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Abstract: Time series of financial data are both frequent and important in everyday practice. Nu-
merous applications are based, for example, on time series of asset prices or market indices. In this
article, the application of fractal interpolation functions in modelling financial time series is examined.
Our motivation stems from the fact that financial time series often present fluctuations or abrupt
changes which the fractal interpolants can inherently model. The results indicate that the use of
fractal interpolation in financial applications is promising.

Keywords: financial time series; time series modelling; fractal interpolation; iterated function system

1. Introduction

Time series of financial data such as asset prices or market indices occur frequently
in everyday practice. The modelling, analysis and prediction of financial time series is an
important tool in decision making for institutions or investors; see, for example [1], and [2]. It is
not uncommon that financial time series are not smooth but exhibit significant fluctuations,
because of reflecting a financial crisis or market turbulence. This provides an adequate
motive of examining methods that inherently allow fluctuations when modelling such
time series.

Fractal interpolation, as defined in [3], provides a framework for interpolating irregular,
non-smooth sets of data, which possibly exhibit self-similarity and details at different
scales. While traditional interpolation techniques are based on smooth functions such as
polynomials and generate smooth interpolants, fractal interpolation is founded on the
theory of iterated function systems (IFSs, see [4]) and is able to model irregular sets of data
such as projections of physical objects, e.g., coastlines, or experimental data of non-integral
dimension. See [5,6], for example, for such successful applications of fractal interpolation.

Financial time series are typically modelled using autoregressive integrated moving
average (ARIMA) or generalised autoregressive conditional heteroskedasticity (GARCH)
models; see e.g., [7–12]. These models take into account the autoregressive properties of
such data and are thus commonly used in the existing literature to model returns/growth
rates (ARIMA) or volatility (GARCH). In the last few years, there is an emerging trend using
machine learning or deep learning approaches, such as Support Vector Machines (SVM),
Long Short-Term Memory (LSTM) or other neural networks ([13–16]). Such approaches
can provide greater predicting accuracy but are often prone to overfitting, thus resulting
in data-specific findings ([17]). Furthermore, machine and deep learning approaches are
also criticized for lack of interpretability ([18]), as these models are only able to supply
numerical forecasts without providing interpretable results (such as coefficients or standard
errors) that would improve our theoretical understanding of the underlying mechanism at
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work; a new trend in Artificial Intelligence, termed eXplainable AI (XAI), aims to address
this issue ([19,20]).

In this article, we examine the application of fractal interpolation to the modelling of
financial time series. As previously mentioned, fractal interpolation functions are a suitable
candidate for this application. The use of fractal techniques in the analysis of financial data
is seen occasionally in the literature, see e.g., [21–30]. However, in most cases IFS-based
fractal interpolation is not used; in the previous references the sole exception is [25], where
a simple example of comparing self-affine fractal interpolation to linear interpolation of
the values of a company’s assets is presented. Here we perform in-sample and out-of-
sample tests on a variety of sets of data (bitcoin prices, S&P 500, U.S. GDP) which possess
different characteristics, such as time span and smoothness. The results indicate that fractal
interpolation functions are indeed successful in in this area, even when a sparse selection
of interpolation points is made.

The article is structured as follows. Section 2 presents the elementary concept of
both iterated functions system and the fractal interpolation function. Section 3 presents
the results of modelling financial time series with fractal interpolation functions. Finally,
Section 4 summarises our conclusions and indicates areas of future work.

2. Fractal Interpolation

Fractal interpolation, as defined in [3], is based on the theory of iterated function systems.
Here we present the basic concepts; for more details see [4].

2.1. Iterated Function Systems

Let (X, ρ) be a complete metric space, for instance (Rn, ‖·‖). A function f : X → X is
called a Lipschitz function, if there exists k ∈ R such that ρ( f (x), f (y)) ≤ kρ(x, y), for all
x, y ∈ X; by definition k ≥ 0. If k < 1, then f is called a contraction with contractivity factor k.
LetH(X) denote the set of nonempty, compact subsets of X. The metric space (H(X), h),
where h is an appropriate metric, e.g., the Hausdorff metric, is often called the “space of
fractals”. Note that not every member ofH(X) is necessarily a fractal.

An iterated function system (or IFS for short) consists of a complete metric space (X, ρ)
together with a finite set of continuous mappings wn : X → X, n = 1, 2, . . . , N . An IFS
is denoted as {X; wn, n = 1, 2, . . . , N}. If all mappings wn are contractions with contrac-
tivity factors sn, n = 1, 2, . . . , N, then the IFS is called hyperbolic with contractivity factor
s = max

n=1,2,...,N
sn. Let W : H(X)→ H(X) be the mapping defined as W(B) =

⋃
∑N

n=1 wn(B),

where B ∈ H(X) and wn(B) = {wn(b), b ∈ B}. Each hyperbolic IFS has a unique attractor
which is the set A ∈ H(X), with A = W(A) = lim

n→∞
Wn(B) for every B ∈ H(X), where Wn

denotes the n-fold composition W ◦W ◦ · · · ◦W. Therefore the attractor A is the unique
fixed point of W and every set B ∈ H(X) converges to it under successive applications of
W. The term attractor stems from this property, which also provides the basis for the com-
putational construction of an IFS attractor. Specifically, the deterministic iteration algorithm
or the random iteration algorithm (see e.g., [4]) can be used for constructing an IFS attractor.

2.2. Self-Affine Fractal Interpolation Functions

Let ∆1 be a partition of the real compact interval I = [a, b], i.e., ∆1 = {u0, u1, . . . , uM}
where a = u0 < u1 < . . . < uM = b. Let the set of data points be represented as
P = {(um, vm) ∈ I ×R, m = 0, 1, · · · , M}. Let ∆2 be another partition of I = [a, b], i.e.,
∆2 = {x0, x1, . . . , xN}where a = x0 < x1 < · · · < xN = b, such that ∆1 is a refinement of ∆2.
Let the set of interpolation points be represented as Q = {(xi, yi) ∈ I×R, i = 0, 1, . . . , N ≤ M},
while it is a subset of the data points, i.e., Q ⊆ P. The subintervals of ∆2 [xi, xi+1],
i = 0, 1, . . . , N − 1, are called interpolation intervals; the abscissas xi of the interpola-
tion points may be equidistant or not. The set of data points within the nth interpolation
interval In = [xn−1, xn], n = 1, 2, . . . , N, is denoted as Pn = {(um, vm) : xn−1 ≤ um ≤ xn};
obviously, it is P =

⋃
∑N

n=1 Pn.
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An affine transformation is defined as the composition of a linear transformation and
a translation. Let

{
R2; wn, n = 1, 2, . . . , N

}
be an iterated function system with affine

transformations

wn

[
x
y

]
=

[
an 0
cn sn

][
x
y

]
+

[
dn
en

]
satisfying the constraints

wn

[
x0
y0

]
=

[
xn−1
yn−1

]
and wn

[
xN
yN

]
=

[
xn
yn

]
for every n = 1, 2, . . . , N. In other words, I is mapped by each affine transformation wn to
its corresponding interpolation interval. Solving the above equations leads to

an =
xn − xn−1

xN − x0
, dn =

xN xn−1 − x0xn
xN − x0

cn =
yn − yn−1

xN − x0
− sn

yN − y0

xN − x0
, en =

xNyn−1−x0yn

xN − x0
− sn

xNy0 − x0yN
xN − x0

i.e., the real parameters an, cn, dn, en are uniquely determined by the interpolation points,
while the real parameters sn are free parameters of the transformations such that |sn| < 1,
n = 1, 2, . . . , N. This constraint is necessary to guarantee that the IFS is hyperbolic with
respect to an appropriate metric. The transformations wn are shear transformations, i.e.,
they map line segments parallel to the y-axis to line segments also parallel to the y-axis
contracted by a factor |sn|. For this reason, the parameters sn are called vertical scaling factors
or contractivity factors of the transformations wn.

The attractor of the afore-mentioned IFS, i.e., the unique set G =
⋃

∑N
n=1 wn(G), is the

graph of a continuous function f : [x0, xN ]→ R that passes through all interpolation points
(xi, yi), i = 0, 1, . . . , N. This function is called fractal interpolation function, or FIF for short,
corresponding to these points. It is a self-affine function since each affine transformation wn
maps the entire graph of the function to its section within the corresponding interpolation
interval.

An example of a fractal interpolation function is presented in Figure 1, where a set
of ten interpolation points and vertical scaling factors sn = 0.25, n = 1, 2, . . . , 10 are used.
Note that from a simple set of few points a complicated interpolant is generated.
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Figure 1. A fractal interpolation function constructed from the set of interpolation points
Q = {(0, 4), (1, 2), (2, 1), (3, 5), (4, 7), (5, 4), (6, 5), (7, 2), (8.4), (9, 5)} (marked red) using the vertical
scaling factors sn = 0.25, n = 1, 2, . . . , 10.
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The remaining data points P r Q are only approximated by the fractal interpolation
function, which does not necessarily pass through them. To optimise the fit of the data
points for a given set of interpolation points, the vertical scaling factors, the only free
parameters, must be appropriately determined. Various methods have been proposed
in the literature for calculating them. Usually, the vertical scaling factors are calculated
by minimising an error measure, such as the squared error between the ordinates of the
original and the reconstructed points ∑M

m=0(vm − G[um])
2, where G[um] is the attractor

ordinate at abscissa um, or the Hausdorff metric h(P, G). For example, in [31] an analytic
and a geometric method are proposed for minimising this squared error. In [32,33] the
use of bounding volumes of data points subsets is proposed, to optimise the fit between
original and transformed bounding volumes instead of individual points. Other methods
use different approaches instead of minimising an error measure; in [34] the target is to
preserve the fractal dimension of the data points; in [35] the target is to detect self-affinity
and the implied vertical scaling factors in the continuous wavelet transform of the data.

An additional example of a fractal interpolation function is depicted in Figure 2. A set
of 37 data points is interpolated by a fractal interpolation function using every 3rd point
as interpolation points, i.e., 13 points in total; the vertical scaling factors are calculated by
the geometric algorithm of [31]. Despite of the use of approximately only 1/3 of the data
points and the simple, equidistant selection of the interpolation points, the remaining data
points are approximated rather well.
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Figure 2. A fractal interpolation function constructed from a set of 13 interpolation points
(red) selected from a set of 37 data points (green). The set of interpolation points is Q = {(0,4),
(0.75, 2), (1.5, 1), (2.25, 5), (3, 7), (3.75, 4), (4.5, 5), (5.25, 2), (6, 4), (6.75, 5), (7.5, 4), (8.25, 3), (9, 2)}, while
the set of data points is P = {(0, 4), (0.25, 3.5), (0.5, 2.5), (0.75, 2), (1, 2.20), (1.25, 1.5), (1.5, 1), (1.75, 4),
(2, 4.5), (2.25, 5), (2.5, 5.82), (2.75, 5.99), (3, 7), (3.25, 4.5), (3.5, 5.5), (3.75, 4), (4, 3.5), (4.25, 4.5), (4.5, 5),
(4.75, 4.5), (5, 4), (5.25, 2), (5.5, 3), (5.75, 3.5), (6, 4), (6.25, 4.77), (6.5, 4.46), (6.75, 5), (7, 5.5), (7.25,4.77),
(7.5, 4), (7.75, 4.41), (8, 3.5), (8.25, 3), (8.5, 2.27), (8.75, 2.09), (9, 2)}. The vertical scaling factors have
been calculated by the geometric algorithm of [31].

It is worth noting that although one could use all data points as interpolation points
thus guaranteeing that the resulting fractal interpolation function passes through all of
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them, this is not always desirable in practice. A proper selection of interpolation points,
along with optimal calculation of the vertical scaling factors, will result in satisfactory
goodness of fit and a considerable compression ratio without overfitting. Note that the
interpolation points should not necessarily be equidistant, but can be also selected to
minimise an error measure, see e.g., [31].

2.3. Recurrent Fractal Interpolation Functions

The recurrent fractal interpolation functions are a generalization of the self-affine frac-
tal interpolation functions of the previous section. This is achieved by allowing piecewise
instead of total self-affinity. Initially, the partitions ∆1 and ∆2 of the interval I, the set P
of data points and its subsets Pn, the set Q of interpolation points and the interpolation
intervals In, are all defined as in the previous section. Additionally, each interpolation
interval is associated with a pair of data points called address points. Specifically, each
interpolation interval In = [xn−1, xn], n = 1, 2, . . . , N is associated with two distinct data
points

(
x′n,1, y′n,1

)
,
(

x′n,2, y′n,2

)
∈ P, i.e.,

(
x′n,k, y′n,k

)
=
(
umk ,, vmk

)
for k = 1, 2 and some

mk ∈ {0, 1, . . . , M}. Each pair of address points defines the address interval
[

x′n,1, x′n,2

]
,

where x′n,1 < x′n,2 by definition. The address points are not necessarily unique among
interpolation intervals, i.e., a data point may be used in more than one address interval.
Moreover, every address interval should have strictly greater length than its corresponding
interpolation interval, i.e.,

(
x′n,2 − x′n,1

)
> (xn − xn−1), for all n = 1, 2, . . . , N. The set of

data points within the nth address interval I′n =
[

x′n,1, x′n,2

]
, n = 1, 2, . . . , N, is denoted as

An =
{
(um, vm) : x′n,1 ≤ um ≤ x′n,2

}
.

Let
{
R2; wn, n = 1, 2, . . . , N

}
be an iterated function system with affine transformations

wn =

[
x
y

]
=

[
an 0
cn sn

][
x
y

]
+

[
dn
en

]
satisfying the constraints

wn

[
x′n,1
y′n,1

]
=

[
xn−1
yn−1

]
and wn

[
x′n,2
y′n,2

]
=

[
xn
yn

]
for every n = 1, 2, . . . , N. In other words, each address interval is mapped to its correspond-
ing interpolation interval. Solving these constraint equations leads to

an =
xn − xn−1

x′n,2 − x′n,1
, dn =

x′n,2xn−1
− x′n,1x

n
x′n,2 − x′n,1

cn =
yn − yn−1

x′n,2 − x′n,1
− sn

y′n,2 − y′n,1

x′n,2 − x′n,1
, en =

x′n,2yn−1 − x′n,1yn

x′n,2 − x′n,1
− sn

x′n,2y′n,1 − x′n,1y′n,2

x′n,2 − x′n,1

i.e., the real parameters an, cn, dn, en are uniquely determined by the interpolation points and
the address points, while the real parameters sn are free parameters of the transformations
such that |sn| < 1, n = 1, 2, . . . , N. This constraint is necessary to guarantee that the
resulting IFS is hyperbolic with respect to an appropriate metric. As previously, the
transformations wn are shear transformations and the parameters sn are called vertical
scaling factors or contractivity factors of the transformations wn.

The attractor of the aforementioned IFS, i.e., the unique set G =
⋃

∑N
n=1 wn(G), is

the graph of a continuous function f : [x0, xN ]→ R that passes through all interpolation
points (xi, yi), i = 0, 1, . . . , N. This function is called recurrent fractal interpolation function
(RFIF) corresponding to these points. It is a piecewise self-affine function since each affine
transformation wn maps the part of the graph of the function within the corresponding
address interval to its section within the corresponding interpolation interval. Note that
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when all address intervals are equal to the interval I, then the recurrent fractal interpolation
function reduces to a fractal interpolation function of the previous section.

An example of a recurrent fractal interpolation function is presented in Figure 3,
where the set of interpolation points of Figure 1 is used; the address intervals are distinct
and the vertical scaling factors are sn = 0.25, n = 1, . . . , 10. Although the same vertical
scaling factors as in Figure 1 have been used, the resulting interpolant is smoother. This is
because each address intervals contains fewer interpolation points than the whole function,
thus resulting in smaller variation within the respective interpolation interval to which it
is mapped.
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Figure 3. A recurrent fractal interpolation function constructed from the set of interpo-
lation points Q (red) of Figure 1, using the address intervals {

[
Q0, Q2], [Q1, Q4], [Q1, Q3],[

Q4, Q7], [Q5, Q9], [Q2, Q7], [Q4, Q8], [Q6, Q9], [Q3, Q5]}, where Qi denotes the ith interpolation
point. The vertical scaling factors are sn = 0.25, n = 1, 2, . . . , 10.

The remaining data points P r Q are approximated by the recurrent fractal interpola-
tion function, since it does not necessarily pass through them. In order to optimise the fit,
the vertical scaling factors are calculated by methods similar to those described in the pre-
vious section for the fractal interpolation functions. These include methods that minimise
an error measure, such as the analytic and geometric methods of [31], or the bounding
volumes method of [32,33]. Other methods employ the use of fractal dimension ([34]) or
wavelets ([35]). The remarks of previous section about the selection of the interpolation
points apply here as well.

An additional example is depicted in Figure 4. The set of data points and interpolation
points of Figure 2 is used, the address intervals are of variable length and the vertical
scaling factors are calculated by the analytic algorithm of [31]. Note that the recurrent
interpolant approximates even better the remaining data points. This is allowed by the
property of partial, piecewise self-affinity, in contrast to the total self-affinity of the fractal
interpolant of Figure 2.
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Figure 4. A recurrent fractal interpolation function constructed from the interpolation points
(red) and data points (green) of Figure 2, using the address intervals

[
P0, P6], [P24, P36],[

P21, P36], [P21, P27], [P0, P15], [P0, P12], [P0, P6], [P21, P36], [P9, P18], [P24, P36], [P24, P36], [P0, P6],
where Pi denotes the ith data point. The vertical scaling factors have been calculated by the analytic
algorithm of [31].

3. Financial Time Series Modelling

In this section, we present three cases of financial time series modelling. Each case
is different with respect to the extent or the characteristics of the underlying data set.
Our aim is to show the suitability of fractal interpolation in a diversity of applications.
There are inherent difficulties in modelling and predicting financial data series of different
forms. Cryptocurrency prices exhibit significant volatility [36], stock market indices are
susceptible to external shocks [37], while GDP data is affected by economic cycles which
can have indeterminate duration [38]. Thus, an adaptable methodology that would permit
short-term forecasts or accurate interpolation to higher frequency data could be very useful
to researchers.

3.1. Dataset 1—Bitcoin Prices

The first set of data consists of bitcoin historical prices. Bitcoin is a decentralized digital
cryptocurrency that allows direct transactions between members of a peer-to-peer network
without the need of a trusted third party [39]. It emerged in 2009 and has gained widespread
popularity and use since then. The data set has a two-year time span. Specifically, it consists
of weekly prices from 23 December 2018 to 16 December 2020 containing a total of 105 data
points (data obtained from Bloomberg Professional (accessed on 18 April 2021)). The
time series has been modelled by a recurrent fractal interpolation function as depicted in
Figure 5. For constructing the interpolant, every 4th data point is used as interpolation
point, resulting in a total of 27 interpolation points. The address intervals have a fixed
span of 25 data points; for each interpolation interval In, the optimal address interval has
been selected between possible candidates by minimising the Hausdorff distance between

the original and mapped data points, i.e., An = arg
{

min
A∈A(P,l)

h(Pn, wn(A))

}
, n = 1, 2, . . . , N,

where A(p, l) denotes the subsets of P spanning l consecutive data points. The vertical
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scaling factors are calculated using the analytic algorithm of [31]. Note that although only
1/4 of the data points are used, the fractal interpolant represents successfully the time
series; the fluctuations of the underlying dataset are correctly captured. However, this
would not be the case if a smooth interpolant, e.g., a cubic spline, was used for the same set
of interpolation points.
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Figure 5. A time series of bitcoin prices (23 December 2018–16 December 2020) modelled by a
recurrent fractal interpolation function; every 4th data point (green) is used as interpolation point
(red), the address intervals have fixed span of 25 points and are optimally selected (see text), while
the vertical scaling factors have been calculated by the analytic algorithm of [31]. The x-axis indicates
the data points index.

3.2. Dataset 2—S&P 500

The second set of data consists of S&P 500 historical values. The S&P 500 is a stock
market index; specifically, it is a capitalization weighted index of 500 large cap companies
publicly traded in the U.S. (S&P 500, available online: https://en.wikipedia.org/wiki/S%
26P_500 (accessed on 2 December 2021)). It is considered to be one of the best indicators
of U.S. equities performance and it is widely followed by investors and institutions. The
data set has a 15-year time span approximately. Specifically, it consists of daily values from
9 December 2005 to 1 March 2021 containing a total of 3830 data points (data obtained from
Bloomberg Professional (accessed on 18 April 2021)). The time series has been modelled
by a recurrent fractal interpolation function as depicted in Figure 6. For constructing the
interpolant, every 10th data point is used as interpolation point, resulting in a total of
383 interpolation points. The address intervals have a fixed span of 25 data points; for
each interpolation interval In, the optimal address interval is selected between possible
candidates by minimising the Hausdorff distance between the original and mapped data
points, as in the first dataset. The vertical scaling factors are calculated using the analytic
algorithm of [31]. Note that although only 1/10 of the data points are used, the fractal
interpolant is able to represent accurately the time series. This is more clearly shown in
Figure 7, which depicts the part of Figure 6 between the 3630th and the 3820th data points.
In Figure 7, we see that the fractal interpolant closely follows the data points despite the
considerable sparsity of the interpolation points. This is explained by the existence of partial
self-affinity in the underlying data set, which the recurrent fractal interpolant successfully
utilizes by selecting the optimal address interval for each interpolation interval.

https://en.wikipedia.org/wiki/S%26P_500
https://en.wikipedia.org/wiki/S%26P_500
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3.3. Dataset 3—U.S.A. GDP 

Figure 6. A time series of S&P 500 values (9 December 2005–March 2021) modelled by a recurrent
fractal interpolation function; every 10th data point (green) is used as interpolation point (red), the
address intervals have fixed span of 25 points and are optimally selected (see text), while the vertical
scaling factors have been calculated by the analytic algorithm of [31]. The x-axis indicates the data
points index.
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3.3. Dataset 3—U.S.A. GDP

The third set of data consists of U.S.A. gross domestic product (GDP) historical values.
The GDP is “an aggregate measure of production equal to the sum of the gross values added
of all resident institutional units engaged in production” (OECD Glossary of Statistical
Terms—Gross Domestic Product (GDP) definition, available online: https://stats.oecd.org/
glossary/detail.asp?ID=1163 (accessed on 10 December 2021)). The data set has a 74-year
time span. Specifically, it consists of quarterly values from 1947-Q1 to 2020-Q4 containing a
total of 296 data points (data obtained from Bloomberg Professional (accessed on 18 April
2021)). The time series has been modelled by a recurrent fractal interpolation function
as depicted in Figure 8. For constructing the interpolant, every 5th data point is used as
interpolation point, resulting in a total of 60 interpolation points. The address intervals
have a fixed span of 20 data points; for each interpolation interval In, the optimal address
interval has been selected between possible candidates by minimising the Hausdorff
distance between the original and mapped data points, as in the previous sets of data. The
vertical scaling factors are calculated using the analytic algorithm of [31]. Note that this
dataset has a smoother structure than the previous ones presenting fewer fluctuations. In
this case also, the fractal interpolant accurately models the time series with only 1/5 of the
data points being used as interpolation points.
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Figure 8. A time series of U.S. GDP values (1947-Q1–2020-Q4) modelled by a recurrent fractal interpo-
lation function; every 5th data point (green) is used as interpolation point (red), the address intervals
have fixed span of 20 points and are optimally selected (see text), while the vertical scaling factors
have been calculated by the analytic algorithm of [31]. The x-axis indicates the data points index.

3.4. Comparison to Existing Methods

In order to further evaluate the proposed fractal interpolation method, we compare
it to existing methods for financial time series modelling. Specifically, we compare it to
the autoregressive integrated moving average (ARIMA) and generalized autoregressive
conditional heteroskedasticity (GARCH) methods, which are typically the methods of
choice for financial time series modelling.

Let Yt be a real valued time-series. The ARIMA(p, d, q) model is defined by

yt =
p

∑
i=1

aiyt−i + εt +
q

∑
j=1

ϑjεt−j

https://stats.oecd.org/glossary/detail.asp?ID=1163
https://stats.oecd.org/glossary/detail.asp?ID=1163
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where yt is the d-order differenced values of Yt, while ai and ϑi are the model coefficients
and εt are the error terms. The GARCH(p, q) model is defined by

σ2
t = a0 +

q

∑
i=1

aiε
2
t−i + εt +

p

∑
j=1

β jσ
2
t−j

where σ2
t is the variance, ai and βi are the model coefficients and εt are the error terms.

The comparison of the methods is performed using the three datasets previously
presented. For this test, the ARIMA(1, 1, 0) model is employed, i.e., a differenced first-order
autoregressive model, along with the GARCH(1, 1) model. The order of the models was
chosen using the Akaike information criterion (AIC). Note that the model order used in this
test is commonly used in financial time-series. The recurrent fractal interpolation functions
are constructed as described in Sections 3.1–3.3.

The results of the comparison are presented in Figures 9–11 and summarized in
Tables 1–3. The results show that the proposed fractal interpolation method has clearly
outperformed the ARIMA and GARCH methods. This indicates that fractal interpolation
can provide an adequate methodology for financial time series modelling.

Table 1. Results of the three methods for the first dataset (Bitcoin prices).

Dataset 1—Bitcoin Prices

Mean Abs. Error Mean Abs. % Error RMSE

ARIMA 547.71 6.46% 740.16

GARCH 557.96 6.55% 762.67

RFIF 198.40 2.34% 289.18

Table 2. Results of the three methods for the second dataset (S&P 500).

Dataset 2—S&P 500

Mean Abs. Error Mean Abs. % Error RMSE

ARIMA 13.95 0.80% 22.57

GARCH 23.91 1.31% 32.12

RFIF 10.42 0.59% 17.65

Table 3. Results of the three methods for the third dataset (U.S.A. GDP).

Dataset 3—U.S.A. GDP

Mean Abs. Error Mean Abs. % Error RMSE

ARIMA 55.51 1.10% 158.42

GARCH 88.11 1.52% 171.20

RFIF 20.07 0.35% 92.76
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Figure 11. A time series of U.S. GDP values (1947-Q1–2020-Q4) modelled by (i) a recurrent fractal
interpolation function, (ii) the ARIMA(1, 1, 0) model, (iii) the GARCH(1,1) model.

4. Conclusions

The application of fractal interpolation to financial time series was examined. Our
motivation stems from the fact that financial time series are often non-smooth, presenting
fluctuations and abrupt changes, thus rendering fractal interpolation functions a suitable
candidate for their modelling. Our tests have included three different sets of data (bitcoin
prices, S&P 500, U.S.A. GDP) with different time span and characteristics. The results
indicate that fractal interpolation functions are successful in modelling financial time series
even with a sparse selection of interpolation points. This stems from the fact that fractal
interpolants can inherently model non-smooth sets of data which frequently occur in
financial applications; moreover, they are able to model smooth structures as well.

The proposed methodology is expected to be especially useful in cases of non-smooth
time series. Such examples would be prices/indexes of unstable assets such as cryptocur-
rencies, time series spanning a turbulent period of financial crisis, or time series of high
frequency data. Moreover, it can be used for filling missing data within a time series. In this
context, it is interesting to note that a fractal interpolant presents detail at all scales, so it can
also be used for completing missing data even in higher frequencies than the original time
series. Future work will focus on creating a generic, systematic framework for modelling
and forecasting univariate as well as multivariate financial time series.
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