) has relied
on permanent, anticipated components behind meteorological conditions, but may suffer from omitted variable bias. In contrast,
the panel fixed-effects approach (Deschenes and Greenstone, 2007) exploits transitory, unanticipated weather shocks, and deals
with that bias, but identification of climate effects using weather variation is not trivial. Current hybrid approaches combining
cross-sectional and panel data variation also face challenges (see a recent review by Kolstad and Moore, 2020). The partitioning
variation approach also decomposes meteorological conditions and estimates climate and weather effects jointly, but typically does
not include spatially-disaggregated fixed effects leaving it susceptible to omitted variable bias (e.g., Kelly et al., 2005; Moore and
Lobell, 2014; Merel and Gammans, 2021).3 Our unifying approach combines the strengths of the prior methods while addressing
their shortcomings by relying on the properties of the Frisch–Waugh–Lovell theorem.

Influential studies have proposed measuring adaptation as the difference between the estimates of impacts in fixed-effects and
cross-sectional approaches (Dell et al., 2012, 2014). Estimates of climate impacts based on cross-sectional analysis are usually
inclusive of adaptation, whereas those from fixed-effects are typically not. Our unifying approach estimates the short- and long-run
impacts in the same equation. As a result, our approach enables a straightforward test for the statistical significance of the measure
of adaptation and addresses two other shortcomings from existing approaches. First, it recovers a measure of adaptation directly from
the jointly estimated impacts of weather and climate. In contrast, a common approach in the literature tackles adaptation indirectly,
by flexibly estimating economic damages due to weather shocks, then assessing climate damages by using shifts in the future weather
distribution predicted by climate models (e.g., Deschenes and Greenstone, 2011). Second, and analogous to the Lucas Critique (Lucas,
1976), our approach overcomes the challenges of identifying adaptation by comparing the profiles of weather responses across time
and space, under the assumption that preferences are constant across those dimensions (Barreca et al., 2016; Heutel et al., 2021;
Carleton et al., 2022).4 Instead, we identify adaptation by comparing how economic agents in the same season and location respond
to weather shocks – which, by definition, limit opportunities to adapt – with their own response to climatic changes, which should
incorporate adaptive behavior.

We apply our unifying approach to the context of daily temperature and ambient ozone concentration across the continental
United States. In our analysis, we merge location-by-day ozone concentration data with temperature data across the United States
for the period 1980–2013. In a typical climate impact setting, the outcome of interest is (i) affected by temperature, (ii) something of
value to the agent, and (iii) responsive to adaptive behavior that dampens the temperature effect. By definition, adaptation involves
adjusting to or coping with climatic change with the goal of reducing vulnerability to its harmful effects.5 In our setting, for agents
to be adapting to rising temperatures in a way that changes atmospheric ozone levels, one needs all of the following: (i) agents
must be worried about ozone’s detrimental impacts, (ii) agents have some knowledge of the process of ozone formation such that
they are aware not only of temperature’s role but also the impact of an agent’s emissions, and (iii) agents believe their actions can
sufficiently alter ozone concentrations. There is evidence that on high ozone days, individuals may avoid outdoor exposure (e.g.,
Neidell, 2009) and buy medicines to remediate exposure (e.g., Deschenes et al., 2017). Also, they may drive less and use public
transit in smog alert days (e.g., Cutter and Neidell, 2009). Indeed, the alerts educate the public on the impact of temperature and the
agents’ actions on ambient ozone levels. Hence, it not unreasonable to assume that our research setting satisfies the three conditions
for adaptation enumerated above.

Our approach has two key features. The first is the decomposition of meteorological variables into ‘‘climate’’ and ‘‘weather’’. The
second is identifying responses to weather shocks and longer-term climatic changes in the same estimating equation. As noted, the
difference between those short- and long-run responses is what the literature refers to as adaptation.6 Indeed, ozone, as with most
climate-related outcomes of interest, responds to realized temperature — regardless of how that temperature may be decomposed
into ‘‘weather’’ or ‘‘climate’’. It is only agents, by virtue of being able to adjust to long-run climate, that may affect the ozone response
to climatic changes. In the absence of any adaptive behavior, the ozone response to equivalent changes in weather or climate would
be the same.

For the first feature of our approach, the daily temperature variable is used to construct two variables. The first, 𝑇 𝑒𝑚𝑝𝐶 ,
is operationalized as a 30-year moving average of month-specific average temperatures (e.g., take the average of June daily

3 The long differences approach is a special case of partitioning variation which leverages panel data variation in weather over a range of timescales
(e.g., annual, decadal, and multi-decadal) to identify climate impacts, but does not estimate climate and weather effects jointly (e.g., Dell et al., 2012; Moore
and Lobell, 2015; Burke and Emerick, 2016).

4 One way to address this issue is to use experimental or quasi-experimental variation in those attributes in order to causally capture the extent to which
they offset weather effects. One example is Garg et al. (2020), who leverage quasi-experimental variation in eligibility to a cash transfer program in Mexico to
identify how income may mitigate the temperature-homicide relationship.

5 The IPCC defines adaptation as ‘‘the process of adjustment to actual or expected climate and its effects in order to moderate harm or take advantage of
beneficial opportunities’’, and further states that ‘‘[a]daptation plays a key role in reducing exposure and vulnerability to climate change. (...) In human systems,
adaptation can be anticipatory or reactive, as well as incremental and/or transformational’’. IPCC (2022).

6 Although we focus on adaptive behavior, we are agnostic about the true impacts. There may be adaptation or intensification effects (Dell et al., 2014).
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temperatures for each year and location and then apply a 30-year moving average). This is what we interpret as ‘‘climate’’.7 The
second temperature variable, 𝑇 𝑒𝑚𝑝𝑊 , is daily temperature with 𝑇 𝑒𝑚𝑝𝐶 subtracted, interpreted as ‘‘weather’’.

For the second feature of our approach, both variables enter in our estimating equation along with a set of location-by-season-
by-year fixed effects, 𝜙𝑖𝑠 (e.g., Chicago-Spring 1990, Chicago-Summer 1990, etc.). Because we create the variable ‘‘weather’’ as a
first step, the Frisch–Waugh–Lovell theorem guarantees we do not need to include granular time fixed effects to identify weather
effects (Lovell, 1963, Theorem 4.1, p.1001).8 On the other hand, the inclusion of 𝜙𝑖𝑠 allows us to leverage two sources of climatic
variation to identify climate impacts. Conditional on location-by-season fixed effects, the first source of variation comes from
adding the most recent year’s monthly weather information and dropping the oldest portion from the 30-year moving average.
The underlying idea is similar to filtering different frequencies of temperature, as has been done in the time series literature (e.g.,
Baxter and King, 1999; Christiano and Fitzgerald, 2003). In other words, we identify the agents’ response to their new climate
expectation. The second source of variation arises from demeaning 𝑇 𝑒𝑚𝑝𝐶 from a location-specific season-by-year fixed effect.9
Take, for example, days in April, May, and June in Chicago, all within the spring season of the same year. After demeaning from
a spring fixed effect, the average April moving-average measure of climate will likely be a negative value and the average June
climate a positive value.

Our methodology contributes to the estimation of climate damage functions and the costs of climate change (e.g., Auffhammer,
2018; Tol, 2018). Our unifying approach to uncover climate impacts and adaptation should be of interest to a broad set of
applications due to its simplicity. Our novel application to the impact of climate change on ambient ozone adds an overlooked
force behind determinants of ozone pollution (e.g., Salvo and Wang, 2017).

This paper proceeds as follows: Section 2 provides an overview of the previous methodological approaches used to identify
climate impacts and proposes our unifying approach and the resulting measure of adaptation. Section 3 provides a conceptual
framework of an agent’s adaptation decision-making, describes our data, and presents our empirical strategy. Section 4 reports our
main findings, examines the robustness of our estimates, generalizes our approach to nonlinear settings, and explores heterogeneity
in adaptive responses. Finally, Section 5 concludes.

2. Prior methods and our unifying approach to measuring climate change impacts and adaptation

2.1. Prior methods

Prior literature on estimating climate impacts and adaptation has usually relied on two approaches. The first is the cross-
sectional approach (e.g., Mendelsohn et al., 1994; Schlenker et al., 2005), which exploits permanent, anticipated components behind
meteorological conditions, leveraging climate variation across locations to estimate climate impacts inclusive of adaptation, but may
suffer from omitted variable bias. The other is the panel fixed-effects approach (e.g., Deschenes and Greenstone, 2007; Schlenker
and Roberts, 2009), which deals with that bias but identifies the effect of transitory, unanticipated weather shocks, most likely
exclusive of adaptation, making the transition to estimated climate effects nontrivial.10 By using either the short- or long-run variation
behind meteorological conditions to identifying climate impacts, those research designs trade off key assumptions. More recent
literature (e.g., Dell et al., 2012, 2014) has proposed various hybrid approaches for combining these two strands of the literature,
but face issues of their own (Kolstad and Moore, 2020).

The cross-sectional (CS) approach estimates the following equation:

𝑦𝑖 = 𝛼 + 𝛽𝐶𝑆𝑥𝑖 + (𝜇𝑖 + 𝜈𝑖) = 𝛼 + 𝛽𝐶𝑆𝑥𝑖 + 𝑒𝑖, (1)

where 𝑦𝑖 is an outcome variable measured at location 𝑖, and is affected by the climatological variable of interest, 𝑥𝑖 – typically taken
as temperature. 𝜇𝑖 represents the vector of all time-invariant unobserved covariates that may be correlated to 𝑥𝑖, while 𝜈𝑖 reflects
the standard idiosyncratic error term. Thus, if 𝜇𝑖 is non-empty and 𝑐𝑜𝑣(𝑥𝑖, 𝜇𝑖) ≠ 0, 𝛽𝐶𝑆 suffers from omitted variable bias (OVB).

The panel fixed-effects (FE) approach instead estimates the following equation:

𝑦𝑖𝑡 = 𝛼 + 𝛽𝐹𝐸𝑥𝑖𝑡 + 𝜇𝑖 + 𝜆𝑡 + 𝜈𝑖𝑡, (2)

where the outcome variable, 𝑦𝑖𝑡, and climatic variable of interest, 𝑥𝑖𝑡, are now additionally measured at some recurring time interval
𝑡. By averaging each variable in Eq. (2) for each unit 𝑖 over time, we obtain:

�̄�𝑖 = 𝛼 + 𝛽𝐹𝐸 �̄�𝑖 + 𝜇𝑖 + �̄�𝑖, (3)

7 Climate normals are, by definition, 30-year averages of weather variables such as temperature (WMO, 2017). The monthly frequency for the moving averages
in our empirical decomposition is without loss of generality. All we need is a time frame that economic agents can easily remember information from the past.
Our robustness checks using daily moving averages provide nearly identical results.

8 Intuitively, by decomposing observed temperature into its moving average ‘‘climate’’ component and daily ‘‘weather’’ component as the difference from this
average, the Frisch–Waugh–Lovell theorem shows that the ‘‘weather’’ variable is already de-meaned as if we had included location-by-month-by-year fixed-effects
in the final estimating equation.

9 Note that we use ‘‘location’’ here in the general sense as the spatial unit of analysis. For example, in our empirical setting location is taken as an individual
ozone monitor.

10 Only in certain conditions does weather variation exactly identify the effects of climate (e.g., Hsiang, 2016; Lemoine, 2020).



Journal of Environmental Economics and Management 121 (2023) 102843

4

A.M. Bento et al.

where �̄�𝑖 ≡ 1∕𝑇
∑𝑇

𝑡=1 𝑦𝑖𝑡, and the other variables are defined similarly.11 Subtracting Eq. (3) from Eq. (2), we highlight the source of
variation in the identification of 𝛽𝐹𝐸 :

(𝑦𝑖𝑡 − �̄�𝑖) = 𝛽𝐹𝐸 (𝑥𝑖𝑡 − �̄�𝑖) + 𝜆𝑡 + (𝜈𝑖𝑡 − �̄�𝑖). (4)

Because (𝑥𝑖𝑡 − �̄�𝑖) is the deviation of observed temperature from its local long-run value, 𝛽𝐹𝐸 is clearly identified from temperature
shocks. Thus, in this approach, although most OVB problems are resolved by the 𝜇𝑖 term, 𝛽𝐹𝐸 now identifies the impact of
meteorological, rather than climatological, phenomena.

Recently, focus has expanded from simply estimating climate impacts to estimating adaptation to climate change. Some authors
have noted that 𝛽𝐶𝑆 identifies climate impacts inclusive of any adaptation, while 𝛽𝐹𝐸 , by its nature, identifies meteorological impacts
which can be taken as an approximation of climate impacts exclusive of any adaptation (e.g., Dell et al., 2012, 2014). Thus, they
propose measuring adaptation as the difference between 𝛽𝐹𝐸 and 𝛽𝐶𝑆 . Although this principle to recovering a measure of adaptation
is accurate, the approach faces two empirical challenges. First, to the extent that OVB may impact 𝛽𝐶𝑆 in the cross-sectional model,
this will translate directly into bias in the estimate of climate adaptation. Second, even if an unbiased estimate of 𝛽𝐶𝑆 could
be obtained, 𝛽𝐶𝑆 and 𝛽𝐹𝐸 arise from two different estimating equations. While OLS, equation by equation, allows us to easily
test hypotheses about the coefficients within an equation, it does not provide a convenient way for testing hypotheses involving
coefficients from different equations. Thus, in practice, one must resort to seemingly unrelated regression (SUR) models to explicitly
test whether the measure of adaptation is statistically distinguishable from zero.12 Aside from SUR, it would be possible to statistically
test the difference between coefficients recovered via the CS and FE models using re-sampling methods – i.e., block bootstrap or
Bayesian bootstrap with random weights assigned at the block-level. However, while these methods may solve the hypothesis testing
issue for inferring the significance of adaptation, they would not address the issue of potential bias in the underlying estimating
equations, making it difficult to interpret the magnitude of adaptation.

2.2. Our unifying approach

Our unifying approach nests both of those strands of the climate-economy literature in the same estimating equation. It
simultaneously identifies long-run climatological impacts and short-run effects of meteorological shocks, and thus allows for an
explicitly testable measure of adaptation in the spirit of prior comparisons between short- and long-run effects (e.g., Dell et al.,
2012, 2014). Specifically, we begin by posing the ideal estimating equation, although infeasible:

𝑦𝑖𝑡 = 𝛼 + 𝛽𝑊 (𝑥𝑖𝑡 − �̄�𝑖) + 𝛽𝐶 �̄�𝑖 + 𝜇𝑖 + 𝜆𝑡 + 𝜈𝑖𝑡. (5)

If this infeasible equation were estimable, 𝛽𝑊 – the effect of weather shocks – would exactly identify 𝛽𝐹𝐸 by the Frisch–Waugh–Lovell
theorem. On the other hand, 𝛽𝐶 – the effect of changes in climate – would identify 𝛽𝐶𝑆 minus OVB due to the inclusion of fixed
effects. Unfortunately, 𝛽𝐶 cannot be identified because �̄�𝑖 is perfectly collinear with 𝜇𝑖.

Notice that emerging hybrid approaches have also relied on such ‘‘partitioning variation’’ (e.g., Kelly et al., 2005; Moore and
Lobell, 2014; Merel and Gammans, 2021). They have attempted to address this collinearity issue by dropping the unit fixed-effect, 𝜇𝑖,
instead including a set of location controls, 𝑐𝑖, in their estimating equation, taking the general form of 𝑦𝑖𝑡 = 𝑓 (𝑥𝑖𝑡−�̄�𝑖)+𝑔(�̄�𝑖)+𝑐𝑖𝛾+𝜖𝑖𝑡,
where 𝑓 (.) and 𝑔(.) can take flexible functional forms. While this approach can include spatially-aggregate and time fixed-effects,
identification would still ultimately rely on cross-sectional variation within the spatially-aggregate region, and thus may suffer from
similar OVB concerns as the CS model.

We therefore propose the following feasible approximation of the ideal Equation (5), which allows for the inclusion of unit
fixed-effects by letting the measure of climate vary across time within the sample13:

𝑦𝑖𝑡 = 𝛼 + 𝛽𝑊 (𝑥𝑖𝑡 − �̄�𝑖�̄�) + 𝛽𝐶 �̄�𝑖�̄� + 𝜇𝑖 + 𝜆𝑠 + 𝜈𝑖𝑡. (6)

As time can be aggregated into multiple subset levels – day, month, season, year, decade, etc. – we first define a time period, 𝑝, as
a weakly larger aggregation of 𝑡. Agents, however, may observe and react to the slow evolution of climate. Thus, we define �̄� to
incorporate data from the same time period 𝑝 in the past. Furthermore, agents may need time to adjust, so we additionally restrict
�̄� to exclude contemporaneous data. We also replace 𝜆𝑡 with 𝜆𝑠 – where 𝑠 is a one-level higher aggregation in time than 𝑝 – in order
to retain relevant variation in �̄�𝑖�̄�.14 Depending on the study context, 𝜇𝑖 and 𝜆𝑠 may be interacted to flexibly control for unit-level
effects that may vary over time.

11 Note that via the inclusion of the intercept, the 𝜆𝑡 and 𝜇𝑖 fixed effects are both relative to the same baseline, 𝛼, and thus the 𝜆𝑡 term drops out when
averaging over time by the restriction that ∑

𝑡 𝜆𝑡 = 0.
12 As is well known, a SUR system is a generalization of a linear regression model that consists of several regression equations – each having its own dependent

variable and potentially different sets of exogenous explanatory variables – that has cross-equation error correlation, that is, the error terms in the regression
equations are correlated. Also recall that all equations in a SUR system are estimated jointly, but that such estimation usually requires feasible generalized least
squares with a specific assumption on the form of the variance–covariance matrix regarding the structure of the correlation among the error terms. Hence,
further structural assumptions are needed for statistical inference of the measure of adaptation.

13 Observe that for simplicity, and to keep the comparison with the prior CS and FE strands of the literature as clear as possible, our unifying approach uses
a linear specification, which should also capture the first-order effects of potentially nonlinear responses. Later, in Section 4.4, we show how this approach can
be easily extended to include higher order nonlinear effects.

14 Note that just as 𝑡, by convention, represents a specific time-step of the sample, e.g. day-of-the-sample, we take 𝑠 as similarly representing a more aggregate
time-step of the sample, e.g. season-of-the-sample.
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Defined in this way, variation in �̄�𝑖�̄� comes from two separate sources. First, although more aggregate than 𝑡, �̄� still varies across
time within the higher level time period 𝑠. Second, �̄� is defined to include historical data, and thus ‘‘updates’’ its value from year to
year. Following the same steps as with the fixed-effects model and averaging each variable in Eq. (6) for each cross-sectional unit
𝑖 over time, we obtain:

�̄�𝑖 = 𝛼 + 𝛽𝑊 (�̄�𝑖 − �̄�𝑖) + 𝛽𝐶 �̄�𝑖 + 𝜇𝑖 + �̄�𝑖 = 𝛼 + 𝛽𝐶 �̄�𝑖 + 𝜇𝑖 + �̄�𝑖, (7)

where, once again, �̄�𝑖 ≡ 1∕𝑇
∑𝑇

𝑡=1 𝑦𝑖𝑡, and the other variables are defined similarly.15 Subtracting Eq. (7) from Eq. (6), we highlight
the source of variation that allows for the identification of both 𝛽𝑊 and 𝛽𝐶 :

(𝑦𝑖𝑡 − �̄�𝑖) = 𝛽𝑊 (𝑥𝑖𝑡 − �̄�𝑖�̄�) + 𝛽𝐶 (�̄�𝑖�̄� − �̄�𝑖) + 𝜆𝑠 + (𝜈𝑖𝑡 − �̄�𝑖). (8)

In Eq. (8) we can observe that 𝛽𝑊 is identified from temperature shocks, therefore approximately equivalent to 𝛽𝐹𝐸 , whereas 𝛽𝐶
is identified from climatic changes, approximately equivalent to 𝛽𝐶𝑆 , though now critically free from a number of OVB concerns. We
thus naturally define adaptation as the difference 𝛽𝑊 − 𝛽𝐶 . Because both coefficients of interest are estimated in a single equation,
statistical inference on the measure of adaptation is straightforward. Furthermore, observe that while our method does require the
researcher to take a stance on the temporal granularity of the climate variable, �̄�𝑖�̄�, and time fixed-effects, 𝜆𝑠, the recovered measure
of adaptation leverages the behavioral responses of the same economic agents to both weather shocks and climatic changes via the
inclusion of unit fixed effects, 𝜇𝑖.

2.3. Decomposition of meteorological variables: Climate norms vs. Weather shocks

As mentioned above and seen in Eq. (6), implementing our approach requires that we first decompose 𝑥𝑖𝑡 into its long-run
component, �̄�𝑖�̄�, and its short-run deviation from this value, (𝑥𝑖𝑡 − �̄�𝑖�̄�). Econometrically, from the Frisch–Waugh–Lovell theorem, we
can decompose 𝑥𝑖𝑡 into its longer term seasonal component and a contemporaneous de-seasonalized component. For example, as
weather varies day-to-day, 𝑡, and local climate varies both seasonally (e.g., month-to-month within a year) and over time (e.g., year-
to-year), we could take ‘‘month-of-the-sample’’, 𝑚𝑦, as representing the seasonal component and pose the following first-stage
regression:

𝑥𝑖𝑡 = 𝛾𝑖𝑚𝑦 + 𝜖𝑖𝑡, (9)

such that temperature in location 𝑖 on day 𝑡 (of month 𝑚 in year 𝑦) is regressed on a set of location-by-month-by-year fixed effects. In
this case, the matrix of coefficients �̂�𝑖𝑚𝑦 would constitute the matrix of monthly average temperature values �̄�𝑖𝑚𝑦, while the estimated
residuals (𝑥𝑖𝑡 − �̄�𝑖𝑚𝑦) (≡ 𝜖𝑖𝑡) would reflect the de-seasonalized daily local deviations of temperature. Because this regression simply
de-means 𝑥𝑖𝑡 over the 𝑚𝑦 period in the time-series dimension for each individual location 𝑖, we could instead recover the 𝑥𝑖𝑡 − �̄�𝑖𝑚𝑦
values in Eq. (9) arithmetically via the following:

𝑇 𝑒𝑚𝑝
⏟⏟⏟

𝑥𝑖𝑡

= 𝑇 𝑒𝑚𝑝𝐶
⏟⏟⏟

�̄�𝑖𝑚𝑦

+ 𝑇 𝑒𝑚𝑝𝑊
⏟⏟⏟
(𝑥𝑖𝑡−�̄�𝑖𝑚𝑦)

, (10)

such that 𝑇 𝑒𝑚𝑝𝐶 (≡ �̄�𝑖𝑚𝑦) represents climate patterns, and 𝑇 𝑒𝑚𝑝𝑊 (≡ 𝑥𝑖𝑡 − �̄�𝑖𝑚𝑦) deviations from those longer-run patterns. Notice
that although the above example uses daily temperatures, de-seasonalized at the monthly level, the choice of timing can be selected
to match the study context. To use the example of agriculture, a common focus in the climate literature, it may be that a year, or
the growing seasons within a year, would be better suited to the analysis than the months of the year example illustrated in Eqs. (9)
and (10).

Economically, however, this presents a potential problem. As mentioned in the previous section, agents may need time to adapt,
and prior information sets likely inform agents’ beliefs. Thus, �̄�𝑖𝑚𝑦 is not strictly equivalent to �̄�𝑖�̄� as defined in Eq. (6). To address
this, we propose, as a first step, replacing �̄�𝑖𝑚𝑦 with a lagged function of its historical values:

�̄�𝑖�̄� ≡
1
𝐽

𝐽<𝑦
∑

𝑗=1
𝜔𝑗 �̄�𝑖𝑚𝑗 ≈ �̄�𝑖𝑚𝑦, (11)

where 𝜔𝑗 represents a scalar weighting of �̄�𝑖𝑚𝑗 , such that the function defining �̄�𝑖�̄� can be generalized to fit various contexts.16

Returning to the agriculture example, it is possible that farmers need more than a single year to adjust production processes or
change crop choice, in which case the (𝜔𝑦−𝑘,… , 𝜔𝑦−1) weighting scalars of Eq. (11) could all simply be set to zero, with 𝑘 > 1.
Furthermore, the functional form of Eq. (11) itself can be chosen to best suit the application by changing the specific values of 𝜔𝑗 .
Myopic and Bounded agents may simply assume that contemporaneous monthly temperature will be equal to what it was in the

15 Note that in Eq. (7) the �̄�𝑖 derived from the �̄�𝑖�̄� term would rely on a longer time-series of information than the �̄�𝑖 derived from the 𝑥𝑖𝑡 term. Still, they
are approximately equivalent, with correlation between these two terms above 0.95 in our empirical application.

16 These weights, 𝜔𝑗 , can be defined by values derived from other literatures, such as climatology, which defines a climate normal as the average temperature
over the last 30 years: ‘‘The 30 year interval was selected by international agreement, based on the recommendations of the International Meteorological Conference in
Warsaw in 1933. The 30 year interval is sufficiently long to filter out many of the short-term interannual fluctuations and anomalies, but sufficiently short so as to be
used to reflect longer term climatic trends’’ (Climatology Office, 2003). Alternative filtering techniques could also be implemented (e.g., Baxter and King, 1999;
Christiano and Fitzgerald, 2003), and would implicitly follow from this expression by varying the values of 𝜔𝑗 .
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previous year, that is, 𝜔𝑗 simply evaluates to zero for all 𝑗 ∈ {1,… , 𝑦−2}. Other agents may flexibly fit values of 𝜔𝑗 to the historical
data in an attempt to predict �̄�𝑖�̄� through statistical means. A similar idea has been used in macroeconomics to measure business
cycles,17 and in the literature of intergenerational mobility following Solon’s (1992) seminal work.18 Note that �̄�𝑖�̄� can be calculated
from a longer time-series of 𝑥 to take into account historical information beyond the sample period of the outcome variable.

We then return to Eq. (10), substituting �̄�𝑖�̄� for �̄�𝑖𝑚𝑦 in representing 𝑇 𝑒𝑚𝑝𝐶 , and recovering 𝑥𝑖𝑡 − �̄�𝑖�̄� (≈ 𝑥𝑖𝑡 − �̄�𝑖𝑚𝑦) for 𝑇 𝑒𝑚𝑝𝑊 ,
giving us all the components necessary for estimating Eq. (6).19 Notice that by the properties of the Frisch–Waugh–Lovell theorem
(specifically, point 4 of Lovell (1963, Theorem 4.1, p.1001)) it is unnecessary to de-seasonalize the outcome variable 𝑦𝑖𝑡 in the same
way as (𝑥𝑖𝑡 − �̄�𝑖�̄�), which allows us to estimate both effects of interest in the same equation.20

This decomposition highlights the two sources of variation that have been used in the climate-economy literature. 𝑇 𝑒𝑚𝑝𝐶 and
𝑇 𝑒𝑚𝑝𝑊 in the decomposition above are associated with different sets of information. On the one hand, 𝑇 𝑒𝑚𝑝𝐶 includes climate
patterns that economic agents can only gather by experiencing weather realizations over a long period of time, and can be thought
of as the ‘‘climate normal’’ temperature. On the other hand, 𝑇 𝑒𝑚𝑝𝑊 represents weather shocks, which by definition are revealed
to economic agents virtually at the time of the weather realization. Usually one adjusts to something they happen to know by
experience. Therefore, adaptation can be measured as the difference between responses to changes in 𝑇 𝑒𝑚𝑝𝐶 relative to effects of
weather shocks 𝑇 𝑒𝑚𝑝𝑊 . This is analogous to Lucas’ powerful insight that economic agents respond differently depending on the set
of information that is available to them. Lucas (1977), for instance, provides an example of a producer that makes no changes in
production or works less hard when facing a permanent increase in the output price, but works harder when the price increase is
transitory.21

It is also important to emphasize that this decomposition does not make any assumption on how individuals and firms process
and use the information from the past. Rational agents would respond optimally to all information at hand when deciding the degree
of adaptation, while myopic and inattentive agents (e.g., Gabaix and Laibson, 2006; Reis, 2006), on the other hand, may find it
costly to absorb and process all the information at all times, and may respond only to partial information or only sporadically.
Our measure of adaptation is agnostic to either type of behavior; the goal of our approach is to empirically assess the economic
and statistical significance of adaptation, regardless of how economic agents make decisions on whether to adapt, or the extent of
adaptation.

Finally, notice that this decomposition represents a first-order Taylor approximation of a potentially nonlinear relationship
between climate and realized temperature. Two types of variation are often associated with a changing climate: changes in averages,
and changes in the frequency of extreme weather events (IPCC, 2022). For simplicity, and to keep the comparison with prior
approaches as clear as possible, our temperature decomposition focuses on increases in averages, not on variability. In fact, in
the following section we show that our weather data, comprised of the comprehensive set of national weather monitors, suggests
a gradual increase in average temperature, but that the magnitude of temperature shocks, defined as deviations from the 30-year
moving averages, are relatively stable over time, and narrowly bounded. Therefore, in our approach, dispersion shows up only
implicitly in the sense that long-run norms take into account the frequency and intensity of daily temperature extremes.

3. Empirical application: Climate impacts on ambient ozone

We apply our unifying approach to measure climate impacts on ambient ozone concentration, and adaptation to climate change
in this context, and examine the heterogeneity in adaptive behavior. This application is ideal for three reasons. First, ozone is not
emitted directly into the air, but rather rapidly formed by Leontief-like chemical reactions between nitrogen oxides (NOx) and
volatile organic compounds (VOCs) in the presence of sunlight and warm temperatures.22 Hence, meteorological conditions do
matter in determining surface ozone levels, and climate change may increase ozone concentration in the near future (e.g., Jacob
and Winner, 2009). Furthermore, ozone is rapidly destroyed during the night; thus, correlation between ambient concentrations
across two consecutive days is limited. Second, nationwide high-frequency data on ambient ozone and meteorological conditions
are publicly available for a long period of time in the United States: we use daily measurements for the typical ozone season from
1980–2013.23 Third, this is a highly policy-relevant issue. The so-called ‘‘climate penalty’’ on ozone means that climate change might
deteriorate air quality in the near future, with important implications for public health and labor productivity.24

17 See, for example, Baxter and King (1999), Christiano and Fitzgerald (2003) and Hsiang (2016).
18 In Solon’s context, observed income is noisy: it includes a permanent and a transitory component. To establish a relationship between permanent income

of sons and fathers, Solon proposes averaging fathers’ income for a number of years to reduce the errors-in-variables bias.
19 In our preferred decomposition detailed in the following section, 𝐶𝑜𝑟(�̄�𝑖�̄� , �̄�𝑖𝑚𝑦) > 0.95 and 𝐶𝑜𝑟((𝑥𝑖𝑡 − �̄�𝑖�̄�), (𝑥𝑖𝑡 − �̄�𝑖𝑚𝑦)) > 0.90.
20 ‘‘Theorem 4.1: Consider the following alternative regression equations, where the subscript 𝛼 indicates that the data have been adjusted by the least squares procedure

with 𝐷 as the matrix of explanatory variables: 1. 𝑌 = 𝑋𝑏1 + 𝐷𝛼1 + 𝑒1 2. 𝑌𝛼 = 𝑋𝛼𝑏2 + 𝑒2 3. 𝑌 = 𝑋𝑏3 + 𝑒3 4. 𝑌 = 𝑋𝛼𝑏4 + 𝑒4... The identity 𝑏2 = 𝑏4 reveals that it is
immaterial whether the dependent variable is adjusted or not, provided the explanatory variables have been seasonally corrected’’ (Lovell, 1963).

21 Notably, in our context the behavior would be reversed. Due to the contemporaneous nature of transitory weather shocks, little to no change in production
is possible, while the producer would be able to change behavior in response to permanent changes in climate.

22 See Appendix A.1 for further details.
23 The ozone season varies by state and usually consists of only six months (typically April–September), but concerns are mounting that longer spring and

fall would expand the ozone season in some states (e.g., Zhang and Wang, 2016).
24 Exposure to ambient ozone has been causally linked to asthma hospitalization, pharmaceutical expenditures, mortality, and labor productivity (e.g., Neidell,

2009; Moretti and Neidell, 2011; Graff Zivin and Neidell, 2012; Deschenes et al., 2017).
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3.1. Conceptual framework

In the context of ozone, economic agents could be polluting firms, households engaging in consumption that produces precursor
pollutants, or local regulators concerned with pollution and public health. For example, households may respond to an ozone alert
day by mowing their lawns or refueling their cars earlier or later in the day – or on a different day altogether – to avoid VOC
emissions, taking public transit, carpooling, or working from home to reduce emissions altogether, or purchasing hybrid or electric
vehicles to reduce local emissions. On the other hand, firms may (i) reshuffle their production activities within the day to avoid VOC
emissions in peak hours, such as painting in construction sites, or even between different months, increasing emissions during colder
months in order to reduce emissions during hotter months; (ii) install pollution abatement technologies, or otherwise change their
production function, for instance by electrifying emissions-intensive production processes such as switching from oil or gas furnaces
to electric. Additionally, local regulators may provide ground-level ozone information to at-risk populations to avoid intense ozone
exposure on hot days, e.g., by issuing an ozone alert when a heat wave is forecasted, and coordinating local actions with households
and firms to reduce permanently or shift emissions-intensive activities within the day or across days, weeks, or months. Importantly,
these agents could be reacting to either the realized or anticipated outcome of climate change, and could be undertaking small or
large actions — adjusting behaviors within a day might be a small action that adds up across many agents, for example, while the
switch to alternative commuting or production methods may be more transformational.25

For simplicity of exposition, consider the case of a polluting firm. The agent minimizes cost by selecting the optimal production
schedule for the given input costs, climate, and other local factors faced by the agent. But, ambient ozone itself can impose an
additional shadow price on the agent’s chosen production schedule, implied by, e.g., public or regulatory pressures. Specifically, for
the agent engaging in dirty production, the emission of ozone precursor pollutants (VOCs and NOx) are de facto ‘‘inputs’’ into the
agent’s production schedule.26 Any shadow price on ozone faced by the agent would thus translate into an implicit shadow price
on the emission of either of these precursors as inputs in their production process, conditional on local climate and atmospheric
composition.27 Ceteris paribus, the agent would thus minimize costs taking into account the implicit shadow prices on these
precursors.28 In practice, the optimizing decisions are often over changes in input mix or timing of production (Henderson, 1996).
In other words, the agent is implicitly considering ozone levels whenever they choose the cost-minimizing inputs for production of
goods and services.29

To better understand why agents may adapt to climatic changes in ways that reduce ambient ozone, compare the ozone context
to a standard agricultural setting. As has been shown in that context (e.g., Mendelsohn et al., 1994; Schlenker et al., 2005; Deschenes
and Greenstone, 2007; Schlenker and Roberts, 2009), the agent maximizes profit by optimizing over their choice of crop and other
inputs such as irrigation, conditional on anticipated or realized climate, controlling for other local factors such as soil quality.
Restated, the agent minimizes cost by selecting the optimal production schedule for the given set of input costs, climate, and other
local factors faced by the agent.

Fig. 1 illustrates this ‘‘cost-minimizing’’ optimization decision agents face with respect to ozone and its precursors, depicting the
envelope of minimum-cost production schedules, conditional on realized climate, in the spirit of Deschenes and Greenstone (2007).
Cost of production is on the left y-axis, associated ozone concentration is on the right 𝑦-axis, and temperature is on the 𝑥-axis.30 For
simplicity in illustration, we assume that factors such as precipitation and other exogenous determinants have been adjusted for. The
production schedule 1 and 2 cost functions reveal the relationship between cost and temperature, as well as ozone and temperature,
when these production schedules are chosen. It is evident that schedule specific costs, and associated ozone concentrations, vary
with temperature. Further, the cost-minimizing production schedule varies with temperature. For example, production schedule 1
minimizes cost between 𝑇1 and 𝑇2; the agent would be indifferent between the two at 𝑇2 where the cost functions cross (i.e., point
𝐵); and production schedule 2 minimizes cost between 𝑇2 and 𝑇3. The long-run equilibrium is denoted by the dashed gray line and
represents the long-run optimum when the agent can freely adjust their production schedule in response to changes in temperature.

Consider first an agent that is initially faced with a climate normal temperature of 𝑇1. Their optimal choice would thus be to
minimize cost under production schedule 1, at point 𝐴. Now consider two alternative scenarios: one in which the agent is faced
with a transitory temperature shock of 𝑇3, and a second in which the agent is faced with a permanent change to a new climate

25 Observe that some local regulators are making a direct case for reducing precursor pollutants to control climate change driven increases in ozone (e.g.,
Baaqmd, 2017), and that the EPA also acknowledges the role of climate change in worsening ozone concentrations, stating that ‘‘[i]n addition to being affected
by changing emissions, future O3 concentrations may also be affected by climate change’’ (USEPA, 2015).

26 That is, they are emitted in proportion to the choice, and quantity used, of actual production inputs.
27 Naturally, there may also be regulatory pressures for the precursors themselves, therefore explicitly defining (shadow) prices for them as well (Auffhammer

and Kellogg, 2011; Deschenes et al., 2017). In the robustness checks, however, we provide evidence that these regulations do not seem to play an important role
in agents’ adaptation measures regarding climatic changes. This is not surprising, given that it is ozone formation, not the precursors, that primarily depends on
climate.

28 Unlike in the agriculture setting, a common focus of prior studies, where markets exist for most inputs, in our context markets for ozone precursors (de
facto inputs in production) existed only in some areas and in specific periods of time. Notwithstanding, the implicit shadow prices – reflecting social valuation
of ambient ozone reductions – may provide incentives for producers similar to those provided by market prices.

29 Of course there are other factors that may affect ambient ozone concentrations, climate being the obvious one, but precursor emissions are the only source
that is controllable by the agent. While this could lead to measurement error in the direct relationship between agents’ decisions and ozone concentration, ozone
– in this context – is the outcome variable, and any measurement error in ozone would simply be absorbed by the error term in a reduced form model.

30 Notice that from the cost minimization problem, we observe a derived demand function for VOCs and NOx, conditional on the agent’s chosen level of
output. In turn, that demand for precursors maps into resultant ambient ozone levels, conditional on the temperature.
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Fig. 1. Theoretical relationship between marginal cost of dirty production and temperature. Notes: This figure illustrates a stylized example of how changes in
temperature could affect the cost of production through the shadow price on ozone, and thus the implicit shadow prices on VOCs or NOx that are emitted under
the chosen production schedule. The profit-maximizing firm minimizes cost — the amounts inputs used in production multiplied by their respective prices, as
well as the quantity of VOCs and NOx produced under the chosen production schedule multiplied by the shadow prices of these ozone precursor pollutants
implied by the local shadow price on ozone and conditions of the local atmosphere. While in many cases firms may not face an observable market price for their
emissions of VOCs or NOx, they may face a shadow price for doing so based on, for example, public or regulatory pressures. As depicted, at a temperature of 𝑇1,
production schedule one dominates schedule two, and the firm minimizes cost at point A, with associated daily maximum ozone concentration. At a temperature
of 𝑇2 the firm is indifferent between either production schedule one or two at point B. At a temperature of 𝑇3, however, production schedule two now dominates
schedule one, and the firm minimizes cost at point C. A firm may not, however, be capable of adjusting their production schedule on a day-to-day basis. Thus,
a firm facing a climate normal temperature of 𝑇1 may opt to produce at point A, but end up producing at point 𝐶 ′, and a much higher ozone concentration,
when faced with a temperature shock of 𝑇3. A firm that experiences many such shocks would thus update their beliefs about the underlying climate norm and
shift their production schedule towards schedule two.

normal temperature of 𝑇3. Under the first scenario, the agent would be unable, or unwilling,31 to adapt to the temperature shock
and would temporarily produce at point 𝐶 ′, with higher associated ozone concentration and higher cost of production. Under the
second scenario, the agent would adjust to this permanent change in the climate normal temperature and change to production
schedule 2, now producing at point 𝐶 rather than 𝐶 ′. Notice, however, that while point 𝐶 is lower cost than point 𝐶 ′, it still implies
a higher cost of production and associated ozone concentration than point 𝐴. This is to be expected. Adaptation is typically not
costless (e.g., Kelly et al., 2005; Carleton et al., 2022) – as production schedule 1 was cost-minimizing under the original climate
norm of 𝑇1, this implies that schedule 2 must be (weakly) more costly to implement in the absence of any climatic changes.

Finally, notice that our unifying approach estimates simultaneously both of these reduced form relationships between ambient
ozone concentration and temperature, accounting for agents’ differential responses to temperature shocks versus changes in the
climate norm. The recovered estimate for temperature shocks – 𝛽𝑊 in Eq. (6) – reflects the difference between the ozone
concentrations associated with points 𝐶 ′ and 𝐴, while the recovered estimate for changes in the climate norm – 𝛽𝐶 in Eq. (6) –
reflects the difference between points 𝐶 and 𝐴, and thus adaptation can be clearly taken as the difference between 𝐶 ′ and 𝐶.

31 From a purely mechanical standpoint, the agent may be technologically unable to adjust their production schedule on such short notice – i.e., daily. From
an economic standpoint, even if such adjustments were technologically feasible, they may not be economically sound, as such adjustments would likely incur
greater costs than could be saved by avoiding the additional cost associated with transitory sub-optimal production.
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3.2. Data

Weather Data — For meteorological data, we use daily measurements of maximum temperature as well as total precipitation from
the National Oceanic and Atmospheric Administration’s Global Historical Climatology Network database (NOAA, 2014). This data-
set provides detailed weather measurements at over 20,000 weather stations across the country for the period 1950–2013. Figure
A1, in Appendix A, presents the yearly temperature fluctuations and overall climate trend in the US as measured by these weather
stations, relative to a 1950–1979 baseline average temperature, while Figure A2 illustrates the geographical location of the complete
sample of weather stations from 1950–2013. Fig. 2, by comparison, depicts the variation and trend of our decomposed temperature
variables, 𝑇 𝑒𝑚𝑝𝐶 and 𝑇 𝑒𝑚𝑝𝑊 , between 1980 and 2013 for the comprehensive set of national weather stations, indicating that while
average temperature has been gradually increasing, temperature variability has remained relatively stable.32 These weather stations
are typically not located adjacent to the ozone monitors. Hence, we develop an algorithm to obtain a weather observation at each
ozone monitor in our sample.33 Our preferred matching algorithm uses information from the two closest weather stations within 30
km of each ozone monitor, as these stations are likely to better reflect the local environment than stations that are further away.
The final sample under this matching algorithm includes 97.25% of all daily ozone observations (97.91% of all ozone monitors).
However, we also expand the matching algorithm to include the closest five weather stations within 80 km, for a final sample that
includes over 99.99% of all daily ozone observations (100% of all ozone monitors). Table A1, in Appendix A, reports the summary
statistics for daily temperature and our decomposed variables, for each year in our sample from 1980–2013.

Ozone Data — For ground-level ozone concentrations, we use daily readings from the nationwide network of the EPA’s air quality
monitoring stations. In our preferred specification we use an unbalanced panel of ozone monitors.34 Appendix A Figure A5 illustrates
the evolution of ambient ozone concentrations over our sample period for both the full unbalanced panel of monitors, as well as a
smaller balanced panel. Figure A6 depicts the evolution of our sample of ozone monitors over the three decades in our data, and
illustrates the expansion of the network over time. Table A2 describes some features of the sample of ozone monitors used in our
analysis, for every year between 1980 and 2013.

Consolidating information from the above sources, we reach our final unbalanced sample of ozone monitors over the period
1980–2013.35 Figure A7 illustrates the proximity of our final sample of ozone monitors to the matched weather stations.

We carry out the analysis focusing on the effect of daily maximum temperature on daily maximum ozone concentration since
1980. We choose this relationship because increases in temperature are expected to be the principal factor driving increases in
ambient ozone concentrations (Jacob and Winner, 2009). Indeed, data on ozone and temperature from our sample, plotted in
Appendix A Figure A8, highlights the close correlation between these two variables. Interestingly, we see that not only does
contemporaneous temperature have an effect on ambient ozone, but the long-term climate normal temperature also seems to be
affecting it, although perhaps to a lesser extent. We leverage both relationships in the empirical framework we now describe.

3.3. Empirical strategy

Decomposition of Meteorological Variables: An Empirical Counterpart — Focusing on temperature (𝑇 𝑒𝑚𝑝), our primary variable of
interest, we express it around ozone monitor 𝑖 in day 𝑡 of month 𝑚 and year 𝑦, and decompose it into 𝑇 𝑒𝑚𝑝𝐶 (≡ �̄�𝑖�̄�) and 𝑇 𝑒𝑚𝑝𝑊

(≡ 𝑥𝑖𝑡 − �̄�𝑖�̄�) as in Section 2. For our application, we define:

�̄�𝑖�̄� =
1
30

𝑦−1
∑

𝑗=𝑦−30
�̄�𝑖𝑚𝑗 , (12)

Implicitly defining 𝜔𝑗 as equal one for all 𝑗 ∈ {𝑦− 30,… , 𝑦− 1} – where 𝑦 denotes the contemporaneous year – and zero otherwise,
such that 𝑇 𝑒𝑚𝑝𝐶 (≡ �̄�𝑖�̄�) is equal to the 30-year monthly moving average (MA) of past temperatures.36

We choose a one-year lag to make this variable part of the information set held by economic agents at the time that the outcome of
interest is measured. At the same time, we average temperature over 30 years because it is how climatologists usually define climate
normals, and because we wanted individuals and firms to be able to observe climate patterns for a long period of time, enough to
potentially make adjustments.37 For example, the 30-year MA associated with May 1982 is the average of May temperatures for all
years in the period 1952–1981. Therefore, economic agents should have had at least one year to respond to unexpected changes in
climate normals at the time ambient ozone is measured. We use monthly MAs, rather than daily or seasonal, because it is likely that

32 Figures A3 and A4 in Appendix A present similar patterns using a semi-balanced sample of weather stations, and our final sample of weather stations once
matched to ozone monitors.

33 We detail the steps taken in Appendix A.2 as well as conduct robustness checks on the sensitivity of our results to changes in the algorithm in Appendix
B.1.

34 We discuss the reasoning for this approach as well as our results using a balanced panel in Appendix B.1.
35 For further details regarding the construction of the final dataset for our analysis, see Appendix A.2.
36 Our decomposition of meteorological variables into a 30-year moving average (norms) and deviations from it (shocks), as discussed in Section 2, is a data

filtering technique to separate the ‘‘signal’’ from the ‘‘noise’’. This should not be confused with (a special case of) an autoregressive integrated moving average
(ARIMA) model of climate change.

37 It is possible, however, that agents form beliefs regarding expected climate over much shorter and more recent time windows (e.g., Kaufmann et al., 2017),
or that organizational inertia slows the rate at which firms adapt to a changing climate. In our robustness checks we provide similar estimates using 3-, 5-, 10-,
and 20-year moving averages, as well as longer lag lengths between the contemporaneous weather shock and the defined climate normal.
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Fig. 2. Climate norms and shocks. Notes: This figure depicts US temperature over the years in our sample (1980–2013), decomposed into their climate norm
and temperature shock components. The climate norm (Panel A) and temperature shocks (Panel B) are constructed from a complete, unbalanced panel of
weather stations across the US from 1950 to 2013, restricting the months over which measurements were gathered to specifically match the ozone season of
April–September, the typical ozone season in the US (see Appendix A Table A3 for a complete list of ozone seasons by state). Recall that the climate norm
represents the 30-year monthly moving average of the maximum temperature, lagged by one year, while the temperature shock represents the difference between
this value and the contemporaneous maximum temperature. The solid line in Panel A smooths out the annual averages of the 30-year moving averages, and the
horizontal dashed lines in Panel B highlights that temperature shocks are bounded in our period of analysis. Appendix A Figure A3 depicts these same norms
and shocks when restricting the dataset to include only a semi-balanced panel of weather stations, while Appendix A Figure A4 depicts these when the dataset
is restricted to only those weather stations that are matched to an ambient ozone monitor for our main estimation sample.

individuals recall climate patterns by month, not by day of the year. Indeed, meteorologists on TV and social media often talk about
how a month has been the coldest or warmest in the past 10, 20, or 30 years, but not how a particular day of the year has deviated
from the norm for that specific day.38 Taking this approach, 𝑇 𝑒𝑚𝑝𝑊 represents weather shocks and is defined as the deviation of
the daily temperature from the lagged 30-year monthly MA.

38 There may be a concern that because temperature can have a within-month trend, defining temperature as a monthly average (climate norm) with daily
(weather) shocks could mechanically lead to a stronger relationship between ozone and weather than between ozone and climate. As another robustness check,
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By definition, these shocks are revealed to economic agents only at the time ambient ozone is being measured. Thus, in this case
agents may have had only a few hours to adjust, limiting their ability to respond to unexpected temperatures.39 Fig. 3 provides an
illustrative example of our preferred decomposition in Panel A, compared to a traditional fixed-effects decomposition in Panel B,
using data for Los Angeles in 2013.40

Econometric Model — Given the decomposition of meteorological variables into two sources of variation, our parsimonious
econometric specification to estimate the impact of temperature on ambient ozone is the following:

𝑂𝑧𝑜𝑛𝑒𝑖𝑡 = 𝛽𝑊 𝑇 𝑒𝑚𝑝𝑊𝑖𝑡 + 𝛽𝐶𝑇 𝑒𝑚𝑝
𝐶
𝑖�̄� +𝑋′

𝑖𝑡𝛿 + 𝜙𝑖𝑠 + 𝜖𝑖𝑡, (13)

where 𝑖 represents an ozone monitor, 𝑡 stands for day, and 𝑠 for season-of-the-sample (Spring or Summer, in each year). As mentioned
in the prior section, our analysis focuses on the most common ozone season in the U.S. – April to September – in the period 1980–
2013.41 The dependent variable 𝑂𝑧𝑜𝑛𝑒 captures daily maximum ambient ozone concentration. 𝑇 𝑒𝑚𝑝’s represent the two components
of the decomposition proposed for meteorological variables.42 The matrix of additional control covariates 𝑋𝑖𝑡 contains a similar
decomposition of precipitation.43 Finally, we replace the monitor fixed effects, 𝜇𝑖, and time fixed effects, 𝜆𝑠, from the generalized
model presented in Eq. (6) with 𝜙𝑖𝑠 – fixed effects for monitor-by-season-by-year, and include 𝜖𝑖𝑡, an idiosyncratic term.44 From a
theoretical standpoint this change is not necessary — and in fact the empirical results are qualitatively similar in our context when
implemented using 𝜇𝑖 and 𝜆𝑠 as separate fixed effects. We nevertheless combine them to more flexibly control for local factors that
may have changed across seasons and years, allowing us to more closely approximate the ideal experiment.45

Analogous to Isen et al. (2017), notice that by including fixed effects for monitor-by-season-by-year, it is as if we regressed
our main specification monitor by monitor, individually, for each season of the sample, and then took the weighted average of all
recovered coefficients. Conceptually, consider the following thought experiment that we observe in our data many thousands of
times for both daily temperature shocks and monthly climate norms: Take two days (months) in the same location, same season,
and same year. Now, suppose that one of the days (months) experiences a larger temperature shock (hotter climate norm) than
the other. Our estimation strategy quantifies the extent to which this difference in temperature shock (climate norm) affected the
ozone concentration observed on that day (month). Therefore, this approach controls for a number of potential time-invariant and
time-varying confounding factors that one may be concerned with, such as the composition of the local atmosphere, regulatory
burden, and technological progress.

Measuring Adaptation — Once we credibly estimate the impact of the two components of temperature – daily shocks and within-
season changes in climate normals – on ambient ozone concentration, we uncover our measure of adaptation. The average adaptation
across all monitored locations in our sample is the difference between the coefficients 𝛽𝑊 and 𝛽𝐶 estimated in Eq. (13). If economic
agents engaged in full adaptive behavior, 𝛽𝐶 would be zero, and the magnitude of the average adaptation would be equal to the size
of the weather shock effect on ambient ozone concentration.46 As previously discussed, agents would react to ‘‘permanent’’ increases
in temperature by reducing ozone precursor emissions to offset potential increases in ozone concentration.

In our preferred econometric specification, behavioral responses are allowed to occur only in the year after the change in
temperature norm is observed. Those adjustments, however, might be related to innovations in temperature happening both in the
previous year and 30 years before. Indeed, the ‘‘moving’’ feature of the 30-year MA is, by definition, associated with the removal
of the earliest observation included in the average – 31 years before, and the inclusion of the most recent observation – one year
before. Nevertheless, in the robustness checks we consider cases where economic agents can take a decade or two to adjust.

we redefine �̄�𝑖�̄� in Eq. (12) to the special case in which 𝑝 = 𝑡, using daily instead of monthly moving averages, discussed further in the following subsection.
Economic agents, however, may still associate a day with its corresponding month when making adjustment decisions.

39 Because precise weather forecasts are made available only a few hours before its realization, economic agents may have limited time to adjust prior to
the ozone measurement. This might be true even during Ozone Action Days (OAD). An OAD is declared when weather conditions are likely to combine with
pollution emissions to form high levels of ozone near the ground that may cause harmful health effects. Individuals and firms are urged to take action to reduce
emissions of ozone-causing pollutants, but usually only a day in advance or in the same day. Unlike what happens in a few developing countries, however,
neither production nor driving is forced to stop in those days, limiting the impact of short-run adjustments. In the robustness checks, we find no evidence of
any additional adaptation occurring due to OAD announcements. That is, short-run adjustments, if any, do not seem large enough to be comparable to what
happens in the long run.

40 Figure A9, in Appendix A, illustrates this same concept but over the entire 34-year sample period.
41 Table A3 in Appendix A lists the official ozone season by state.
42 We further explore the nonlinear effects of temperature on ozone in Section 4.4, providing two alternative approaches for extending the linear model to

allow for nonlinearities in the response function of ozone to weather shocks and climate norms.
43 Although Dawson et al. (2007) find it to be less important than temperature, Jacob and Winner (2009) point out that higher water vapor in the future

climate may decrease ground-level ozone concentration. Our estimates are in line with those authors’ assessment, and are available upon request.
44 Appendix C details how both sources of monitor-level variation in �̄�𝑖�̄�, within-season and across-year, are still leveraged within this monitor-by-season-by-year

fixed-effects structure.
45 One may be concerned that we do not include fixed effects for ‘‘predictable’’ within-season variation such as the ‘‘ozone weekend effect’’. As a robustness

check we re-estimated Eq. (13) after further extending our monitor-by-season-by-year fixed effects, 𝜙𝑖𝑠, to monitor-by-season-by-year-by-weekday/end. Our results
were quantitatively unchanged to the third decimal digit.

46 This outcome is unlikely because, as noted previously, adaptation is typically not costless and thus the costs of engaging in ‘full adaptive behavior’ likely
outweigh the benefits (Kelly et al., 2005; Carleton et al., 2022).
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Fig. 3. Decomposition of temperature norms & shocks – Illustration (Los Angeles, 2013). Notes: This figure compares our preferred temperature decomposition
method with a standard fixed-effects approach using data from the 2013 Los Angeles ozone season, illustrating the benefit of our unifying approach as outlined
in Eq. (6) relative to the standard fixed-effects approach outlined in Eq. (2). Specifically, Panel A depicts the daily measure of temperature, as well as its
decomposition into climate norm and temperature shock. By contrast, Panel B depicts the same daily measure of temperature, but instead decomposed into a
typical fixed-effect average temperature and the deviations from this constant value after additionally controlling for monthly fixed effects. The dashed line at the
top of each panel indicates observed daily maximum temperature while the black solid line represents long-run norms. The gray solid line at the bottom of each
panel indicates temperature shocks. Notice that the temperature shocks in our preferred decomposition are nearly identical to the deviations in the fixed-effects
decomposition, as would be expected from the Frisch–Waugh–Lovell theorem, and illustrate the source of variation used for identifying 𝛽𝑊 and 𝛽𝐹𝐸 respectively.
Additionally, Panel A highlights the source of variation in climate used to identify 𝛽𝐶 in our proposed approach, while the fixed-effects decomposition lacks
any such variation in the measure of climate, as the LA fixed effect is collinear with average temperature. Recall that for our proposed approach the climate
norm represents the 30-year monthly moving average of the maximum temperature, lagged by one year, while the temperature shock represents the difference
between this value and the contemporaneous maximum temperature.

4. Results

4.1. Impacts of temperature on ambient ozone concentration

Column (1) of Table 1 presents the effects on ambient ozone of the two components of observed temperature: climate norm,
represented by the lagged 30-year monthly MA, and temperature shock, represented by the deviation from that long-run norm.47

Although the effects are uncovered by estimating Eq. (13), columns (2) and (3), respectively, benchmark them against effects that

47 As mentioned before, even though we use monthly moving averages in our main analysis, as a robustness check we also estimate our preferred specifications
using daily moving averages. The results are virtually identical, and are reported in Appendix B.1 Table B4.
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Table 1
Climate impacts and adaptation — our unifying approach vs. Prior approaches.

Daily max ozone levels (ppb)

Unifying Fixed-Effects Cross-Section
(1) (2) (3)

Temperature shock 1.678***
(0.063)

Climate norm 1.164***
(0.051)

Max temperature 1.659***
(0.063)

Average max temperature 1.166***
(0.106)

Implied adaptation 0.514*** 0.493**
(0.041) (0.225)

Fixed effects:
Monitor-by-Season-by-Year Yes
Monitor-by-Month-by-Year Yes
State Yes
Precipitation controls Yes Yes Yes
Latitude & Longitude Yes
Non-attainment control Yes

Observations 5,139,523 5,139,523 2712
𝑅2 0.481 0.542 0.352

Notes: This table reports the weather and climate impacts on ambient ozone concentrations, estimated by different methodologies. Column (1) reports the
estimates of our unifying approach, in which we decompose daily maximum temperature into climate norms and weather shocks, and exploit variation in both
components in the same estimating equation — our Eq. (13). Recall that the climate norm represents the 30-year monthly moving average of the maximum
temperature, lagged by one year to allow for economic agents to potentially adapt, while the temperature shock represents the difference between this value
and the contemporaneous maximum temperature. Column (2) reports the effect of daily maximum temperature on ambient ozone from the panel fixed-effects
approach, exploiting day-to-day variation in temperature, hence capturing the effect of a change in weather. Column (3) reports cross-sectional estimates using
average maximum temperature and ambient ozone concentrations for each ozone monitor in the sample. Having averaged the variables over all the years from
1980–2013, this estimate captures the effect of a change in climate. Note that while estimates in column (3) must additionally control for whether a county is in
violation of the CAA ozone standards, this is implicitly controlled for via the fixed-effects in columns (1) and (2). Combining our estimates in column (1) with
climate projections from the U.S. Fourth National Climate Assessment (Vose et al., 2017) under the business-as-usual scenario (RCP 8.5) – 1.6 ◦C temperature
increase by 2050, and 4.8 ◦C by 2100 – ambient ozone concentrations would rise by 1.9 and 5.6 ppb, respectively. This should be the so-called ‘‘climate penalty’’
– the response of economic agents to longer-term climatic changes, which is inclusive of adaptation. Wrongly using the response to temperature shocks as the
penalty, which is exclusive of adaptation, those numbers would be larger: 2.7 and 8 ppb, respectively. For a comparison, modeling studies find increases in
summertime ambient ozone concentrations by 1–10 ppb (for a review, see Jacob and Winner, 2009). Standard errors are clustered at the county level in columns
(1) and (2), while column (3) uses standard heteroskedastic robust errors. ***, **, and * represent significance at 1%, 5% and 10%, respectively.

would have been found if one had exploited either only the panel (e.g., Deschenes and Greenstone, 2007; Schlenker and Roberts,
2009) or only the cross-sectional (e.g., Mendelsohn et al., 1994; Schlenker et al., 2005) structure of the data.

Column (2) reports the effect of temperature on ozone identified by exploiting within-monitor daily variation in maximum
temperature after controlling for monitor-by-month-by-year fixed effects. The coefficient indicates that a 1 ◦C increase in maximum
temperature leads to a 1.66 parts per billion (ppb) increase in maximum ambient ozone concentration. Column (3) reports results
from a cross-sectional estimation of daily maximum ozone concentration on daily maximum temperature around each monitor,
averaged over the entire period of analysis 1980–2013. These variables capture information for all the years in our sample and
are good proxies for the average pollution and climate around each monitor. The estimate suggests that a 1 ◦C increase in average
maximum temperature is associated with an increase of 1.17 ppb in ozone concentration, approximately. When we decompose daily
maximum temperature into our two components in column (1), as expected the estimated effect of temperature shocks on ambient
ozone is statistically the same as the fixed-effects approach in column (2). Coincidentally, the effect for the lagged 30-year MA
climate norm is also statistically the same as its counterpart in column (3). Specifically, a 1 ◦C temperature shock increases ozone
concentration by 1.68 ppb, and a 1 ◦C change in climate norm increases ozone concentration by 1.16 ppb. To be clear, this does
not imply that the cross-sectional approach is free of omitted variable bias concerns. In this specific context there may simply be
both upward and downward bias simultaneously affecting the estimate as in Griliches (1977).48 In fact, when we re-estimate our
model on a more balanced sample of monitors as a robustness check the bias in the cross-sectional approach becomes much more
evident, leading to an over-estimation of the implied measure of adaptation by more than 100 percent.49

48 More generally, in contexts where one is able to control for all key covariates (e.g., in an agricultural setting with measurements of soil quality, storage,
irrigation, and other relevant variables), then the fixed effects would be capturing much of the same content. But there are likely to be many contexts where the
crucial controls are omitted – e.g., in analyses of mortality and health outcomes, several confounding factors may be unobserved such as genetic traits, defensive
investments, and lifestyle choices such as smoking, drinking, and exercising.

49 See estimates in Appendix B.1 Table B2.
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It is widely recognized that the cross-sectional approach is plagued with omitted variable bias. In our context, if more
informed/concerned local monitoring agencies inspect heavy emitters of ozone precursors more often when average temperature
rises, and more intense enforcement of environmental regulations induces reductions in ozone concentration, then this unobserved
behavior might lead to underestimation of the long-run impact of temperature. On the other hand, as emphasized in the conceptual
framework, estimates from the standard panel data fixed-effects methodology and our approach should be statistically the same due
to the properties of the Frisch–Waugh–Lovell theorem. The deseasonalization embedded in the fixed-effects model is approximately
equivalent to the use of deviations from 30-year norms in our regression model.

Our estimates imply a so-called ‘‘climate penalty’’ on ozone on the lower end of the ranges found in the literature. Indeed, Jacob
and Winner (2009), in their review of the effects of climate change on air quality, find that climate change alone may lead to a
rise in summertime surface ozone concentrations by 1–10 ppb – a wide interval partly driven by the different regional focuses of
the studies they review. The U.S. EPA, in its 2009 Interim Assessment, claims that ‘‘the amount of increase in summertime average ...
O3 concentrations across all the modeling studies tends to fall in the range 2–8 ppb’’ (USEPA, 2009, p.25). Combining our estimates in
column (1) with climate projections from the U.S. Fourth National Climate Assessment (Vose et al., 2017) under a business-as-usual
scenario (RCP 8.5), one would predict an increase in ambient ozone concentrations by the mid and end of the century in the range
of 1.9–5.6 ppb, approximately.50 To be clear, ‘‘climate penalty’’ in our setting is the response of economic agents to longer-term
climatic changes, which is inclusive of adaptation, as it will be discussed below. If one would wrongly use the response to temperature
shocks as the penalty, which is exclusive of adaptation, the range would be 2.7–8 ppb, a nontrivial shift to the right. In fact, this may
be one of the reasons why our estimate of the penalty is on the lower ranges of the values produced by simulation studies (again,
for a review, see Jacob and Winner, 2009); they usually do not take into account behavioral responses. To put those values in
perspective, each of the last few times EPA revised the air quality standards for ambient ozone, they decreased it by 5 ppb.

4.2. Measuring adaptation to climate change

Our results indicate that short-run temperature shocks have a larger impact on ozone levels compared to long-run temperature
norms. The comparison between the short- and long-run effects of temperature may provide a measure of adaptive responses by
economic agents (Dell et al., 2012, 2014). Our measure of adaptation – also a comparison between the impact of changes in the
long-run climate normal temperature (lagged 30-year MA) and the effect of the temperature shock (deviation from the MA) – is 0.51
ppb, suggesting that economic agents may be adapting to climate change. In the case of polluting firms, for example, they might be
making adjustments to their production processes so that whenever average temperature rises, the emissions of ozone precursors
reduce to keep ambient ozone at controllable levels. Such adjustments might be driven by public and regulatory pressures and/or
technological innovation.

If we ignored such adaptive responses by economic agents, then we would be overestimating the ‘‘climate penalty’’ on ozone
by more than 44 percent. Again, we would be making the mistake of taking the effect of weather shocks as the penalty, when we
should be looking at the impact of climatic changes, which incorporates adaptive responses by economic agents. Using the climate
projections from the U.S. Fourth National Climate Assessment under the business-as-usual scenario (RCP 8.5), we would overestimate
the climate penalty by 0.82 ppb by mid-century, and 2.47 ppb by the end of the century.

4.3. Robustness checks

Measurement Error & Agents’ Expectations — A concern regarding our decomposition of meteorological variables in Eq. (10) might
be measurement error. Because both components are intrinsically unobserved, we define the long-run climate norm as the 30-year
MA, and weather shocks as deviations from that moving average. If there is classical measurement error, the estimates of the
coefficients of interest in Eq. (13) will suffer from attenuation bias. Moreover, the bias will be magnified in fixed-effect regressions.

To investigate the robustness of our results to measurement error, we carry out analyses using moving averages of different
length. We start by using a 3-year MA, then 5-, 10-, and 20-year MAs, relative to our preferred specification using 30 years. As argued
seminally by Solon (1992), as we increase the time window of a moving average, the permanent component of a variable that also
includes a transitory component will be less mismeasured. If this is the case, we should observe the coefficients of interest increasing
as longer windows are used for the moving averages. Our estimates in columns (1) through (4) of Table 2 remain remarkably stable
over the different lengths of the moving averages, but if anything they get slightly larger until the 20-year moving average.

As pointed out by Blanc and Schlenker (2017), a fixed-effects regression with variables under classical measurement error is
plagued by larger attenuation bias. The identifying variation in a standard panel analysis comes from deviations from the cross-
sectional averages in the panel structure. Once the variables of interest are demeaned, the share of measurement error variation is
magnified, and the coefficients of interest will be even more attenuated. Again, our estimates in Table 2 remain largely unchanged
over the different lengths of the moving averages, with a slight attenuation of the coefficient of the moving average when we

50 To be clear, while our estimate of adaptation does not rely on extrapolation, any prediction of the future ‘‘climate penalty’’ must do so by construction.
In that sense, the ‘‘climate penalty’’ implied by our estimates may still be an upper bound. As we will discuss later in Section 4.5, although our measure of
adaptation has remained relatively constant over time, the impact of the climate norm on ozone has decreased. This could imply that long-run changes in the
economic or regulatory landscape, driven, e.g., by technological advancement or shifting preferences, could lead to further decreases in this impact in the future.
At the same time, we also find non-linear and increasing effects of temperature on ozone formation, indicating that there may be counter-acting intensification
effects.
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Table 2
Key robustness checks.

Alternative lengths of climate norm Adaptation responses

3-year 5-year 10-year 20-year Long run Long run Short-run
MA MA MA MA 10-year Lag 20-year Lag 2004–2013 only

(1) (2) (3) (4) (5) (6) (7)

Temperature shock 1.669*** 1.670*** 1.670*** 1.673*** 1.681*** 1.685*** 1.179***
(0.063) (0.062) (0.062) (0.062) (0.063) (0.063) (0.029)

Climate norm 1.158*** 1.166*** 1.176*** 1.175*** 1.155*** 1.143*** 0.581***
(0.049) (0.050) (0.051) (0.051) (0.050) (0.049) (0.034)

Implied adaptation 0.511*** 0.504*** 0.495*** 0.499*** 0.527*** 0.542*** 0.597***
(0.040) (0.040) (0.041) (0.041) (0.041) (0.041) (0.029)

Shock × Action day 0.068
(0.188)

All controls Yes Yes Yes Yes Yes Yes Yes

Observations 5,139,523 5,139,523 5,139,523 5,139,523 5,131,943 5,127,886 1,879,041
𝑅2 0.481 0.481 0.481 0.481 0.481 0.481 0.444

Notes: This table reports the results for key robustness checks investigating sensitivity to alternative definitions for the climate norm, as well as allowing more
or less time for economic agents to engage in adaptive behavior. Columns (1) through (4) report estimates when we adjust the length of the constructed climate
norm (moving averages of temperature) using different time windows. Recall that the 3- to 30-yr moving average is lagged by 1 year, while the temperature shock
represents the difference between this value and the contemporaneous maximum temperature. The estimates in columns (5) and (6) are obtained by Eq. (13), but
using 10- and 20-year lags between the moving average and contemporaneous temperature, rather than 1-year lag. Column (7) continues using the 1-year lag of
the main specification, but adds an additional interaction term on temperature shock using clean air action day announcements (days in which the relevant air
quality authority observes, or expects to observe, unhealthy levels of pollution on the Air Quality Index and releases a public service announcement to this effect)
at the county-level to estimate short-run adaptive behavior. Note that although action day policies first began in the 1990’s, EPA data only begins from 2004
onwards, leading to a restricted overall sample (approximately 35% of our full sample). The full list of controls are the same as in the main model, depicted in
column (1) of Table 1. Standard errors are clustered at the county level. ***, ** and * represent significance at the 1%, 5% and 10%, respectively.

move from the 20- to the 30-year moving average. This latter result suggests that the widely used climate normals are close to the
‘‘optimal’’ long-run norms. The improvements from reducing measurement error might be offset by the panel-driven attenuation
bias between 20- and 30-year time windows.

At the same time, it is possible that agents form climate expectations in a way that exhibits recency weighting (e.g., Kaufmann
et al., 2017). This presents a second trade-off. Longer, 20- to 30-year MAs, guided by climatology, appear ‘‘optimal’’ in our setting
for navigating the first trade-off between potential measurement error and fixed effect induced attenuation bias for the purposes of
estimating a long-run climate impact. Shorter, 3- to 5-year MAs, however, may better reflect agents’ internalized information set with
regards to forming expectations over the current climate conditions and thus better capture medium-run adaptive behavior (Moore
et al., 2019). It is plausible, therefore, that the observed increases, however slight, in the coefficient on climate norm as we move
from a 3- to a 20-year MA are, at least in part, due to agents’ stronger adaptive response to recent events than to longer-run trends
in the climate norm.

Lagged & Short-run Adaptive Responses — Another potential concern with our preferred specification might be the fact that we
have used the 1-year lagged 30-year moving average to capture the long-term climate norm, implying that agents adapt within one
year. Hence, we check the sensitivity of our results when agents have 10 or 20 years to adapt, instead of just one. In columns (5) and
(6) of Table 2, we provide estimates from our preferred specification but using respectively 20-year moving averages of temperature
lagged by 10 years, and 10-year moving averages lagged by 20 years. By doing so, we are providing agents more time to potentially
adjust to climate change. Even though we would expect that the effects of the weather shocks to be similar, we anticipate the effects
of the climate norm to be slightly smaller than before, as agents should now be able to adapt more than before. This is what we find
from our estimates reported in Table 2, although the magnitude of the coefficients is remarkably close to that of our main results.

Alternatively, one might be concerned that agents are in fact able to respond rapidly and adapt to weather shocks, in which case
the coefficient on temperature deviations would be inclusive of any such adaptive responses, and thus our estimate of adaptation
would be biased downwards. In column (7) we make use of a widespread policy of ‘‘Ozone Action Day’’ (OAD) alerts, where a
local air pollution authority would issue an alert, usually a day in advance, that meteorological conditions are expected to be more
conducive to a high concentration of ambient ozone in the following day. If agents are adapting to contemporaneous weather
shocks, these ‘‘action days’’ would be the days we would be most likely to observe an adaptive response. Indeed, individuals are
urged to take voluntary action to reduce emissions of ozone precursors such as working from home, carpooling to work, or using
public transportation; combining auto trips while running errands; and reducing home landscaping projects. Firms are also urged
to provide work schedule flexibility, reduce refueling of the corporate fleet during daytime, and save AC-related energy usage by
adjusting indoor temperature (USEPA, 1997). Interacting an indicator variable for days in which OAD alerts were issued for a given
county with our other covariates, we find that such alerts have a negligible and statistically insignificant impact on the effect of
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a 1 ◦C change in the contemporaneous temperature shock.51 Although previous studies have provided evidence of some decline in
driving and increases in the use of public transportation in a few locations (e.g., Cutter and Neidell, 2009; Sexton, 2012), we find
little indication that agents engage in meaningful short-run adaptive responses across the country.

Further Robustness Checks — We conduct additional robustness checks regarding features in the construction of the data, selection
of the estimating sample, and alternative econometric specifications in Appendix B.1 Tables B1, B2, B3, and B4. Specifically, Table
B1 examines the sensitivity of our results to our algorithm for matching ozone and temperature monitoring stations. Table B2
restricts our sample of ozone monitors to a semi-balanced panel, including only monitors with data for every year of our sample;
however, as pointed out by Muller and Ruud (2018), our preferred unbalanced panel is likely more nationally representative. Table
B3 examines the sensitivity of our results to the exclusion of regions that had implemented policies aimed at reducing ambient ozone
concentrations by specifically targetting ozone precursors.

Table B4 contains four additional robustness checks: (i) implementing a daily MA rather than monthly ; (ii) purposefully
aggregating our data to the monthly level to simulate our methodology with lower frequency data; (iii) controlling for wind speed
and sunlight with the subset of data for which that information is available; and (iv) examining the sensitivity of our results to
inter-regional NOx transport by restricting the estimating sample to exclude, or conversely, only include, the states designated by
the EPA as part of the ‘‘ozone transport region’’ (OTR). Across all of these models results remain qualitatively similar to our central
findings. Finally, Appendix B.1 Table B5 provides bootstrapped standard errors for our main estimates, finding little difference
relative to the standard errors clustered at the county level. In addition, that table presents standard errors clustered at the state
level. Although they double in magnitude, they do not change the statistical significance of the results.

4.4. Estimating nonlinear effects of temperature

In many empirical settings there has been a focus in the economics literature on allowing for nonlinear effects of temperature or
climate on the outcome of interest. Thus, while our central model adopts a linear specification for simplicity in interpretation and
comparison with prior methods, we note that our proposed approach is easily extendable to any nonlinear setting with nth order
polynomial effects by simply including higher-order polynomial terms for both the weather shock, (𝑥𝑖𝑡 − �̄�𝑖�̄�), and climate norm, �̄�𝑖�̄�.
The following equation presents the quadratic model:

𝑦𝑖𝑡 = 𝛼 + 𝛽𝑊 (𝑥𝑖𝑡 − �̄�𝑖�̄�) + 𝛽𝐶 �̄�𝑖�̄� + 𝛽𝑊 2(𝑥𝑖𝑡 − �̄�𝑖�̄�)2 + 𝛽𝐶2�̄�
2
𝑖�̄� + 𝜇𝑖 + 𝜆𝑠 + 𝜈𝑖𝑡, (14)

while a cubic model would add the terms 𝛽𝑊 3(𝑥𝑖𝑡 − �̄�𝑖�̄�)3 and 𝛽𝐶3�̄�3𝑖�̄�. Adaptation could then be inferred for the quadratic model as:

𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 = (𝛽𝑊 − 𝛽𝐶 ) + 2(𝛽𝑊 2(𝑥𝑖𝑡 − �̄�𝑖�̄�) − 𝛽𝐶2(�̄�𝑖�̄�)), (15)

while adaptation for a cubic model would add the term 3(𝛽𝑊 3(𝑥𝑖𝑡 − �̄�𝑖�̄�)2 − 𝛽𝐶3(�̄�𝑖�̄�)2). Notably, for a marginal deviation of the daily
temperature from the climate norm, i.e., 𝑥𝑖𝑡 − �̄�𝑖�̄� ≈ 0, Eq. (15) simplifies to:

𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 = 𝛽𝑊 − 𝛽𝐶 − 2𝛽𝐶2(�̄�𝑖�̄�), (16)

with marginal adaptation in the cubic model additionally including the term −3𝛽𝐶3(�̄�𝑖�̄�)2.
Note that estimating the impacts of climate and weather in a setting with nonlinear effects will also inherently include the

interaction of these two channels of temperature response, as discussed by Mendelsohn (2016), because the marginal impact of
weather will vary with the underlying climate norm from which it is deviating.52

As an alternative to including nonlinear terms, one could construct a set of indicator variables denoting whether realized
temperature at location 𝑖 on day 𝑡 fell within a certain temperature bin. By interacting these indicators with the shock, norm, and
control variables in a linear model, the response function of the outcome variable to both weather and climate would be allowed to
flexibly adjust across the temperature distribution in a piece-wise linear fashion.53 Allowing for a more flexible response function
may be especially desirable in settings where the underlying functional form is unknown. Furthermore, by estimating a (locally)
linear relationship within each bin, the specification allows for intuitive and easily interpretable measures of weather and climate
impacts and implied measure of adaptation.

The exact functional form of the ozone-temperature relationship is unknown because ozone formation may be intensified with
higher temperatures, but also exhibits a shorter half-life (McClurkin et al., 2013). We thus examine the nonlinear effects of weather
shocks and climate norms on ambient ozone concentrations across the temperature distribution using quadratic and cubic versions
of Eq. (13) by including the additional terms outlined in Eq. (14). We also estimate a ‘‘binned’’ specification as described above

51 Although the recovered coefficients of temperature shock, climate norm, and implied adaptation are quantitatively different for column (7) than columns
(5) and (6), this is due to a difference in the underlying sample. EPA data on ‘‘action day’’ alerts were only provided from 2004 onwards, leading to a restricted
overall sample (approximately 36% of our full sample).

52 To see this mathematically, one need only expand the higher order weather terms to see that they include the interaction effects. For example, the expansion
of (𝑥𝑖𝑡 − �̄�𝑖�̄�)2 includes the term −2𝑥𝑖𝑡�̄�𝑖�̄�.

53 In this way, the marginal effect of a 1 ◦C change in either component of temperature is constrained to be constant within its respective temperature bin,
but is allowed to vary across each bin.
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by creating indicator variables denoting whether the contemporaneous daily maximum temperature at a given ozone monitor falls
within a certain 5 ◦C temperature bin.54

Fig. 4 depicts the ozone relationship and marginal response to climate and weather, as well as marginal adaptation, across the
temperature distribution for the linear, quadratic, cubic, and binned specifications.55 The linear specification appears to provide
an adequate first-order approximation of the nonlinearities captured by the cubic and binned specifications, while the quadratic
model appears to mis-specify the ozone-weather relationship compared to the other models. Although both the cubic and binned
specifications find similar ozone and adaptation responses across the majority of the temperature distribution, due to the functional
form restrictions of the cubic it also implies a large, and rather unintuitive, level of adaptation at lower temperatures.

With this in mind, our preferred approach for capturing potential nonlinearities in our empirical context is the binned
specification. Table B6, column (1), in Appendix B presents the results of our preferred specification when interacting each of
the independent variables with the 5 ◦C temperature bin indicators. The implied measure of adaptation is then presented in column
(2).56 Similar to Fig. 4, we find that the ozone/temperature response is increasing at an increasing rate at lower temperature ranges,
but increases at a decreasing rate at higher temperatures, particularly for increases in the climate norm. These results suggest that
agents may be making extra effort to reduce ozone precursor emissions when temperatures are the highest and could otherwise lead
to greater ozone formation.

4.5. Exploring heterogeneity

Earlier studies have inferred adaptation indirectly, by flexibly estimating economic damages due to weather shocks, then assessing
climate damages through shifts in the future weather distribution. We have pointed out the shortcomings of that time/space
extrapolation approach in the spirit of the Lucas Critique (Lucas, 1976). Importantly, once we have recovered a measure of
adaptation from responses to weather shocks and longer-term climatic changes by the same economic agents, then we are able
to explore the heterogeneity in their degree of adaptation. In Appendix B.2 we report results of heterogeneity analyses examining
adaptive behavior over time in Figure B1 and Table B8, across varying measures of belief in climate change in Tables B9–B11.
Table B12 then examines how the effect of temperature on ozone may be attenuated if the local atmosphere is limited in one ozone
precursor (NOx or VOCs) relative to the other.

5. Concluding remarks

We have developed a unifying approach to measuring climate change impacts and adaptation that considers both responses
to weather shocks and longer-term climatic changes in the same estimating equation. By bridging the two earlier strands of
the climate-economy literature – cross-sectional studies that relied on permanent, anticipated components behind meteorological
conditions (e.g., Mendelsohn et al., 1994; Schlenker et al., 2005), and panel fixed effects that exploit transitory, unanticipated
weather shocks (e.g., Deschenes and Greenstone, 2007; Schlenker and Roberts, 2009) – we have overcome identification concerns
from earlier cross-sectional studies, improved on the measurement of adaptation, and provided a test for the statistical significance
of this measure. Our approach rests on two rather simple but powerful ideas. First, the decomposition of meteorological variables
into long-run climate norms and contemporaneous weather shocks. Second, the properties of the Frisch–Waugh–Lovell theorem,
which enables the simultaneous identification of these two short- and long-run impacts.

In the spirit of Dell et al. (2012, 2014), we recovered a measure of adaptation defined as the difference between those short-
and long-run responses. Unlike previous studies, however, this measure was derived directly from coefficients estimated in the same
fixed-effects model; hence, less susceptible to omitted variable biases from cross-sectional estimates. In addition, it compares the
responses of the same economic agents, overcoming the challenges of identifying adaptation by comparing the profiles of weather
responses across time and space (e.g., Deschenes and Greenstone, 2011; Barreca et al., 2016; Heutel et al., 2021), which requires
that preferences be constant across those dimensions.

We applied our unifying approach to study the impact of climate change on ambient ‘‘bad’’ ozone in U.S. counties over the
period 1980–2013. Others have relied on atmospheric-sciences simulation models to study the so-called ‘‘climate penalty’’ on
ozone (see a review in Jacob and Winner, 2009). By ignoring the adaptive behavior of economic agents, they may have substantially
overestimated the magnitude of this penalty — in our study setting, disregarding adaptation overestimates the climate penalty
by approximately 44 percent. When considering the impacts of climate change on air pollution, the application of our unifying
methodology led to four main findings.

First, a changing climate appears to be affecting ambient ozone concentrations in two ways. A 1 ◦C shock in temperature increases
ozone levels by 1.68 parts per billion (ppb) on average, which is expectedly what would have been found in the standard fixed-effects
approach. A change of similar magnitude in the 30-year moving average increases ozone concentration by 1.16 ppb. Second, we found
strong evidence of adaptive behavior. For a 1 ◦C change in temperature, our measure of adaptation in terms of ozone concentration

54 The lowest bin is below 20 ◦C (just over the 10th percentile of our temperature distribution), and the highest bin is above 35 ◦C (90th percentile of our
temperature distribution), with the middle bin, 25–30 ◦C, approximately centered around the temperature distribution median (27.8 ◦C) and mean (27.1 ◦C).

55 Recall that the effects of climate and weather under higher order models depend on the level of the other variable. For graphing the climate norm effects
we assume a weather shock of zero — approximately the sample average as the shocks are constructed as deviations from the norm. For graphing the weather
shock effects we assume the sample average climate norm of approximately 27.5 ◦C.

56 Table B7 additionally compares the implied level of adaptation under the linear, binned, quadratic, and cubic specifications.
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Fig. 4. Comparing linear, binned, and nonlinear specifications. Notes: This figure compares our central linear specification with a 5 ◦C binned linear specification,
as well as quadratic and cubic specifications following Eq. (14). For clarity in the figures, we trim the top and bottom one-percent of the temperature distribution.
Panels A and B depict the relationship between ozone and either climate or weather, respectively, across the temperature distribution. While both relationships
exhibit some nonlinearity, the linear specification appears to capture the first-order relationship. Panels C and D depict the marginal impacts of climate and
weather on ozone concentration, with both the flexible binned specification and the cubic reflecting an ‘‘inverted u’’ shape, suggesting that while ozone increases
with temperature, above a certain temperature it begins to increase at a decreasing rate. Finally, Panel E shows marginal adaptation, wherein both the binned
and cubic specifications exhibit a ‘‘normal u’’ shape, suggesting that adaptation is larger when temperature is hotter and could lead to higher ozone formation.
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is 0.51 ppb, which is statistically and economically significant. Third, by extending our central model to flexibly recover estimates
accounting for the nonlinear relationship between ozone and temperature, we found that agents – perhaps unsurprisingly – tend to
focus their adaptive efforts on the hottest days, which would ex ante be likely to lead to higher levels of ambient ozone. Finally, we
provided evidence of nontrivial heterogeneity in the degree of temperature response and adaptation across time and space, which
highlights the potential biases of existing approaches in assigning weather responses or adaptation from one period and/or location
to other periods and locations, consistent with insights by Olmstead and Rhode (2011) and Bleakley and Hong (2017).

Notably, although we made use of high frequency data in this study, our unifying framework is generalizable to any empirical
setting where one can obtain short-term variation in weather associated with limited opportunities to adapt, and long-term
climatological variation allowing for adaptation. Settings in which opportunities to adapt are limited at the daily level, but may
exist at the monthly or seasonal level are reliant on temporally disaggregated data, while those in which such opportunities are
limited even at the monthly or seasonal level may be able to use more aggregate data.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix A. Supplementary data

The appendix for this article can be found online at https://doi.org/10.1016/j.jeem.2023.102843. Replication materials can be
found online at https://doi.org/10.3886/E192708V1.

References

Auffhammer, Maximilian, 2018. Quantifying economic damages from climate change. J. Econ. Perspect. 32 (4), 33–52.
Auffhammer, Maximilian, Kellogg, Ryan, 2011. Clearing the air? The effects of gasoline content regulation on air quality. Amer. Econ. Rev. 101 (6), 2687–2722.
Baaqmd, Bay Area Air Quaility Management District, 2017. 2017 Clean Air Plan, Volume 1. BAAQMD, Bay Area Air Quaility Management District, San Francisco,

CA.
Barreca, Alan, Clay, Karen, Deschenes, Olivier, Greenstone, Michael, Shapiro, Joseph S., 2016. Adapting to climate change: The remarkable decline in the US

temperature-mortality relationship over the twentieth century. J. Polit. Econ. 124 (1), 105–159.
Baxter, Marianne, King, Robert G., 1999. Measuring business cycles: Approximate band-pass filters for economic time series. Rev. Econ. Stat. 81 (4), 575–593.
Blanc, Elodie, Schlenker, Wolfram, 2017. The use of panel models in assessments of climate impacts on agriculture. Rev. Environ. Econ. Policy 11 (2), 258–279.
Bleakley, Hoyt, Hong, Sok Chul, 2017. Adapting to the weather: Lessons from U.S. history. J. Econ. Hist. 77 (3), 756–795.
Burke, Marshall, Emerick, Kyle, 2016. Adaptation to climate change: Evidence from US Agriculture. Am. Econ. J.: Econ. Policy 8 (3), 106–140.
Carleton, Tamma, Jina, Amir, Delgado, Michael, Greenstone, Michael, Houser, Trevor, Hsiang, Solomon, Hultgren, Andrew, Kopp, Robert E., McCusker, Kelly E.,

Nath, Ishan, Rising, James, Rode, Ashwin, Seo, Hee Kwon, Viaene, Arvid, Yuan, Jiacan, Zhang, Alice Tianbo, 2022. Valuing the global mortality consequences
of climate change accounting for adaptation costs and benefits. Q. J. Econ. 137 (4), 2037–2105.

Christiano, Lawrence J., Fitzgerald, Terry J., 2003. The band pass filter. Int. Econ. Rev. 44 (2), 435–465.
Climatology Office, Wisconsin State Climatology Office, 2003. Climatic normals. http://aos.wisc.edu/~sco/normals.html.
Cutter, W. Bowman, Neidell, Matthew, 2009. Voluntary information programs and environmental regulation: Evidence from ’spare the air’. J. Environ. Econ.

Manag. 58 (3), 253–265.
Dawson, John P., Adams, Peter J., Pandisa, Spyros N., 2007. Sensitivity of ozone to summertime climate in the eastern USA: A modeling case study. Atmos.

Environ. 41 (7), 1494–1511.
Dell, Melissa, Jones, Benjamin F., Olken, Benjamin A., 2012. Temperature shocks and economic growth: Evidence from the last half century. Am. Econ. J.:

Macroecon. 4 (3), 66–95.
Dell, Melissa, Jones, Benjamin F., Olken, Benjamin A., 2014. What do we learn from the weather? The new climate-economy literature. J. Econ. Lit. 52 (3),

740–798.
Deschenes, Olivier, Greenstone, Michael, 2007. The economic impacts of climate change: Evidence from agricultural output and random fluctuations in weather.

Amer. Econ. Rev. 97 (1), 354–385.
Deschenes, Olivier, Greenstone, Michael, 2011. Climate change, mortality, and adaptation: Evidence from annual fluctuations in weather in the US. Am. Econ.

J.: Appl. Econ. 3 (4), 152–185.
Deschenes, Olivier, Greenstone, Michael, Shapiro, Joseph S., 2017. Defensive investments and the demand for air quality: Evidence from the NOx budget program.

Amer. Econ. Rev. 107 (10), 2958–2989.
Frisch, Ragnar, Waugh, Frederick V., 1933. Partial time regressions as compared with individual trends. Econometrica 1 (4), 387–401.
Gabaix, Xavier, Laibson, David, 2006. Shrouded attributes, consumer myopia, and information suppression in competitive markets. Q. J. Econ. 121 (2), 505–540.
Garg, Teevrat, McCord, Gordon, Montfort, Aleister, 2020. Can Social Protection Reduce Environmental Damages?. IZA Discussion Paper No. 13247.
Graff Zivin, Joshua, Neidell, Matthew, 2012. The impact of pollution on worker productivity. Amer. Econ. Rev. 102 (7), 3652–3673.
Griliches, Zvi, 1977. Estimating the returns to schooling: Some econometric problems. Econometrica 45 (1), 1–22.
Henderson, J. Vernon, 1996. Effects of air quality regulation. Amer. Econ. Rev. 86 (4), 789–813.
Heutel, Garth, Miller, Nolan H., Molitor, David, 2021. Adaptation and the mortality effects of temperature across U.S. climate regions. Rev. Econ. Stat. 103 (4),

740–753.
Hsiang, Solomon M., 2016. Climate econometrics. Ann. Rev. Resour. Econ. 8, 43–75.
IPCC, Intergovernmental Panel on Climate Change, 2022. Summary for policymakers. In: Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S.,

K., Mintenbeck, Alegría, A., Craig, M., Langsdorf, S., Löshke, S., Möller, V., Okem, A., Rama, B. (Eds.), Climate Change 2022: Impacts, Adaptation and
Vulnerability. Contribution of Working Group II To the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University
Press, Cambridge, United Kingdom and New York, NY.

Isen, Adam, Rossin-Slater, Maya, Walker, Reed, 2017. Relationship between season of birth, temperature exposure, and later life wellbeing. Proc. Natl. Acad.
Sci. 114 (51), 13447–13452.

Jacob, Daniel J., Winner, Darrel A., 2009. Effect of climate change on air quality. Atmos. Environ. 43 (1), 51–63.

https://doi.org/10.1016/j.jeem.2023.102843
https://doi.org/10.3886/E192708V1
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb1
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb2
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb3
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb3
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb3
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb4
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb4
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb4
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb5
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb6
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb7
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb8
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb9
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb9
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb9
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb9
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb9
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb10
http://aos.wisc.edu/~sco/normals.html
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb12
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb12
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb12
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb13
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb13
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb13
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb14
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb14
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb14
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb15
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb15
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb15
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb16
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb16
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb16
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb17
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb17
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb17
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb18
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb18
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb18
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb19
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb20
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb21
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb22
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb23
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb24
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb25
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb25
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb25
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb26
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb27
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb27
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb27
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb27
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb27
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb27
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb27
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb28
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb28
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb28
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb29


Journal of Environmental Economics and Management 121 (2023) 102843

20

A.M. Bento et al.

Kaufmann, Robert, Mann, Michael, Gopal, Sucharita, Liederman, Jackie, Howe, Peter, Pretis, Felix, Tang, Xiaojing, Gilmore, Michelle, 2017. Spatial heterogeneity
of climate change as an experiential basis for skepticism. Proc. Natl. Acad. Sci. USA 114 (1), 67–71.

Kelly, David L., Kolstad, Charles D., Mitchell, Glenn T., 2005. Adjustment costs from environmental change. J. Environ. Econ. Manag. 50 (3), 468–495.
Kolstad, Charles D., Moore, Frances C., 2020. Estimating the economic impacts of climate change using weather observations. Rev. Environ. Econ. Policy 14 (1),

1–24.
Lemoine, Derek, 2020. Estimating the Consequences of Climate Change from Variation in Weather. NBER Working Paper #25008.
Lovell, Michael C., 1963. Seasonal adjustment of economic time series and multiple regression analysis. J. Amer. Statist. Assoc. 58 (304), 993–1010.
Lucas, Jr., Robert E., 1972. Expectations and the neutrality of money. J. Econom. Theory 4, 103–124.
Lucas, Jr., Robert E., 1976. Econometric policy evaluation: A critique. In: Carnegie-Rochester Conference Series on Public Policy, Vol. 1. pp. 19–46.
Lucas, Jr., Robert E., 1977. Understanding business cycles. In: Carnegie-Rochester Conference Series on Public Policy, Vol. 5. pp. 7–29.
McClurkin, Janie D., Maier, Dirk E., Ileleji, Klein E., 2013. Half-life time of ozone as a function of air movement and conditions in a sealed container. J. Stored

Prod. Res. 55, 41–47.
Mendelsohn, Robert, 2016. Measuring Weather Impacts Using Panel Data. Mimeo.
Mendelsohn, Robert, Nordhaus, William D., Shaw, Daigee, 1994. The impact of global warming on agriculture: A ricardian analysis. Amer. Econ. Rev. 84 (4),

753–771.
Merel, Pierre, Gammans, Matthew, 2021. Climate econometrics: Can the panel approach account for long-run adaptation? Am. J. Agric. Econ. 103 (4), 1207–1238.
Moore, Frances C., Lobell, David B., 2014. Adaptation potential of European agriculture in response to climate change. Nature Clim. Change 4, 610–614.
Moore, Frances C., Lobell, David B., 2015. The fingerprint of climate trends on European crop yields. Proc. Natl. Acad. Sci. USA 112 (9), 2670–2675.
Moore, Frances C., Obradovich, Nick, Lehner, Flavio, Baylis, Patrick, 2019. Rapidly declining remarkability of temperature anomalies may obscure public

perception of climate change. Proc. Natl. Acad. Sci. USA 116 (11), 4905–4910.
Moretti, Enrico, Neidell, Matthew, 2011. Pollution, health, and avoidance behavior: Evidence from the ports of los angeles. J. Hum. Resour. 46 (1), 154–175.
Muller, Nicholas Z., Ruud, Paul A., 2018. What forces dictate the design of pollution monitoring networks? Environ. Model. Assess. 23 (1), 1–14.
Neidell, Matthew, 2009. Information, avoidance behavior, and health: The effect of ozone on asthma hospitalizations. J. Hum. Resour. 44 (2), 450–478.
NOAA, National Oceanic & Atmospheric Administration, 2014. National oceanic and atmospheric administration (NOAA), global historical climatology network.

ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/by_year/ accessed on November 30, 2014.
Olmstead, Alan L., Rhode, Paul W., 2011. Responding to climatic challenges: Lessons from U.S. agricultural development. In: Libecap, Gary D., Steckel, Richard H.

(Eds.), The Economics of Climate Change: Adaptations Past and Present. University of Chicago Press, Chicago, IL, pp. 169–194, Chapter 6.
Reis, Ricardo, 2006. Inattentive producers. Rev. Econom. Stud. 73 (3), 793–821.
Salvo, Alberto, Wang, Yi, 2017. Ethanol-blended gasoline policy and ozone pollution in Sao Paulo. J. Assoc. Environ. Resour. Econ. 4 (3), 731–794.
Schlenker, Wolfram, Hanemann, W. Michael, Fisher, Anthony C., 2005. Will U.S. agriculture really benefit from global warming? Accounting for irrigation in

the hedonic approach. Amer. Econ. Rev. 95 (1), 395–406.
Schlenker, Wolfram, Roberts, Michael J., 2009. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad.

Sci. 106 (37), 15594–15598.
Sexton, Steven E., 2012. Paying for pollution? How general equilibrium effects undermine the ’spare the air’ program. Environ. Resour. Econ. 53, 553–575.
Solon, Gary, 1992. Intergenerational income mobility in the United States. Amer. Econ. Rev. 82 (3), 393–408.
Tol, Richard S.J., 2018. The economic impacts of climate change. Rev. Environ. Econ. Policy 12 (1), 4–25.
USEPA, U.S. Environmental Protection Agency, 1997. Survey and Review of Episodic Control Programs in the United States. EPA 420-R-97-003, U.S. Environmental

Protection Agency, Office of Air and Radiation, Washington, DC.
USEPA, U.S. Environmental Protection Agency, 2009. Assessment of the Impacts of Global Change on Regional U.S. Air Quality: A Synthesis of Climate Change

Impacts on Ground-Level Ozone – An Interim Report of the U.S. EPA Global Change Research Program. EPA/600/R-07/094F, U.S. Environmental Protection
Agency, Office of Research and Development, National Center for Environmental Assessment, Washington, DC.

USEPA, U.S. Environmental Protection Agency, 2015. National ambient air quality standards for ozone: Final rule. Fed. Regist. 80, 65291–65468, 2015.
Vose, R.S., Easterling, D.R., Kunkel, K.E., LeGrande, A.N., Wehner, M.F., 2017. Temperature changes in the United States. In: Wuebbles, D.J., Fahey, D.W.,

Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K. (Eds.), Climate Science Special Report: Fourth National Climate Assessment, Volume I. U.S. Global
Change Research Program, Washington, DC, pp. 185–206, Chapter 6.

WMO, 2017. WMO Guidelines on the Calculation of Climate Normals. World Meteorological Organization Geneva, Switzerland.
Zhang, Yuzhong, Wang, Yuhang, 2016. Climate-driven ground-level ozone extreme in the fall over the southeast United States. Proc. Natl. Acad. Sci. 113 (36),

10025–10030.

http://refhub.elsevier.com/S0095-0696(23)00061-X/sb30
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb30
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb30
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb31
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb32
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb32
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb32
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb33
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb34
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb35
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb36
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb37
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb38
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb38
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb38
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb39
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb40
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb40
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb40
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb41
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb42
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb43
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb44
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb44
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb44
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb45
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb46
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb47
http://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/by_year/
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb49
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb49
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb49
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb50
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb51
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb52
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb52
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb52
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb53
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb53
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb53
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb54
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb55
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb56
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb57
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb57
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb57
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb58
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb58
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb58
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb58
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb58
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb59
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb60
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb60
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb60
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb60
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb60
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb61
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb62
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb62
http://refhub.elsevier.com/S0095-0696(23)00061-X/sb62

	A unifying approach to measuring climate change impacts and adaptation
	Recommended Citation

	A unifying approach to measuring climate change impacts and adaptation
	Introduction
	Prior Methods and Our Unifying Approach to Measuring Climate Change Impacts and Adaptation
	Prior Methods
	Our Unifying Approach
	Decomposition of Meteorological Variables: Climate Norms vs. Weather Shocks

	Empirical Application: Climate Impacts on Ambient Ozone
	Conceptual Framework
	Data
	Empirical Strategy

	Results
	Impacts of Temperature on Ambient Ozone Concentration
	Measuring Adaptation to Climate Change
	Robustness Checks
	Estimating Nonlinear Effects of Temperature
	Exploring Heterogeneity

	Concluding Remarks
	Declaration of competing interest
	Appendix A. Supplementary data
	References


