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There has been a significant increase in the attention paid to resource management in smart grids, and several 
energy forecasting models have been published in the literature. It is well known that energy forecasting plays 
a crucial role in several applications in smart grids, including demand-side management, optimum dispatch, and 
load shedding. A significant challenge in smart grid models is managing forecasts efficiently while ensuring the 
slightest feasible prediction error. A type of artificial neural networks such as recurrent neural networks, are 
frequently used to forecast time series data. However, due to certain limitations like vanishing gradients and 
lack of memory retention of recurrent neural networks, sequential data should be modeled using convolutional 
networks. The reason is that they have strong capabilities to solve complex problems better than recurrent 
neural networks. In this research, a temporal convolutional network is proposed to handle seasonal short-
term energy forecasting. The proposed temporal convolutional network computes outputs in parallel, reducing 
the computation time compared to the recurrent neural networks. Further performance comparison with the 
traditional long short-term memory in terms of MAD and sMAPE has proved that the proposed model has 
outperformed the recurrent neural network.

1. Introduction

Different smart city initiatives by government and private organiza-
tions have incorporated information and communication technologies 
(ICTs) to meet cities’ growing challenges. International policies and sci-
entific literature have widely embraced the smart homes, smart grids, 
and overall intelligent city concept. This concept makes cities smarter 
for citizens by utilizing many ICT innovations hitting us alarmingly. 
According to scientific evidence, smart cities are based on the follow-
ing foundational theories: ICTs, urban planning, environmental con-
siderations, living labs, and creative industries [16]. In addition, the 
associated concepts illustrate how ICT can assist in addressing almost 
every urban challenge. The latest ICT trends identified in the literature 
analysis are smart grids, IoT, big data, open data, and e-government 
[20,32,45]. The topic of consideration for this study is smart grids. The 
world’s urban population makes up about half of the total population of 
the entire planet [59]. Cities are increasingly crowded, resulting in de-
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clining quality and quantity of services for their residents. The increased 
population has caused challenges for the energy sector to produce en-
ergy as per future demand [12]. The prediction of energy consumption 
is essential for effective demand-side management.

The models of energy consumption prediction mostly use statistical 
and machine learning models [1,46]. The previously recurrent neural 
network-based models have been applied for short-term energy predic-
tion, while the seasonal factor has not been considered [34]. Traditional 
statistical models have performed better with the small amount of data, 
but the energy consumption data has drastically increased with the in-
crease in the urban population [41]. The statistical models have certain 
limitations; hence the deep learning models have been widely adopted 
to handle the time series energy consumption data. Recurrent neural 
networks are essential algorithms for forecasting energy consumption 
[40]. The other most prominent algorithms are temporal convolutional 
neural networks (TCNs). The governments focus on providing effective 
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solutions to the people for a comfortable life. In terms of comfort, the 
heating, ventilation, and air conditioning (HVAC) system in any house 
plays significant importance, and people are ready to spend enough 
for a better standard of HVAC. The maintenance of HVAC standards 
requires enough amount of energy to be produced by the smart grids 
[29,47]. Energy production always remains a costly solution; hence re-
searchers have focused on an alternative for energy production. Based 
on historical energy consumption data, the deep learning prediction 
models can avoid energy wastage and production of the exact amount 
in the grid environment [39].

The prediction methods remained typical for future energy con-
sumption forecasting in the smart grids. Deep learning, specifically 
recurrent neural networks, successfully managed the extensive energy 
consumption data. The most common problem with recurrent neural 
networks is the vanishing gradients and lack of memory retention [9]. 
The temporal convolutional networks (TCN) have a strong capability 
to handle sequential data. This paper proposes an energy consumption 
prediction model using a TCN. In traditional models, energy consump-
tion forecasts are based on the overall patterns, while seasonal patterns 
vary; hence, an approach for seasonal energy consumption forecasting 
is needed. The performance comparison with the LSTM has proved that 
the temporal convolutional network can handle the time series data bet-
ter.

There are several benefits associated with this model.

• TCN solves the vanishing gradient and memory retention problem, 
reducing computation time for effective energy consumption man-
agement through parallel computation.

• Compared to a traditional RNN, TCNs train and evaluate long in-
put sequences together rather than sequentially and maintain the 
customer’s seasonal energy consumption patterns over time.

• Since TCN filters only share a single back-propagation path among 
layers, they are an excellent alternative to RNNs for sequences of 
arbitrary length.

• Different performance evaluation indicators are used to determine 
how well the proposed TCN procedure performs and some conven-
tional methods, such as LSTM.

The remaining paper is organized as: section 2 provides related work, 
section 3 contains research design and methodology. The results are 
presented in section 4, the discussion in Section 5, and finally the con-
clusion is presented in section 6.

2. Related work

The traditional methods of energy consumption forecasting have 
used deep learning and recurrent neural networks, along with other 
machine learning algorithms. Deep learning significantly improved the 
prediction in time series data as suggested in a survey conducted by 
Torres et al. [43]. The focus includes the smart grid demand side man-
agement and energy consumption prediction at smart homes. The most 
recent model used NBEATS for the energy consumption forecasting of 
multiple customers in a smart grid environment [40]. The model has 
performed better, but it has not considered the seasonal factor of the 
energy consumption prediction. Deep learning remains significant in 
optimization-based studies focusing on energy optimization while im-
proving the comfort index [14]. The neural network-based models have 
handled the energy prediction problem to some extent with higher ac-
curacy but have failed to tackle the complex seasonal patterns of the 
data [13]. Unlike the traditional model, the deep generative short-term 
load forecasting model by Langevin et al. [21] used the appliances’ en-
ergy consumption consumed in the past and the future consumption. 
The focus on appliances’ energy consumption benefits more than his-
torical forecasts.

Additionally, Wahid et al. [48] proposes a multi-layer perceptron 
and random forest technique for classifying buildings as high or low 

power consumers. The MLP remains computation efficient for smaller 
datasets; hence many authors prefer it over deep learning models while 
having smaller datasets. Oldewurtel et al. [35] used indoor weather pre-
diction to use the thermal capacity of buildings efficiently using model 
predictive control (MPC). The weather prediction aimed to avoid using 
high-cost actuators and reduce waste. Zeng et al. [57] used a hybrid 
approach based on an extreme learning machine and switching de-
layed particle swarm optimization (SDPSO) algorithm for short-term 
load forecasting. The SDPSO has the enhanced capability of global 
searching to reach the optimal solution for optimizing hidden node pa-
rameters of the extreme learning machine. Li et al. [26] evaluated the 
impact of nonlinearity and response time on the accuracy of the system 
identification process of the energy forecasting model for building. The 
model tried to solve the scaling problems of buildings because the per-
formance of the systems designed for small commercial buildings was 
not satisfactory with the larger buildings. By adding electric vehicles, 
the model develops a power-pollution dynamic load dispatch algorithm 
that solves a multi-objective optimization problem in an attempt to re-
duce both fuel costs and pollution emissions at the same time [51]. 
The model by Araghian et al. [4] optimizes economic and discomfort 
metrics through integrated energy management. Residents’ dissatisfac-
tion with indoor temperatures is measured using a novel metric called 
discomfort degree-day, which takes both magnitude and duration into 
account. The hybrid short-term energy consumption model by Sekhar 
and Dahiya [38] used different recurrent networks and the gray wolf 
optimization algorithm.

The optimization algorithm has been utilized to select the optimal 
parameters of Bi-LSTM and CNN. An effective time series feature ex-
traction method is based on a one-dimensional CNN. Based on a neural 
network with a learning process control algorithm, a method is devel-
oped for predicting wind speed in an isolated power system. An hourly 
retrospective meteorological data set of wind speed observations is used 
to make predictions for four seasons throughout the year [28]. Modeling 
of renewable energy sources, energy storage devices, electric vehicles, 
and distributed generation systems was conducted here to optimize the 
management of a VPP. As well as the forecasting of wind speed, electric-
ity price, load demand, and the behavior of electric vehicles is examined 
by using a method based on two-way long short-term memory networks 
[2]. An improved method is proposed in this paper, which uses a two-
stage process which can be used to forecast grid load at the system-wide 
level. The first benefit of this method is that it reduces the original net 
load by removing the low-frequency components whose energy is quite 
insignificant [58].

This paper proposes an approach for selecting the optimal set of 
features for short-term load forecasting (STLF) problems using hybrid 
feature selection (HFS). The HFS uses a hybrid genetic algorithm (EGA) 
combined with a random forest method as a component of its online 
feature selection algorithm, combining the elitist genetic algorithm and 
random forest methods [42]. The smart grid energy optimization meth-
ods using deep learning are presented in this paper using the new type 
of wild horse optimization algorithm [31]. The results of this study 
demonstrate that there should be a consideration of the factors that af-
fect the generation of renewable energy, along with a qualitative model 
for how the generation of renewable energy will affect electricity prices. 
This model is based on random forests and improved mahalanobis dis-
tance [50].

The study addresses the challenge of imprecise energy efficiency 
services and insufficient household response to energy use through a dy-
namic load-priority scheduling strategy [54]. Model predictive control-
based reinforcement learning and Shapley values are used in this paper 
to propose an energy management strategy for residential micro-grid 
systems [7]. The model proposed by Velimirović et al. [44] is an evident 
example of the entropy-based fuzzy models for the problem of short-
term energy forecasting. To estimate the energy production, two differ-
ent approaches were used during the analysis: the first user data and 
artificial intelligence techniques to estimate energy production, specifi-
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cally multilayer perceptrons in conjunction with radial basis functions; 
and the second used models to estimate energy production [11]. This 
paper presents a novel encoding method based on neural ordinary dif-
ferential equations that can be viewed as continuous residual networks 
(ResNets) for learning time series dynamics of electricity load [18].

This study proposes a combined framework for solving the problem 
of low prediction accuracy in electricity load forecasting with a modi-
fied noise processing strategy, a multi-objective optimization algorithm, 
and deep neural networks to resolve the problem of low prediction ac-
curacy [52]. Several efficient algorithms have been applied to DSM 
methodology for a residential community that aims to reduce peak 
energy consumption, including binary orientation search algorithms 
(BOSA), cockroach swarm optimization (CSO), and sparrow search al-
gorithms (SSA). A smart grid DSM optimized on algorithms will reduce 
electricity consumption costs while increasing smart grid efficiency. Us-
ing a load-shifting technique, the proposed DSM methodology is able to 
achieve the above objective. Using renewable energy sources on-site, 
the proposed system will reduce electricity costs and reduce peaking at 
power plants [19]. Alrwashdeh [3] conducted study considering local 
climate, average monthly energy consumption, and electricity rates in 
Jordan to determine the most profitable way to install a photovoltaic 
(PV) system on a residential building.

This review addresses several dimensions, but majority of the stud-
ies have considered the normal energy consumption forecasting. The 
divisions base on short, medium and long term predictions. Energy stor-
age has always been viewed as critical in reducing energy costs. As a 
part of the studies, green energy was also considered from a pollution 
reduction perspective. In most prediction problems, deep learning and 
reinforcement learning techniques have been used to build models. The 
implementation of a smart grid requires developing a model to predict 
energy according to the season.

3. Research design and methodology

Most of the models are based on synthetic data, which means they 
do not accurately reflect the real smart grid environment and often 
don’t perform well when implemented. The proposed study is based 
on different experiments using the energy consumption dataset. The 
model has three main layers, i.e., pre-processing, prediction, and perfor-
mance evaluation. The experimental design is based on seasonal energy 
consumption, where the model predicts the four seasons’ energy con-
sumption based on historical data. The pre-processing steps are helpful 
for the removal of noise and irregularities in the data while the main 
responsibility relies on the prediction module, where the temporal con-
volutional network predicts energy consumption.

3.1. Database acquisition, pre-processing and description

The dataset has been acquired having energy consumption data for 
the customers of London households. The same data has been used 
in our previous energy forecasting model [34,40]. Over the course of 
November 2011 to February 2014, data was collected from different 
household customers. The objective of the proposed method is seasonal 
energy consumption forecasting; hence after analysis, the unnecessary 
data has been eliminated [10]. The proposed study considers 150 cus-
tomers, with only seasonal data of 12 months for each customer and a 
dynamic time-of-use pricing strategy (dToU). The experiment has been
carried out with daily consumption data in kWh units. The training 
data has 75% while the rest 25% used to evaluate the model in terms of 
the prediction. By using the moving average, the model has been able 
to eliminate the outliers that cause lower accuracy. Using the Python 
package NumPy, outliers have been identified as observations lower or 
higher Q1 + 1.5 IQR [34,40]. We used (1) and (2) to normalize and 
denormalize the data into a 0–1 scale.

𝑁(𝑎) = 𝑥(𝑎) − min(𝑎)
max(𝑎) − min(𝑎)

(1)

Table 1

Parameter setting of LSTM and TCN.

Parameter LSTM Convolutional Network 
(Temporal)

Activation function ReLU ReLU
Hidden Dim/Size/Widths 10
Number of Layers 1 6
Random State 42 0
Training length/Input chunk length 30 30
Output chunk length 15 15
No of epochs val period 1
Batch size 32 512
Learning rate 1–3 1–3
Epochs 150–250 200–250
Dilation base 2
Kernel Size 5
Number of Filters 3
Dropout rate 0.1 0.1
Future/Past covariates Day Series Day Series

𝐷(𝑎) =𝑁(𝑎) ∗ (max(𝑎) − min(𝑎)) + min(𝑎) (2)

Where the data after normalization has been denoted by 𝑁(𝑎), once 
the training is completed and the data is denormalized and denoted as 
𝐷(𝑎). The data under consideration for the normalization is represented 
as 𝑥(𝑎). These conversions use the minimum and maximum values of 
the dataset denoted by min(𝑎) and max(𝑎) respectively.

3.2. Prediction module

The prediction module contains a temporal convolutional network 
that takes the pre-processed input data of energy consumption and 
trains the network. The TCN provides various advantages over tradi-
tional convolutional neural networks (CNN). In computer vision, con-
volutional neural networks are commonly used to recognize and classify 
objects in images or videos. Based on studies of the visual cortex, con-
volutional neural networks were first proposed in 1979. Recently, it has 
been used for prediction tasks in various areas, including weather and 
energy consumption prediction. Convolutional neural networks (CNNs) 
can handle sequential data with temporal aspects and large receptive 
fields; however, temporal convolutional networks depend on casual 
convolutions and dilations. As a result of its inherent limitations, CNNs 
are unsuitable for time-series prediction due to constraints such as a 
fixed-size input vector and inconsistent input and output sizes [15,24]. 
At the same time, the TCN resolves the limitations of CNN models 
and remains suitable for the proposed energy consumption forecast-
ing model. As a crucial factor in defining neural networks’ architectural 
configuration, the number of hidden layers becomes critical to the final 
result. The number of layers in deep learning networks has been widely 
acknowledged as an important factor in capturing intricate features and 
achieving relatively high accuracy levels. To enhance performance, ad-
ditional layers are commonly added to neural networks to increase their 
size [25]. In the proposed model we have used random search as it can 
be argued that random search is a fundamental improvement over grid 
search. The hyper-parameters are explored randomized to determine 
potential parameter values by sampling from specific distributions [30]. 
As soon as the desired level of accuracy is reached, the search process 
continues. Random search has consistently produced better results than 
grid search, despite being similar to it, although it is similar to grid 
search. The parameters selected for TCN and LSTM algorithms can be 
seen in Table 1.

PyTorch forecasting is used to implement TCN in the model. Input 
chunks are used as past covariates, and output chunks are used as fu-
ture covariates [27]. Future covariates are used as mandatory inputs for 
multi-head attention queries. Furthermore, encoders were used to auto-
matically generate the day covariates (future covariates) in addition to 
the past covariates.
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Fig. 1. Proposed TCN model.

3.2.1. Temporal convolutional network (TCN)

Like traditional deep learning networks, the convolutional neural 
networks also contain three prominent layers, i.e., input, hidden, such 
as the convolutional layer, and an output layer. The input and output 
layer size depends on the number of input variables and desired output 
variable. The details of these layers have already been defined in the 
Table 3. In the proposed TCN model, the hidden layers are responsi-
ble for the convolutions. The concept of convolution is commonly used 
in mathematics, where it refers to the conversion of two functions into 
a new function that expresses how one function’s shape is modified 
by another [37]. To calculate the integral of the product of two func-
tions, one of which is reversed and shifted, it is necessary to take two 
functions and calculate the integral of their products. Using the convo-
lution function, we can express how one function changes the shape of 
another. The convolution is similar to cross-correlation involving two 
similar series or sequences [36]. It is the hidden layers that perform 
computations, while it is the pooling layers that consolidate and collect 
the results from the hidden layers. Constructing a fully connected layer 
maps the input and output values using a nonlinear function. In addi-
tion to RNNs, TCNs have cost or loss functions that are minimized to 
reduce errors in prediction [17]. In the TCN, the input node’s receptive 
field is also known as a patch in computer vision terminology. Inputs are 
received from a limited area of the previous layer of the network, the 
node’s receptive field. A feature detection algorithm primarily works 
by applying filters to the input to make detecting the features easier for 
the TCN. These filters are made up of neurons or nodes [55]. Similarly, 
some filters connect to other features. It is essential to isolate the trend 
or seasonality of a time series. During training, the TCN calibrates the 
filters’ values based on the loss function to minimize prediction error. 
Using the filters learned, the TCN predicts future energy consumption. 
Trend and seasonality patterns can be recognized by it when dealing 
with time series [8]. Feature maps are generated by the nodes, indicat-
ing where features are located. A filter scans an input patch to check 
if the feature is present. A feature map is created based on the results. 
A kernel is an array of weights arranged in two dimensions. As the ker-
nel moves through a receptive field, it detects the features [33]. The 

stride of the filter determines how far it moves across the input. An ac-
tivation function is applied to the extracted features by fully connected 
layers. Nodes in this layer receive information from nodes in previous 
layers, so its name arises from connecting them all: in a fully connected 
layer, a node receives information from all the nodes in previous lay-
ers [56]. Through the fully connected layer, features of earlier layers 
are tied together in a typically nonlinear manner. TCNs learn to sort 
out unimportant features from essential ones with successive training 
epochs – feed-forward followed by back-propagation. The TCN ensures 
causal convolution. Values at the beginning of the input sequence must 
determine an output value. A TCN dilation expands a node’s receptive 
field to encompass more periods of history [23,53]. A typical resid-
ual block of TCN can be seen in the following Fig. 1. The computation 
and mathematical expressions of the layers and residual block has been 
adopted from Bai et al. [5], Lässig [22].

If we have one-dimensional sequence input 𝑋 ∈ 𝑅𝑛 having a filter 
𝑓 ∶ {0, …, 𝑘 −1}→𝑅, we can define the 𝐹𝑠 dilated convolution operation 
as in (3).

𝐹 (𝑠) = (𝑋 ∗ 𝑑𝑓 )(𝑠) = Σ𝑘−1
𝑖=0 𝑓 (𝑖) ⋅𝑋𝑠− 𝑑 ⋅ 𝑖 (3)

The dilation factor can be defined by 𝑑, the filter size is represented 
by 𝑑, and the direction of the past is denoted by 𝑠 − 𝑑 ⋅ 𝑖 as defined in 
(4).

𝑑𝑖 = 2𝑖,1 ≤ 𝑖 ≤ 𝑛 (4)

Generalizing, a 1D convolutional network with 𝑛 layers and 𝑘 ker-
nels has a receptive field 𝑟 as in (5).

𝑟 = 1 + 𝑛 ∗ (𝑘− 1) (5)

We can calculate the number of layers 𝑛 by setting the receptive 
field size to input length 𝑙 as in (6).

𝑛 =
⌈
(𝑙 − 1)
𝑘− 1

⌉
(6)
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Fig. 2. Comparison of spring season energy consumption.

By computing 𝑑 as a function of 𝑖, we can compute the dilation of a 
particular layer based on its dilation base integer 𝑏 as in (7).

𝑑 = 𝑏 ∗∗ 𝑖 (7)

Where in 𝑖 represents the number of layers. As a result of these observa-
tions, we can calculate how many layers our network needs to provide 
full historical coverage. If we take a kernel with size k, a dilation base 
b, where k for each base equals b, and an input length l, then we can 
state the following inequality using (8).

1 + (𝑘− 1). 𝑏
𝑛 − 1
𝑏− 1

≥ 𝑙 (8)

The minimum number of layers required can be calculated by solving 
for 𝑛 using (9).

𝑛 =
⌈
𝑙𝑜𝑔𝑏

(
(𝑙 − 1).(𝑏− 1)

(𝑘− 1)
+ 1

)⌉
(9)

We can compute the number of zero-padding entries 𝑝 needed for 
our current layer given the dilation base 𝑏, kernel size 𝑘, and the number 
of layers below it using (10).

𝑝 = 𝑏𝑖.(𝑘− 1) (10)

Based on dilation base 𝑏 and kernel size 𝑘𝑥𝑏, we can compute the 
total size 𝑟 of the receptive field 𝑟 for a TCN using (11).

𝑟 = 1 +
𝑛−1∑
𝑖=0

2.(𝑘− 1).𝑏𝑖 = 1 + 2.(𝑘− 1). 𝑏
𝑛−1

𝑏− 1
(11)

Thus, there will be a minimum number of residual blocks 𝑛 for a full 
history coverage of input length 𝑙 as in (12).

𝑛 =
⌈
𝑙𝑜𝑔𝑏

(
(𝑙 − 1).(𝑏− 1)

(𝑘− 1).2
+ 1

)⌉
(12)

The 𝑡ℎ layer of the network has been denoted by 𝑖 total dilated con-
volutional layers are represented by the 𝑛 as in (13).

𝑘𝑖+1 = 𝑑𝑖 ∗ (𝑘𝑖 − 1) + 1,1 ≤ 𝑖 ≤ 𝑛, 𝑘1𝜖𝑁∗ (13)

The 𝑡ℎ layer of the network has been denoted by 𝑖 total dilated 
convolutional layers are represented by the 𝑛. Data situations usually 
determine the initial size of the filter, the default is 𝑘𝑖 = 2. However, it 
can be adjusted to other values if necessary.

3.3. Performance evaluation metrics

For time series data, the smaller the error value, the better the 
accuracy with the mean absolute deviation (MAD) [6,49]. Using the 
MAD formula, a prediction is made, and the actual value is calculated 
at least one period ahead. In the following equation, you can see the 

MAD’s mathematical expression (14). The other performance metric is 
the sMAPE, as expressed in (15).

𝑀𝐴𝐷 = 1
𝑁

𝑛∑
𝑖=1

|𝐴𝑖 −𝑚(𝑋)𝑖| (14)

𝑠𝑀𝐴𝑃𝐸 = 100%
𝑁

𝑛∑
𝑖=1

|𝑃𝑖−𝐴𝑖||𝐴𝑖|+|𝑃𝑖|
2

(15)

Where 𝑚(𝑋) denote average value of the dataset, 𝑥𝑖 is the data val-
ues in the set. The 𝑁 stands for total observations, 𝐴 for actual values, 
and 𝑃 for predicted values.

4. Results

4.1. Seasonal power consumption

The proposed model aims to forecast the smart grids’ seasonal en-
ergy consumption to produce energy consumption per the customers’ 
seasonal demand. The dataset for evaluating the proposed model be-
longs to the customers of England, where typical weather has four 
seasons, i.e., spring, summer, autumn, and winter. The spring season 
starts from March to May. If we observe the graph of the spring sea-
son, the highest energy consumption of randomly selected customers 
is 11 kWh. Hence, the LSTM and proposed TCN model has performed 
better, although the actual energy consumption has higher fluctuations, 
and the model has been trained on energy consumption data of mul-
tiple customers having different energy consumption behaviors; hence 
there is the provision of the improvement in the graphs. Overall, the 
LSTM graph shows that it has struggled with the frequent fluctuations 
of energy consumption, while on the other hand, the TCN has a better 
energy consumption graph.

In the Fig. 2 during the spring, the temperature varies between 1 
to 30 centigrade; hence both the heating and cooling systems operate. 
While from March to May, the highest temperature keeps increasing. 
The increased temperature usually causes higher energy consumption 
as most residents start operating cooling systems which is evident from 
the above graph. The summer season starts from June to August and is 
considered the time of outings and holidays by most residents. While 
the weather mostly remains hot, the summer’s energy consumption is 
higher than in spring, as seen in the graph. The highest temperature 
during August month even reaches 38 centigrade. The highest energy 
consumption during this period is due to the cooling systems operating 
in the houses.

The Fig. 3 for the summer show that during June, the customer 
consumed higher energy, so the LSTM and TCN have predicted higher, 
wherein both algorithms have shown a similar pattern, which means 
the fluctuations are challenging for the algorithms. At the same time, 
the highest energy consumption can be noticed during July. The au-
tumn season has normal weather where from September to November, 
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Fig. 3. Comparison of summer season energy consumption.

Fig. 4. Comparison of autumn season energy consumption.

Fig. 5. Comparison of winter season energy consumption.

the temperature gradually reduces; hence Fig. 4 shows the same trend 
as during September the energy consumption is high while with the 
passage of days, it reduces to the range of 5 to 10 kWh. The reason is 
typical weather and a reduction in the usage of cooling systems. Here 
the LSTM and TCN algorithms have shown better performance with lin-
ear graphs of the same pattern without too many fluctuations. Overall, 
the TCN has performed better than LSTM.

The winter lasts from December to February, and most weather 
remains cold, with snow and frost everywhere. The Fig. 5 shows a con-
stant pattern of energy consumption during these three months because 
most of the users operate heating systems during the winter, and the 
systems operate for the day and night; hence the same amount of en-
ergy is consumed daily. The graph of predicted energy consumption by 
LSTM and TCN shows that both algorithms have performed better with 
the winter season prediction than the other three seasons. The reason 

is a similar pattern during the three months. So it is evident that deep 
learning might require more data for the same customers to perform 
with better accuracy.

5. Discussion

A comparative analysis has been carried out with the LSTM model 
compared to the proposed TCN model based on customers’ energy 
consumption data in England. Combining these data has enabled the 
proposed TCN model to be tested and evaluated. There is no doubt that 
both deep learning algorithms can handle energy consumption forecast-
ing problems in a smart grid environment when looking at the MAD and 
sMAPE errors of both algorithms. The performance of both algorithms 
seems to differ slightly from one another. Due to its strong capabilities 
and parallel computations, the TCN model has performed better in MAD 
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Table 2

Comparison of seasonal MAD and sMAPE error.

Model
Season

Spring Summer Autumn Winter

MAD sMAPE MAD sMAPE MAD sMAPE MAD sMAPE

LSTM 1.346 0.189 2.307 0.192 2.83 0.292 1.702 0.219
TCN 1.291 0.184 2.295 0.190 2.43 0.256 1.69 0.215

and sMAPE. There is also a significant decrease in training time for the 
TCN model compared to the LSTM model. An evaluation of the TCN 
based on modified parameters has been conducted to evaluate its effec-
tiveness. Modifications have been made to epochs, learning rates, batch 
sizes, and random states. A close examination of the results revealed 
that the batch size dramatically impacts the computation time, and the 
accuracy has been reduced with larger batches. The moderate approach 
was adopted for the experimentation to avoid the extra computation 
time, even though the slower learning rate improved it significantly. 
There was an improvement in accuracy due to the increase in epoch, 
but after a certain level of advancement, there was no further improve-
ment; as a result, the maximum size was selected once there was no 
more improvement. A significant problem with the data was that it fre-
quently fluctuated, ultimately creating challenges for the deep learning 
algorithms as they attempted to analyze it. Although normalization was 
applied, it was limited to a certain extent to keep the original pattern 
of energy consumption since the model was designed for a smart grid 
environment where each user consumes energy differently. Since the 
model uses batch sizes, it has certain limitations; therefore, if new data 
is added to it in future work, it has to be retrained. As new data is added 
to a model in real time, the weights and biases will be updated, and the 
model will be retrained to predict data in line with the customer’s re-
quirements.

5.1. Comparison of MAD and sMAPE errors

The performance comparison of the proposed seasonal TCN model 
with the LSTM has been carried out, where the data has been distributed 
according to the four seasons. The MAD by LSTM during spring month 
is 1.346 and sMAPE 0.189, while the TCN model has performed better 
with slightly less error. The reason is that the TCN model can observe 
the trends in large datasets. There is a very slight improvement in the 
sMAPE error. The LSTM and TCN both have strong capability to tackle 
the prediction tasks. The summer season has slightly higher MAD and 
sMAPE errors by the LSTM compared with the spring season. The rea-
son is that there are fluctuations in the temperature during summer; 
hence the energy consumption behavior of the customers changes ac-
cordingly. Most users operate cooling systems during the day while 
night has standard energy consumption patterns; therefore, the fluctu-
ations in the energy consumption have caused challenges for the LSTM 
and TCN models. Autumn has a similar range of error differences, al-
though it has increased compared to the summer due to the same reason 
of differentiation in the energy consumption behavior by the residents 
of homes. Tables 2 and 3 show the TCN’s smallest error scale compared 
to the four comparative methods.

The winter season has again normalized the error difference because 
the energy consumption pattern remains the same throughout the day 
while it may reduce further at night. So the MAD and sMAPE errors 
have reduced compared to the summer and autumn seasons. The TCN 
model has performed better with the data of all four seasons; hence the 
model can handle the seasonal data along with the normal overall or 
customer-based energy consumption in the smart grid environment.

5.2. Comparison of energy consumption

Table 3 provides an overview of the performance of the proposed 
TCN model in terms of the actual energy consumption vs. forecast by 

Table 3

Comparison of seasonal energy consumption.

Model
Energy Consumption in kWh

Spring Summer Autumn Winter

Actual 647.89 1095.00 833.17 680.41
LSTM 694.03 1082.78 886.04 724.41
TCN 679.59 1099.03 869.92 723.77

the LSTM and TCN. It can be seen that the customer has consumed 
higher energy during the summer due to hot weather and the operation 
of the cooling system inside the homes. The actual energy consump-
tion during summer was 1095.00, while the TCN has predicted it as 
1099.03. Hence it can be concluded that for seasonal energy consump-
tion, the LSTM and TCN models are reliable to be implemented in the 
smart grid environment for future demand prediction. The advantage of 
the TCN model over LSTM is that it can handle larger datasets, and due 
to parallel computation, it can provide higher accuracy. The autumn 
season also has higher consumption; hence, the TCN and LSTM have 
slightly predicted higher consumption than the original. The autumn 
season also has hot weather; therefore, people still operate the cooling 
systems, consuming considerable energy. The spring and winter sea-
sons have a similar range of energy consumption due to cold weather 
compared to the summer and autumn; hence mostly during the winter 
season, people operate heating systems to maintain the inside weather 
conditions under an acceptable range.

The performance analysis shows that the TCN and LSTM have per-
formed better with the summer data due to a similar pattern of oper-
ating electrical equipment. At the same time, there is enough provision 
to improve the results for the spring, autumn and winter. Still, if we 
consider the three months duration for each season, the difference is 
acceptable and smart grids can avoid enough energy overproduction 
using the proposed TCN and LSTM models.

6. Conclusion

Various energy consumption models have been proposed in the lit-
erature focused on short, medium and long term energy consumption 
prediction. Due to limitations of the data, most models do not consider 
the seasonal factor for energy predictions. In traditional recurrent neu-
ral network based models, energy consumption has been predicted with 
certain accuracy, but the complexity of the data remains a challenge. It 
is difficult for the algorithms to properly train due to the noise and the 
different patterns of energy consumption among the customers. Using 
temporal convolutional networks, we have developed a seasonal energy 
forecasting model that avoids these issues. This model is new in that 
it uses a temporal convolution network as well as a seasonal compo-
nent, as traditional models only consider short, medium, and long-term 
forecasts of energy consumption. For smart grid environments, seasonal 
prediction can be used instead of predicting energy consumption annu-
ally to produce energy based on the seasons. A comparison of TCN’s 
performance with that of LSTM has shown that TCN generally performs 
better than LSTM. With smoothing of the data, the model’s performance 
can further be improved, but the actual pattern of energy consumption 
will be affected. Our future work will examine how smoothing affects 
energy consumption data by comparing actual with smoothed data.
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Real-time forecasts can be performed using TCN models due to their 
ability to process data in parallel. The energy sector is particularly 
relevant, where real-time prediction ensures stable power supply, opti-
mization of electricity grids, and management of electricity grids. Grid 
stability, load balancing, and demand response can be improved us-
ing TCN models. Solar and wind generation from intermittent sources 
such as solar and wind can be integrated with the power grid by using 
TCN models. Grid operators can take proactive measures to maintain 
grid stability by forecasting renewable energy production accurately 
and balancing supply and demand. It can be concluded that the primary 
practical implications of TCN energy forecasting models lie in their abil-
ity to deliver accurate, real-time, and scalable predictions regarding the 
consumption and generation of energy as well as the dynamics of the 
energy market. To put forward a more sustainable and efficient energy 
future, these models empower actors and stakeholders involved in the 
energy industry to make informed choices, optimize energy systems, 
and reduce carbon emissions.
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