
Zayed University Zayed University 

ZU Scholars ZU Scholars 

All Works 

7-1-2023 

Empowering Patient Similarity Networks through Innovative Data-Empowering Patient Similarity Networks through Innovative Data-

Quality-Aware Federated Profiling Quality-Aware Federated Profiling 

Alramzana Nujum Navaz 
United Arab Emirates University 

Mohamed Adel Serhani 
University of Sharjah 

Hadeel T. El Kassabi 
Humber Institute of Technology and Advanced Learning 

Ikbal Taleb 
Zayed University, ikbal.taleb@zu.ac.ae 

Follow this and additional works at: https://zuscholars.zu.ac.ae/works 

 Part of the Computer Sciences Commons, and the Medicine and Health Sciences Commons 

Recommended Citation Recommended Citation 
Navaz, Alramzana Nujum; Serhani, Mohamed Adel; El Kassabi, Hadeel T.; and Taleb, Ikbal, "Empowering 
Patient Similarity Networks through Innovative Data-Quality-Aware Federated Profiling" (2023). All Works. 
6014. 
https://zuscholars.zu.ac.ae/works/6014 

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All 
Works by an authorized administrator of ZU Scholars. For more information, please contact scholars@zu.ac.ae. 

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F6014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F6014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/648?utm_source=zuscholars.zu.ac.ae%2Fworks%2F6014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/6014?utm_source=zuscholars.zu.ac.ae%2Fworks%2F6014&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholars@zu.ac.ae


Citation: Navaz, A.N.; Serhani, M.A.;

El Kassabi, H.T.; Taleb, I.

Empowering Patient Similarity

Networks through Innovative

Data-Quality-Aware Federated

Profiling. Sensors 2023, 23, 6443.

https://doi.org/10.3390/s23146443

Academic Editors: Flavio Bertini,

Rahimeh Rouhi and Enrique Lopez

Droguett

Received: 13 June 2023

Revised: 12 July 2023

Accepted: 13 July 2023

Published: 16 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Empowering Patient Similarity Networks through Innovative
Data-Quality-Aware Federated Profiling
Alramzana Nujum Navaz 1,* , Mohamed Adel Serhani 2 , Hadeel T. El Kassabi 3 and Ikbal Taleb 4

1 Department of Computer Science and Software Engineering, College of Information Technology,
UAE University, Al Ain P.O. Box 15551, United Arab Emirates

2 College of Computing and Informatics, Sharjah University, Sharjah P.O. Box 27272, United Arab Emirates;
mserhani@sharjah.ac.ae or serhanim@uaeu.ac.ae

3 Faculty of Applied Sciences & Technology, Humber College Institute of Technology & Advanced Learning,
Toronto, ON M9W 5L7, Canada; hadeel.el-kassabi@humber.ca

4 College of Technological Innovation, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates;
ikbal.taleb@zu.ac.ae

* Correspondence: 201570182@uaeu.ac.ae

Abstract: Continuous monitoring of patients involves collecting and analyzing sensory data from
a multitude of sources. To overcome communication overhead, ensure data privacy and security,
reduce data loss, and maintain efficient resource usage, the processing and analytics are moved close
to where the data are located (e.g., the edge). However, data quality (DQ) can be degraded because of
imprecise or malfunctioning sensors, dynamic changes in the environment, transmission failures, or
delays. Therefore, it is crucial to keep an eye on data quality and spot problems as quickly as possible,
so that they do not mislead clinical judgments and lead to the wrong course of action. In this article, a
novel approach called federated data quality profiling (FDQP) is proposed to assess the quality of the
data at the edge. FDQP is inspired by federated learning (FL) and serves as a condensed document or
a guide for node data quality assurance. The FDQP formal model is developed to capture the quality
dimensions specified in the data quality profile (DQP). The proposed approach uses federated feature
selection to improve classifier precision and rank features based on criteria such as feature value,
outlier percentage, and missing data percentage. Extensive experimentation using a fetal dataset
split into different edge nodes and a set of scenarios were carefully chosen to evaluate the proposed
FDQP model. The results of the experiments demonstrated that the proposed FDQP approach
positively improved the DQ, and thus, impacted the accuracy of the federated patient similarity
network (FPSN)-based machine learning models. The proposed data-quality-aware federated PSN
architecture leveraging FDQP model with data collected from edge nodes can effectively improve the
data quality and accuracy of the federated patient similarity network (FPSN)-based machine learning
models. Our profiling algorithm used lightweight profile exchange instead of full data processing at
the edge, which resulted in optimal data quality achievement, thus improving efficiency. Overall,
FDQP is an effective method for assessing data quality in the edge computing environment, and we
believe that the proposed approach can be applied to other scenarios beyond patient monitoring.

Keywords: federated learning; federated profiling; patient similarity network; federated patient
similarity network; data quality profiling; deep learning; edge computing; eHealth

1. Introduction

As the internet of things (IoT) became more pervasive, it is evident that big data
capabilities are undergoing a revolution, with enhanced domain sensing capabilities. Nev-
ertheless, many IoT-related projects are hampered by real-time connectivity issues and
insufficient computing power to handle the ever-increasing volume of information pro-
cessing. Furthermore, limitations in data transport capabilities further exacerbate these
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challenges, necessitating the execution of complex data analysis on heterogeneous comput-
ing platforms. These constraints impose a considerable risk of information loss during data
processing, particularly when employing aggregations, approximations, and filtrations
to overcome resource limitations. This, in turn, has a direct impact on data accuracy, as
the outcomes of data processing become susceptible to inaccuracies and uncertainties [1].
In addition to environmental factors, challenges during data creation and collection at
the data sources add to the complexities, as IoT generates a massive volume of data that
needs to be efficiently collected, stored, processed, and analyzed. Factors such as reduced
sensor precision, communication latencies, short battery life, and limited availability of
sensor/actuator sets contribute to diminished data accuracy. Additionally, the potential
for data breaches and privacy concerns due to the vast amount of sensitive data collected
and transmitted further compounds the need for robust security measures to protect the
integrity and confidentiality of the collected data. These challenges must be addressed to
ensure the successful implementation and operation of IoT projects, particularly in domains
where data accuracy, real-time analysis, and efficient data transport are crucial. To optimize
IoT and mobile edge computing (MEC) architectures, techniques such as feature selection
and data fusion can be leveraged, while also considering strategies for energy conservation
and energy harvesting [2]. These approaches aim to improve the quality of low-cost sensor
data, enhancing the overall performance and reliability of IoT systems [3]. By overcoming
these obstacles, IoT projects can unlock their full potential and effectively contribute to
data-driven decision making in various domains.

In the field of healthcare, the influence of data quality (DQ) flaws on physician judg-
ments decreases the likelihood of patients receiving optimal treatment, jeopardizing their
health and well-being. While poorly designed DQ attributes result in miscalculations and
misinterpretations that can have significant negative effects on healthcare providers and
patients, only a few studies document the actual effects of DQ flaws on patient care deci-
sions. This includes reduced validity of critical clinical characteristics and incomplete data,
which affects the propensity to prescribe medications or perform invasive procedures [4].
Consequently, it is essential to measure the impact of DQ issues on clinical decisions and
emphasize their relative importance. DQ issues must be carefully addressed at the source
and effectively managed before they can affect the clinical decision-making process in order
to preserve the integrity of the generated data and support the highest standards of clinical
decision making.

Gartner [5] estimated that 60% of organizations will utilize machine-learning-enabled
DQ technology by 2022 to reduce human operations for data quality improvement, and
50% will use data quality solutions by 2024 to promote digital business. DQ is critical for
tracking data value and relevance, and we believe its use in quantifying data will give us a
handle on what data are available, what the data’s value might be for business decision
making, and whether the data should be assessed primarily during the data transformations
at the pre-processing and processing stages of the data. The accuracy of a classification
model is heavily dependent on the DQ, so measuring DQ [6] is critical for estimating task
complexity earlier. DQ attributes should be verified, improved, and regulated throughout
their life cycle, as they have a direct impact on the conclusions drawn from data analysis.
To capture the quality requirements, characteristics, dimensions, scores, and applications
of quality rules, data profiling [7,8] has become a popular approach. DQ assurance and
this approach have become so intertwined that they are often referred to as the same. It
is a collection of techniques used to facilitate a variety of data management tasks, such
as data quality evaluation and metadata management. In healthcare data, on the other
hand, ensuring DQ is a time- and resource-intensive process, especially when dealing with
large amounts of data. The FL method may be crucial, as it allows for the construction of
a common quality model based on multiple sources without sharing data. This method
facilitates the need to combine multiple data sources to ensure the quality of data analytics
while also protecting the privacy of each individual and reducing the transfer time for data.
Our proposal to use a federated data quality profiling model to ensure the privacy and
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security of eHealth data, and is motivated by the need to address DQ concerns at every
stage of the data’s lifecycle, primarily at the edge.

1.1. Background

Any work on DQ is incomplete unless the DQ measures and metrics are stated, as
they are critical components in measuring data quality. To familiarize the reader with the
concept, some PSN background information is also provided.

1.1.1. Data Quality Dimensions and Metrics

For a given situation, some data may be more important than others in terms of
achieving the strategic vision, and therefore, when it comes to data quality (DQ), it is
important to focus on the most significant data. An entirely new set of metrics incorporating
“data weights” has been proposed by the authors in [9]. Choosing a set of dimensions
to work with is an important part of the approach, and to measure each dimension, a
metric must be selected. To accomplish continuous improvement, TDQM (total data quality
methodology) [10] is one of the few approaches that operate in a cyclical or revolutionary
fashion. When it comes to metrics, the only thing it uses is “basic percentages”, such as
the percentage of missing data for the “completeness” dimension. Data quality assessment
(DQA) combines subjective and objective evaluations. The root causes of discrepancies
can give great insight into the DQ problems and guide data quality improvement efforts.
According to the authors of [11], the five requirements of data quality metrics are the
existence of minimum and maximum metric values (R1), interval scaling of the metric
values (R2), and quality of the configuration parameters, as well as the determination of
metric values (R3), sound aggregated metric values (R4), and economic efficiency of the
metric values (R5). The term dimension is used to describe elements of data that can be
measured, as well as the ways in which data quality can be evaluated and quantified. Data
accuracy, completeness, uniqueness, timeliness, and validity are the six primary criteria
that determine the quality of data [12]. The following are the accepted definitions of each
of these metrics.

Accuracy: The degree to which data correctly portray the thing or event under investi-
gation in the “actual world”. Validity is a quality dimension linked to accuracy.

Completeness: The ratio of data saved to the potential for “completeness”. Validity
and accuracy are two quality dimensions related to completeness.

Uniqueness: No object, regardless of how it is identified, will be recorded more than
once. Consistency is the quality dimension connected to uniqueness.

Timeliness: The degree to which data correctly represent reality at a given point in
time. The quality component associated with timeliness is accuracy.

Validity: Data are accepted if they adhere to the syntax of the specification (format,
type, and range). The validity-related quality dimensions include accuracy, completeness,
consistency, and uniqueness.

It is also important to note that the related literature revealed that most DQ metrics
are strongly associated with one another. Data quality characteristics appear in the data
collection process as well as the preprocessing stage—this includes both the upstream
and downstream stages of the data processing [13]. The upstream influencing factors are
determined by the data collection system. The loss of data quality is expressed by missing
values in the event of data storage failures or the inability to measure the requested physical
values. The completeness indicator considers any missing values. Accessibility, mobility,
and recovery all fall under this umbrella term. The data analyst cannot use the signal data if
it cannot be accessed or if it cannot be transferred to a database or data mining software. In
the event of a failure or loss of data, a lack of recoverability results in a lack of information.
When it comes to traceability, the impact is not caused by missing values in the time series,
but rather by a lack of details about the dataset itself. The various subdimensions of
completeness also cover this influence. When compared to the factors that have an impact
on data quality upstream, the factors that have an impact on downstream DQ that appear
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during data preprocessing are accuracy, credibility, consistency, and relevance [13]. It is
also worth noting that the conversion of signal data to the international system of units
(SI), for example, does not have a negative impact on the quality of the data. Compliance is
a problem for data quality if there is a lack of information that prevents conversion to a
particular standard. Different definitions for data quality metrics have been presented by
many research studies. A few of the metrics are listed in the following sections.

1.1.2. Timeliness Metric

The ratio between currency and volatility determines the timeliness and they must
be measured using the same units of time. Time tags provide information about the date
the data item was acquired. For example, highly volatile data, such as stock quotes or
currency conversion tables, have a very short shelf life. Depending on when the information
product is delivered to the customer, an information product’s timeliness can vary. The
data quality metric for timeliness is defined by Ballou et al. in [14] as follows: Timeliness =
[(1− currency/volatility), 0]s. The parameter age of the data value represents the elapsed
time between the real-world event’s occurrence (i.e., the time the data value was created
in the real world) and the determination of the data value’s timeliness. The maximum
amount of time that the values of the considered attribute will remain current is defined
as the parameter shelf life or volatility. In other words, a higher value of the metric for
timeliness implies a higher value of the parameter volatility and vice versa. The metric’s
sensitivity to the ratio age of the data value depends on the exponent s > 0, which must be
determined based on expert estimations.

1.1.3. Completeness Metric

Complete data have been described as data with all values recorded. Missing data
can typically be indicated by null or another indicator in most applications. The metric
for completeness is defined in [15] as: Completeness = 1− (MT/NK), where MT is the
proportion of tuples in relation with null values to the total number of tuples and NK is the
total number of tuples.

1.1.4. Correctness Metric

Heinrichs [11] defined correctness as a metric to evaluate the accuracy of a stored
data value: Correctness = 1/(d(w, wm) + 1), where w is the stored data value, wm is the
corresponding real-world value, and d is a domain-specific distance measure.

1.1.5. Patient Similarity Network (PSN)

PSNs are designed to assess whether a patient is likely to benefit from treatment
modalities and lifestyle changes of other patients who are likely to be similar to the current
patient. The objective of PSNs is to recommend the appropriate therapy and medicine for the
patient based on aggregated data extracted from other patients with similar characteristics.
A few of the PSN challenges are listed as follows. Clinical narrative data that are diverse and
heterogeneous enrich hidden information that is useful in selecting the most comparable
patients. Medical occurrences are time-sensitive, and understanding the dynamics of
medical terminology and conclusions requires temporal information. When using noisy
clinical datasets, interpreting temporal representation is highly challenging, and the result
prediction accuracy is low. The dimensionality of health datasets is varied and high. For
example, the electronic health record (EHR) stores a wide range of data, such as diagnoses,
drugs, laboratory tests, and X-rays, as well as medical events like diseases and treatments.
Because the data are a mix of static and dynamic, modeling and processing are difficult.

1.2. Motivation

The main motivation of this paper is to address a few of the challenges with respect to
data quality. The heterogeneity of eHealth data from diverse data sources may be addressed
using the generalized hybrid PSN model proposed in our paper [16]. The model is effective
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in solving big data challenges when patient cases contain both structured and unstructured
data by employing an autoencoder to enforce dimensionality reduction in the model. The
patient similarity network fusion strategy uses PSN distance estimations from static and
dynamic data to emphasize patient pair similarity and reduce interference produced by
non-similar pairings. However, this PSN fusion strategy was designed with processing
at the centralized server, and not considering the quality of data received from the edge
nodes or the source.

Through experiments, we assessed the influence of individual edge data quality on FL
model accuracy, which motivates us to investigate data quality-aware edge selection and
profiling for PSN, integrating it with FL services to address faulty data issues at dispersed
client sources. FL training may use a lot of computer resources when there are a lot of
training datasets and jobs, and therefore, we propose a model to efficiently improve data
quality in remote learning clients. We create a profile based on the data context that can be
dynamically sent to all FL clients, and we execute client data selection and augmentation to
significantly reduce patient data transmission. When compared to cutting-edge data quality
enhancement approaches, our proposed model can significantly improve FL performance
for a wide range of learning tasks and FL scenarios. In this paper, we propose the DQA
FDQ profiling model, a quality-driven, edge-based federated strategy for sensor-based
monitoring setup that is motivated by the following:

• Capture quality at the beginning of the data acquisition process to ensure that DQ is
maintained throughout the data lifecycle.

• In the event that quality assessment criteria are dynamically updated in the case of
real-time data, it is recommended to introduce a data quality profile, abbreviated as
DQP, to support quality assessment at each edge node.

• The federated DQP can provide a more robust and detailed quality evaluation because
it will be able to capture the vast majority of quality issues occurring across all nodes.
Adopting a strategy to eliminate edges with noisy data and facilitate client selection
will reduce the impact of low-quality data on model training. Thus, the federated
quality profile will exclude edges with greater quality profile variation.

• Federated profiling will have a low overhead because it will focus only on the
quality profile measures and variance and not on the entire datasets stored at the
various nodes.

This article aims to address the challenges of data quality in healthcare by proposing a
novel federated data quality profiling (FDQP) approach. The proposed FDQP model in
federated PSN evaluates the quality of patient data obtained from edge nodes and enhances
the accuracy of machine learning models through profiling algorithm and federated feature
selection. Experimental results demonstrate the effectiveness of federated profiling in
improving data quality and accuracy. The contributions of this paper are described in the
following section.

Contributions

• Pioneering the federated data quality profiling (FDQP) technique for evaluating
patient data quality: This paper introduces a novel approach, referred to as federated
data quality profiling (FDQP), which aims to evaluate the quality of patient data
obtained from edge nodes. By pioneering this technique, the paper addresses the need
for assessing the reliability and accuracy of decentralized healthcare data.

• Development of an FDQP formal model to capture quality dimensions: To encapsu-
late the various dimensions of data quality profile (DQP), the paper establishes an
FDQP formal model. This model serves as a comprehensive framework for repre-
senting and analyzing the different aspects of data quality, contributing to the overall
understanding and evaluation of the patient data’s quality characteristics.

• Utilization of federated feature selection for enhanced precision: By leveraging feder-
ated feature selection techniques, this research enhances the precision of classifiers
used in analyzing patient data. The paper categorizes features based on metrics
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such as feature value, percentage of outliers, and missing data percentage, thereby
improving the accuracy and reliability of the classification process.

• Extensive experimental evaluation of the FDQP model: The proposed FDQP model
undergoes an extensive series of experiments, utilizing a distributed fetal dataset
across diverse edge nodes and varying scenarios. This rigorous evaluation enables
the assessment of the effectiveness and performance of the FDQP model in practical
healthcare settings.

• Improved data quality and accuracy in FPSN-based machine learning models: The
study demonstrates a noticeable enhancement in data quality and accuracy of feder-
ated patient similarity network (FPSN)-based machine learning models as a result of
adopting the FDQP approach. By incorporating the FDQP model, the paper shows
how the proposed methodology positively impacts the performance of FPSN-based
models in healthcare data analysis tasks.

• Proposal of a data-quality-conscious federated PSN architecture: This paper presents
a novel architecture, termed the data-quality cognizant federated PSN architecture,
which integrates the FDQP model to effectively improve the data quality and accuracy
of FPSN-based machine learning models. This proposed architecture addresses the
challenge of utilizing data collected from edge nodes, while ensuring high-quality and
reliable healthcare analytics.

• Application of an efficient profiling algorithm for data quality optimization: The
research applies a profiling algorithm that prioritizes efficient lightweight profile
exchange over complete data processing at the edge. By adopting this approach, the
paper advocates for optimized achievement in data quality, allowing for streamlined
data processing and improved efficiency in healthcare data analysis workflows.

The FDQP approach has the potential to be applied in a range of scenarios beyond pa-
tient monitoring. Here are a few scenarios that highlight the broader applicability of FDQP:

Industrial automation: In industrial settings, where large amounts of sensor data are
collected from various machines and equipment, FDQP can be used to assess the quality of
data to ensure accurate decision making and optimize production processes.

Environmental monitoring: FDQP can play a crucial role in evaluating the quality
of environmental sensor data, such as air quality measurements, water quality parame-
ters, and climate data. This can aid in monitoring and addressing environmental issues
effectively.

Smart cities: With the increasing adoption of IoT technologies in smart city appli-
cations, FDQP can be employed to evaluate the quality of data collected from various
sensors deployed throughout the city. This can support better urban planning, resource
management, and citizen services.

The versatility of the FDQP approach can be extended to diverse IoT applications,
enabling data accuracy and integrity across various domains for reliable decision making,
improved operational efficiency, and enhanced outcomes.

The paper is organized as follows. In Section 2, we review prior research on DQ and
FL. Section 3 describes our FDQ profiling model and proposed algorithm, while Section 4
describes the evaluation of our model using the fetal health monitoring dataset and includes
the evaluation methodology and experiments to illustrate the benefits of our approach.
Section 5 discusses the experiment findings, underlying principles, and limitations, to
present a balanced and realistic view of the proposed approach. Finally, Section 6 concludes
the paper and points to some future research directions.

2. Related Work

Many challenges must be resolved when managing a federated set of health data,
including individual user rights and needs, maintaining user data privacy, establishing rules
for creating and changing accounts and roles, providing tools for sharing private data with
selected audiences, and allocating shared costs among participants in a collaborative effort,
including data sharing, transfer, and integration. Clinical information can be protected
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by using FL [17], as data transfer is not required and all necessary information can be
stored locally in a patient’s healthcare organization or the patient data edges. In the data
analytics lifecycle, however, erroneous data discovered at one stage may have originated
from the processing performed upstream. It is essential to ensure the integrity of each link
in the lifecycle in order to determine the severity of a problem, as the ability to track the
propagation of defects through a system can aid in determining its magnitude. Eliminating
false positives, or results that do not pertain to a particular problem is another benefit of
DQ profiling [7]. Consequently, managing DQ profiling through federation enhances DQ
evaluation while maintaining data confidentiality. The following is a discussion of the
current state of quality management over distributed and federated sensory data.

Some data quality objectives can be achieved through database integration using
DQ attributes, such as querying the source database for inconsistencies and reconciling
inconsistencies during merging using federated database approaches [18]. In global ap-
plications, the metadata models were used to identify DQ-related query targets and to
dynamically combine data from component databases. The number of complex computa-
tions that can be accomplished on mobile devices has recently risen, supporting the spread
of the “on-demand-edge-computing” paradigm, which is characterized by the concept
of FL frameworks. The authors of [19] propose a DQ-centric big data architecture for
federated sensor service clouds, in which high-quality data from a large number of sepa-
rately managed sensors is exchanged or even traded in real time. One of FL’s challenges is
training clients with poor or severely biased data, which may jeopardize FL’s efficiency and
efficacy, resulting in a suboptimal global model that requires more rounds of computation
to converge. Based on the FL technique, a data representation profiling method called
FEDPROF [20] was proposed, which adaptively modifies clients’ participation likelihood
based on their profile dissimilarity while maintaining data locality.

By utilizing FL based on source data instead of centralized data, mobile edge comput-
ing becomes more intelligent. The additional computation may be used in FL to minimize
the number of communication rounds necessary to train the model. For example, the
in-edge AI framework [21] relies on edge caching and computation offloading to boost
computation and communication per edge device as an effective technique to handle the
various challenges related to energy consumption, privacy, and modeling fairness at the
edge. All stakeholders in the underlying data processing edges can have fair access to
high-quality data when using FL methods. When an attack is detected, FairFed [22], a new
FL framework, rejects model updates that lead to an attack.

Although there are studies that highlight FL, DQ, and PSN separately, none of these
initiatives explored DQ-aware federated PSN to assess the quality of the data itself and its
impact on increasing the prediction accuracy of PSN models. In the following section, we
highlight the related concepts within the context of FL based on the literature review.

2.1. Data Quality Assessment

Many approaches for detecting noisy data have been proposed in the literature,
with the most common three being distance-based, density-based, and clustering-based
strategies [18,23]. In its most basic form, an outlier is a value that differs from the rest of
the data in a collection. Outlier detection assigns each object an outlier score that indicates
how much it deviates from the norm. Such algorithms can remove any specified amount
of noise, for example, by sorting objects based on their “outlier score” and deleting the
items with the highest outlier scores until the appropriate percentage of objects is removed.
Data profiling [24] can solve DQ concerns, such as noise and outliers, inconsistent data,
duplicate data, and missing values [23,25,26].

Due to the presence of minor class representation in the data, class imbalance problems
arise, and when the data are classified, the classifiers are biased toward the dominant class.
For instance, in medical diagnosis, the detection of cancerous cells and the misclassification
of non-cancerous cells may necessitate additional clinical testing. However, if the misclas-
sification of cancerous cells leads to the prescription of no additional tests, the patient’s
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cancer may go undetected, which poses a significant health risk. In the medical diagnosis
example, however, the classifier might very well mislabel some benign tumors as malignant
(cancerous), thereby subjecting a patient without cancer to unnecessary tests. Similarly,
there are many instances where the overall classification accuracy of ML algorithms mis-
classifies minority classes. This leads to increased misclassification costs, time, and risk
assessment. Each client has a unique quantity of locally stored training data. Therefore, the
reliability of the trained values will vary depending on the client, as there is a possibility
that the training sessions will be too brief [27].

In today’s information age, where vast amounts of data are being generated at rapid
intervals, it can be difficult to sift through this flood of information to find the bits of value.
There is a centralization issue, because large tech companies control the majority of the data
and resources required to effectively train machine learning models. Traditional machine
learning settings explore the subject of relevant data selection under the presumption that
all relevant data are available in one location for computation. Due to the fact that the data
in FL settings are dispersed among numerous clients and the server is unable to inspect it
because of privacy restrictions [28], the conventional methods for choosing pertinent data
are not applicable in this situation.

An approach that finds relevant data and stores it in a decentralized way with an
innovative approach to network sharding that the authors call the interest group [29].
The data added to the ledger are verified for accuracy by the proof of common interest.
In [28], it is suggested to use a method called federated learning with relevant data (FLRD),
which allows clients to select data relevant to the server’s objective, leading to improved
performance of the global learned model. Each client must learn a function that estimates
data point relevance without compromising privacy.

Some of the challenges in federated data quality profiling are inspired by the FL
environment, which involves data that are distributed and from several sources, which
presents its own set of issues, as opposed to a centralized dataset that is simply dispersed
around worker nodes.

2.2. Quality-Aware Client Selection in FL

A strategy for user recruitment called quality-aware user recruitment [30] has been
addressed to handle the problem of optimizing the observed DQ in mobile crowd sourcing
(MCS) mode. Through federated learning, this work predicts the quality of sensed data
from various users by examining the correlation between data and context information.

The majority of current FL approaches focus on the supervised setting, where each
client’s data are labeled. FedTriNet [31] is proposed as a federated semi-supervised learning
method with a pseudo-labeling method having two learning phases, because it is impossible
to completely label client data in real-world applications.

One of the most prized qualities of a data valuation metric is its fairness. Data owners
are key to federated learning’s success. Each data owner’s contribution to the model’s
performance should be reflected in the FL setting’s data valuation metric. Furthermore,
it is important to fairly evaluate data owners’ quality and contribution to the final model
and reward accordingly if you want them to continue contributing. The federated shapley
value [32] satisfies many data valuation properties. Two data owners with the same local
data may not receive the same evaluation with a federated Shapley value. Completed fed-
erated Shapley value [33], based on a low-rank matrix completion formulation, improves
the federated Shapley value’s fairness. Data source selection is required in practical applica-
tions due to the high cost and low availability of communication channels, and FDSS [34],
an algorithm, is devised, which can effectively address this issue in both static and dy-
namic contexts and demonstrate that it can be transformed into a monotone submodular
maximization problem.

An adaptive accuracy threshold aggregation strategy based on federated
learning [35] is proposed, which can satisfy the practical needs of multi-party data learning
without requiring the sharing of sensitive data. The local node obtains information from
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the local dataset. After local training, the aggregation node verifies that the conditions for
this round’s aggregation have been met. In this instance, local model data are retrieved
from the local node, and model aggregation is carried out. The algorithm calculates the
optimal threshold to reduce the number of communications between local nodes and
aggregation nodes. This algorithm can alter the accuracy of each round during model
training and determine the optimal threshold. Since the local model data indirectly reflects
the node sample information, an attacker can deduce the sample data from the effective
model information, reducing the number of communications and the probability of privacy
leakage. Hybrid logical security framework (HLSF) [36] proposes strong authentication
and data confidentiality mechanisms, which improves security and network capabilities,
promotes green IoT, and addresses privacy concerns.

AUCTION [37] is intended to embed the client selection policy into a neural network
and then use reinforcement learning to automatically learn client selection rules based on
observed client status and feedback incentives quantified by federated learning perfor-
mance. The policy network is based on an encoder–decoder deep neural network with
an attention mechanism that can adjust to dynamic changes in the number of prospective
clients. TiFL [38], a tier-based FL system provides an adaptive client selection approach that
uses quality as an indirect indicator to infer data heterogeneity information and updates
the tiering algorithm on the fly. This minimizes training time while increasing accuracy.
They also employed a lightweight profiler to evaluate each client’s training time and put
them into logical data pools known as tiers depending on measured latency.

2.3. Data Heterogeneity on FL

Since data in the FL paradigm cannot be gathered or shared, data heterogeneity in-
evitably arises, severely impacting the efficacy of federated analytics. The analytics-driven
client selection (FedACS) [39] framework proposed a three-pronged approach to dealing
with the issue of data heterogeneity. Without revealing any private information, clients
first generate insights about their local data; then, the server uses these insights to infer the
situation of clients’ data using Hoeffding’s inequality. Finally, a client pool is formed by
selecting individuals from a slightly more diverse set of data. Each individual customer has
insufficient data because of costly labeling and the inability to store additional information.
Large amounts of unlabeled data are readily available in the public cloud (e.g., social me-
dia). To boost DL model efficacy, Ada-FedSemi [40] uses both local and cloud-based labeled
and unlabeled data. Due to the high volume and low availability of the clients, a carefully
chosen subset of clients is used in FL during each iteration of training. The parameter
server compiles these local models into aggregated pseudo-labels for unlabeled data, which
is then used to train a better global model. Federated learning has been widely utilized
to connect resource-constrained devices for neural network on-the-edge training. When
federated learning deploys identical neural network models to heterogeneous edge devices,
those with less processing capacity may dramatically delay the synchronized parameter ag-
gregation, resulting in serious computational straggler problems [41]. These computational
stragglers are edge devices with little processing capability that are attracting increasing
attention from the research community [42]. Although training model improvement can
help with stragglers, the optimized models frequently result in divergent structures due to
diverse device resource limits, which has a substantial impact on collaborative convergence.
FedProx [43], a variant of FedAvg [44], is presented to address system heterogeneity caused
by system feature variability on federated training devices. System heterogeneity has a sig-
nificant influence on model aggregation efficiency and accuracy, causing the optimization
to diverge [45].

2.4. Implications of Communication in FL

Communication is an important part of FL and approaches to decrease communication,
such as local updating and model compression, must be understood through a thorough
analysis of the trade-off between accuracy and communication for each strategy. Bulk syn-



Sensors 2023, 23, 6443 10 of 32

chronous and asynchronous techniques are the two most often researched communication
strategies in distributed optimization. These strategies are more practical in data center
settings because worker nodes are generally dedicated to the task, i.e., they are ready to ‘pull’
their next job from the central node as soon as the results of their previous job are ‘pushed’.
In federated networks, on the other hand, each device is typically unfocused on the task
at hand, and most devices are inactive at any given time. As a result, it is worthwhile to
investigate the impacts of this more realistic device-centric communication architecture, in
which each device may select when to ’wake up’ and connect with the central server in an
event-triggered manner [46]. To adapt the FL model to 6G networks [47] with huge, hetero-
geneous devices and networks, a communication-efficient approach must be developed,
considering two major aspects: (a) lowering the total number of communication rounds or (b)
reducing the number of gradients in each communication round. Another challenge is that
the majority of present FL works use machine learning models with full-precision weights,
and virtually all these models contain a high number of redundant parameters that do not
need to be transferred to the server, spending an unnecessary amount of communication
expenses. In addition, using data from edge devices is not always possible due to the devices’
inability to transmit data quickly enough or due to poor connectivity circumstances [48]. A
ternary federated averaging protocol (T-FedAvg) [49] was developed to overcome this issue
by reducing the upstream and downstream transmission of FL systems.

2.5. Data Model Quality-Aware FL

Another focus of recent research is to raise FL model quality awareness. The model
updates contributed by computing nodes training with their local data determine the
quality of federated learning. The model update qualities of computing nodes can vary
dramatically depending on various factors (e.g., training data size, mislabeled data samples,
skewed data distributions). The accumulation of low-quality model updates can degrade
the overall model quality. A framework called FAIR [50] integrates three major components
to achieve efficient FL learning: learning quality estimation, a reverse auction problem
to encourage the participation of high-quality and inexpensive computing nodes, and
auto-weighted model aggregation.

Federated edge learning’s privacy-preserving aspect makes it the future of wireless
edge network training. In [51], data-quality aspects are used to schedule edges for collabo-
rative training. First, the learning algorithm’s components, dataset diversity, and edge node
reputation are defined. The authors proposed a DQ-based scheduling (DQS) algorithm that
prioritizes reliable devices with rich and diverse datasets.

2.6. FL Data Streaming Concerns

There are several practical difficulties that occur when FL is used with real-life
streamed data. Concept drift (underlying data-generation model changes over time),
diurnal variations (devices exhibit different behavior at different times of the day or week),
and cold start problems (new devices enter the network) are just a few of the issues [46] that
must be handled with caution. The Adaptive-FedAVG FL [52] approach works with non-
stationary data-generating systems that are impacted by concept drifts by modifying the
learning rate to increase the learning phase’s flexibility, allowing it to adapt to concept drift.

Patient privacy and the risks associated with releasing personal health information,
such as stigma, continue to be key challenges in healthcare. Because patient data are not
exchanged between multiple locations, but the model goes to the data, our recommended
DQA-FPSN model is created with privacy in mind. This enables the identification of
similar individuals without risking patient privacy, allowing for accurate diagnosis and
lifestyle recommendations.

Table 1 provides an overview of notable related work in the paper, highlighting
different contexts and challenges addressed in the literature. It presents key features,
advantages, and disadvantages of each reference, offering a concise understanding of the
discussed work.
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Table 1. Summary of related work.

Concept Reference Key Features Advantages (+)/Disadvantages (−)

FL for Data
Protection [17]

Uses FL for protecting
clinical information, eliminates
data transfer, maintains
data confidentiality.

+ Preserves data privacy, allows
local storage of patient data.
− Challenging to train clients
with poor or biased data.

DQ
Assessment [7]

Discusses DQ profiling,
eliminates false positives,
improves DQ evaluation.

+ Enhances DQ evaluation,
maintains data confidentiality.
− Does not address federated
or distributed data specifically.

Federated Sensor
Service Clouds [19]

Proposes DQ-centric architecture
for federated sensor service clouds,
exchanges high-quality data in
real time.

+ Enables real-time data exchange,
improves data quality.
− Challenges with training
clients having poor or biased data.

Quality-aware
User

Recruitment
in MCS

[30]

Introduces quality-aware user
recruitment in MCS
using FL, predicts the quality of
sensed data.

+ Optimizes observed data quality,
improves FL performance.
− Limited to the MCS context.

FL for In-Edge
AI [21]

Presents an in-edge AI framework
using FL, boosts computation
and communication per edge
device, handles energy
consumption, privacy, and
fairness challenges.

+ Improves computation and
communication efficiency,
addresses energy and privacy
concerns.
− Focuses on edge computing, may
have limitations in scalability.

Fairness in FL [22]

Introduces FairFed, an FL
framework that rejects model
updates leading to attacks,
ensures fairness in FL.

+ Enhances security and fairness
in FL, prevents model
poisoning attacks.
− Does not explicitly address
DQA.

Data
Heterogeneity

in FL
[39]

Proposes FedACS framework to
address data heterogeneity in FL,
generates insights about local data
and forms a diverse client pool.

+ Handles data heterogeneity,
improves FL efficacy.
− Does not focus on DQA
directly.

Communication
Strategies in FL [46]

Discusses communication strategies
in FL, investigates the impacts of
device-centric communication architecture.

+ Considers realistic
communication scenarios,
improves efficiency.
− Does not specifically
address DQ concerns.

Federated Edge
Learning [51]

Uses DQ aspects for scheduling
edges in federated edge learning,
prioritizes reliable devices with
diverse datasets.

+ Enhances edge selection in FL,
considers DQ for scheduling.
− Limited to federated
edge learning context.

Concept Drifts
in FL [52]

Introduces the adaptive-FedAVG FL
approach to handle concept drifts
in nonstationary data-generating systems.

+ Adapts to concept drifts,
improves model flexibility.
− Focuses on concept drift,
may not cover other data
streaming concerns.

Client Selection
Policy [37]

Proposes an auction, client selection
policy embedded in a neural network.

+ Reinforcement learning-
based client selection.
−May require additional
computational resources.

Accuracy
Threshold

Aggregation
[35]

Privacy-preserving,
multi-party data learning.

+ Reduces privacy leakage
probability.
− Requires threshold tuning.
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2.7. Research Gaps

Table 2 compares the proposed model, DQA FPSN, with state-of-the-art approaches in
the field of FL. The listed approaches encompass various aspects, including node/client
selection, dimension reduction, data heterogeneity, federated profiling, data quality assess-
ment, FL-based methods, and accuracy Improvement. It is worth noting that the proposed
DQA FPSN addresses several research gaps that have not been explored in the existing
literature.

Despite the advancements in FL approaches, there is a lack of emphasis on quality-
aware client selection, which plays a crucial role in ensuring the reliability and repre-
sentativeness of the participating clients in the FL process. Another research gap lies in
the dimension reduction or feature selection techniques specifically tailored for FL set-
tings. Existing methods often assume homogeneous data, and there is a need to explore
dimension reduction approaches that can handle the inherent data heterogeneity across
different clients while preserving privacy and data utility. Current approaches focus on
aggregating model updates, but there is room for improvement in terms of profiling the
participating clients to better understand their characteristics and performance, leading to
more informed aggregation strategies, while FL has shown promising results in various
applications, ensuring accuracy improvement by the integration of DQ assessment, and
DQ dimensions into FL frameworks is another area that requires more attention. There
is a need for advanced optimization techniques and personalized learning approaches
that can adapt to each client’s data distribution and enable more accurate and reliable
model updates for heterogeneous data, specific to various domains, such as PSN, in health-
care. Addressing these gaps would significantly enhance the overall effectiveness of FL in
real-world scenarios.

Table 2. Comparison of the proposed model against the state-of-the-art approaches.

Reference Approach
Node/
Client

Selection

Dimension
Reduction/

Feature
Selection

Data
Heterogeneity

Federated
Profiling/

Aggregated
Models

DQ
Aware

FL
Based

Accuracy
Improvement

[30] Quality-aware
user selection

X - - - X X -

[31] FedTriNet - - - - - X -
[32] Federated

Shapley value
- X - - - X -

[34] FDSS X - - - - X -
[37] AUCTION X - - - X X -
[50] FAIR - - - X X X
[38] TiFL X - X - - X -
[39] FedACS X - X - - X -

[40] Ada-
FedSemi - - - X - X X

[DQA-FDQP] Proposed
FDQP

X X X X X X X

3. Data-Quality-Aware FPSN Model

In this section, we present our proposed data-quality-aware federated PSN (DQA
FPSN) model, how to apply FDQP with an illustration, the detailed algorithm, and finally
the model formulation. Figure 1 details our proposed DQA PSN model architecture that
features federated quality profiling, where the data sources are at the edge. The architecture
also features a cloud-based server that facilitates the profiling federation and the federated
PSN score aggregation. Pre- and post-data quality evaluation is performed, and the process
is repeated until the data quality reaches acceptable tolerance levels. The following are the
sequential steps of the model processes.
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1. In the initial stage, the centralized cloud server sends the baseline DQP to the
edge nodes.

2. Subsequently, at the edge local node, each node verifies and evaluates the data quality
acquired from the sensors, updates the DQP, and transmits it back to the server.

3. Finally, the server integrates the DQPs received from the edge nodes to create the
federated data quality profile (FDQP), which is transferred to the edge nodes.

4. FDQP is then applied to the local edge data that creates the quality-enriched data,
which will be the basis for the PSN data fusion model at the edge.

5. The resulting patient similarity score is sent back to the cloud server.
6. The FPSN score aggregation model receives the model updates from the edges and

the aggregation of the similarity scores takes place at the cloud server.
7. The final patient similarity score is used as a basis to detect the most similar patient.
8. DQ evaluation measures of performance such as accuracy are calculated.
9. The process is further assessed with pre- and post-DQ evaluations.

Figure 1. FPSN enhanced by FDQP at the edge.

3.1. Data-Quality-Aware FPSN Model Overview

An overview of the proposed model with FPSN and FDQP edge enhancement is
shown in Figure 1. The objective of this framework is to enhance the precision and speed
of data processing at the edge of the network.
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3.2. Federated Data Quality Profiling

Figure 2 depicts federated data quality (FDQ) profiling using an example. The baseline
quality profile specifies the needed data quality characteristics such as completeness,
accuracy, and timeliness, as well as the data quality standards. Based on the baseline
quality profile, we identify the dimensions of DQ with severe issues. A missing data-
related rule, for example, will infer some actions (e.g., replace missing values with the
mean) depending on the kind of data and the degree of tolerance specified in the DQP.
This baseline DQP will be forwarded to the source edges, where the local dataset will be
reviewed using the profile and a new quality profile will be constructed using some or
all of the criteria. If the new profile satisfies the baseline quality profile, it is sent back to
the server. It is worth noting that we are considering the edges of collecting and holding
identical datasets with similar characteristics. Hence, Figure 2 shows that source edge 1
with attribute ID 1 has a missing value of 70%, and thus, rule 2.2 is used to eliminate the
whole column.

Figure 2. FDQ profiling example.

Similarly, at each edge node, a local profile is relayed to the server node, which
aggregates all profiles. According to the context and the rules, the aggregate process will
use min, max, total, or average aggregation. The aggregated quality profiles will then be
integrated to generate the federated data quality profile, which will include optimal rules
based on attribute correlations. Furthermore, the feature selection rules will be defined
in the federated data quality profile based on attribute priority and ranking. Thus, the
federated data quality profile will have a well-defined purpose, quantifiable metrics, and
optimized rules for selection, as well as explicit formulas for combining local/federated
data profiles. Finally, the rules in the federated data quality profile are propagated and
enforced across all nodes in the federation, ensuring enhanced data quality.

3.3. Model Formulation

Let A represent a collection of data attributes of the dataset expressed by
A = a0, . . . , aj, . . . , aD, where D is the number of attributes (or the dimensionality of
the dataset) and aj is an attribute represented by its type, possible values, weight, toler-
ance, and rules. For each aj in A, the weights of each attribute are represented by a set
W = w0, . . . , wi, . . . , wp, where the sum of all weights should be 1. The weights are defined
using a kernel function that provides the priority and importance of each attribute in the
set A, thus enabling feature selection. Each attribute evaluation is mapped to a set of
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data quality dimensions D = d0, . . . , dk, . . . , dq. T is a collection of minimum acceptable
tolerance levels, T = t0, . . . , tl , . . . , tr, established by data specialists and associated with
every quality dimension (e.g., completeness accepted tolerance is 70 percent, which means
the attributes need to comply with above 70 percent completeness). There are zero, one,
or more applicable rules, R = r0, . . . , rm, . . . , rs, to the attributes, which are applied when
meeting criteria based on acceptable tolerance levels specified for the attributes. Rules can
be tailored to handle quality issues and include corrective actions, such as data imputation
or outlier elimination.

Our algorithm’s main phases are baseline representation profiling, edge representation
profiling, and federated profiling. A DQP is, thus, represented by (A, W, D, T, R). First, the
baseline DQP, DQPv is generated based on the sample dataset available at the server, which
is similar to and characterized by independent and identically distributed (IID) datasets
available at the edges. Quality requirements or preferences can be set for all attributes
(the entire dataset) by default, as well as applied to individual attributes, on demand. The
settings are determined by the data quality dimensions selected for profiling and by the
requirements of the application. Certain dimensions, such as completeness, can be set for
all attributes by specifying the expected ratio or tolerance that must be met. Several other
dimensions, such as timeliness, are more focused on specific attributes such as time or date.

The DQPv is subsequently sent to all the edges where it is applied at the edge data
sources to form DQPe with the tolerance values, max and min (possible values), and the
quality measures (metrics) of the dimensions specified by M = m0, . . . , mn, . . . , mt.

3.3.1. Quality Rules Development

DQPe is, thus, represented by (A, W, D, T, R, M) and is built at the edges using the
baseline profile as a blueprint. The dataset is analyzed, and the profile is updated to include
data size, attribute count, row count, and attribute details with the maximum, minimum,
and percentage of missing values. Quantitative measures of missing data, unique data,
and completeness relative to the dataset are added to the quality profile. To guarantee an
increase in edge data quality, certain steps must be taken as outlined in the rules. Here is
an example of the XML code that describes how to handle missing data in the dataset.

The quality rules of missing data are specified in the XML, as depicted in Figure 3.
With quality rule action 2.1, using mean imputation, we replace missing values of attribute
X with the attribute’s mean, which is calculated using the attribute’s non-missing values.
In a normally distributed variable, the median, mean, and mode will all be close to one
another. Thus, using the mean or the median to fill in missing data is equivalent, but
for skewed attributes having missing value tolerance under 5%, it is recommended to do
imputation with the median [53]. Using the mode to fill in gaps in numerical variables is
unusual.

Figure 3. XML quality rule for missing data in baseline DQP.

When there is a connection between the missing data and the other features of the
record, or when there is background knowledge about the likely data values, it is possible
to draw conclusions about the missing data and the other features of the record. To fix
data issues, supervised machine learning algorithms can be used to predict values and
correct missing values. MNAR (missing not at random) means that something is missing
in a systematic way rather than by chance. In this case, there is a systematic dissimilarity
between the available data and the missing data which can be handled by KNN (K-nearest
neighbor). Feedback iterations can aid algorithms in learning and increasing their precision
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over time. This quality rule is incorporated in rule 2.4. There is uncertainty in the imputed
values, so multiple imputations (MI) were proposed in the literature as a method to fill
in the gaps. In MI, the required number of imputations is proportional to the frequency
of missing data, i.e., more imputations are needed for a dataset that is missing a lot of
information [54]. We have incorporated MI in rule 2.6 when the tolerance is above 20%
and the data is numerical. As imputation could introduce some bias into the data, it is
recommended to remove the row or columns if the missing tolerance is larger, as indicated
in rule action id 2.6 and 2.7. Similarly, other DQ rules are specified in XML and sent back to
the server, where it is federated.

3.3.2. FDQP Formulation

The FDQP formulation captures and aggregates data quality profiles from multiple
sources in federated systems, enabling a comprehensive understanding of data quality at
the federated level.

[DQP]Fed = [DQ]FedPro f (Grp ∑([DQP]e(A, W, D, T, R, M))) (1)

where DQPFed represents the data quality profile at the federated level, which is the overall
data quality representation obtained through the federated profiling process, [DQ]FedPro f
(data-quality aware) is the group aggregation of the DQP received from all the edges; the
aggregation is based on the dataset and the data quality dimensions specified in the DQP,
Grp ∑ represents a grouping and aggregation operation applied to the individual data
quality profiles (DQPe) obtained from the edge data sources, and DQPe represents the data
quality profile at the edge level, which is obtained by applying the DQPv (baseline data
quality profile) to the edge data sources.

Parameters: A (data attributes), W (attribute weights), D (data quality dimensions),
T (tolerance levels), R (applicable rules), and M (quality measures).

Figure 3 gives a comprehensive overview of the FDQP-mandated federation rules.
Both global and attribute-based summaries of quality profiles are generated. Attributes and
the “MissingData” deletion criteria are both standardized at the federation level and then
cascaded to the edges. Additionally, there is another rule that uses federation heuristics to
fine-tune the tolerance applied to the attributes.

[DQ]FedPro f also considers the dimensionality reduction with feature selection where
the number of attributes is reduced based on missing data and acceptable tolerance rules.
Assume we have a dataset in D-dimensional space with n samples. Dimensionality re-
duction approaches convert a dataset with dimensionality D into a new dataset with
dimensionality d,while keeping as much of the data’s shape as possible. For each edge,
and each attribute aj, a missing value MVi information vector is created, where ATol is the
acceptable tolerance for the attribute.

[MV]i = aj.isNull · count()/D (2)

[[MV]ia]ni,j =

{
1, i f [MV]iai,j < [ATol(ai,j)

]

0, Otherwise
(3)

Furthermore, the vector is aggregated during [DQ]FedPro f , considering all the edges
where rules are applied based on attribute weight and tolerance. For instance, If the
attribute weight is above 0.5, the aggregation rule adds a chosen imputation method;
however, if the calculated MVi is 0 (meaning it is above the missing value tolerance) and
the attribute weight is insignificant, rules are prescribed to remove the attribute. As a result,
these rules override the profile and reduce the dimension to d at the FedProf aggregation.
This federated DQP, [DQP]Fed, is distributed to the edges, where the rules are applied. All
of the data measurements and rules acquired in the preceding profiling’s are considered in
the FedProf aggregation. [DQP]Fed will differ from the DQPe in many aspects, including
values, size, dimensions, and data metric scores. Federated [DQP]Fed will be used to
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determine the right quality metric functions to assess a data quality dimension dk for
an attribute ai with a weight wj. Edges that fail to meet critical data quality metrics will
be dropped from further processing. Finally, the [DQP]Fed is sent to the edge nodes and
applied for PSN calculation and evaluation based on different PSN fusion algorithms.

3.4. Model Profiling Algorithm

We have detailed the FDQ profiling algorithm in Algorithm 1. This algorithm takes the
server and the client processes into account. The number of edges, list of dimensions, list of
rules, and version number of the quality profile are the input parameters. The FDQP and
quality-enhanced data are the outcomes. Initially, a baseline DQ profile with the quality
dimensions and rules list is created and distributed to all edges. Each client creates their
local DQP, which is then sent to the profile federation server, where the FDQP is built
in accordance with the federation rules. FDQP is further forwarded to clients, where it
is applied at the edges depending on DQ tolerances that have been stated in advance.
The client is disconnected if the data quality at the edge is not adequate. When applied,
the FDQP results in data that is both enriched in quality and useful for further eHealth
analytics. For the duration of the data streaming process, iterations are performed, and
profile versions change incrementally. Once the profile quality reaches a threshold, the
profiling stops and the profile is used in all subsequent iterations. To minimize overhead,
only the profile updates are transmitted following the initial run. For continuous real-time
profiling, once the edge data are applied with FDQP, the data are marked to be forgotten in
the profile, so they will not be used again, and the process is then repeated.

3.5. Federated Feature Selection

The FDQP relies heavily on federated feature selection to boost classifier precision. The
task of feature ranking [55] entails determining the relative importance of a set of features
and then ordering them accordingly. This relative importance is typically determined by a
feature selection criterion. Given that the data in our scenario are dispersed across multiple
nodes, the challenge is to minimize information loss during federation. The number of
available nodes with high-quality data or the varying number of features per node could
be the limiting factor, depending on the situation we are tackling. The pseudocode for
federated feature selection is provided in Algorithm 2; it ranks features according to criteria
including feature value, outlier percentage, and missing data percentage, and these metrics
are collectively indicators of data quality.

Given a network with 10 nodes and 100 features per node, we can estimate the
difficulty of the ranking combination task because the rankings are not identical.

The federated feature selection is illustrated in Table 3. Column 1 contains the list of
features, while columns 2 through 4 contain the aggregated feature selection rank, feature
outlier rank, and feature missing rank. The ranking criteria for each column are specified
in the header; for example, the feature with the lowest outlier percentage is ranked first
(i.e., Rank 1), and the feature with the highest outlier percentage is ranked N, where N is
the number of features. The final column, federated feature rank, is calculated as described
in Algorithm 2. In the provided features in Table 3 (A, B, C, D, E), D is the best valuable
feature (with the least federated rank), while E is the worst one. Priority is given for feature
selection if two features have the same federated value, followed by outlier and missing
rank. Thus, missing data and outliers have a negative effect on aggregation for making the
right decision regarding data selection and feature extraction, as illustrated by the federated
feature selection. The federation of feature selection adds value because, in a real-world
scenario, each node has only partial information to rank the features as it does not have
the entire dataset, making it impossible to accurately compute the importance given to
each feature.



Sensors 2023, 23, 6443 18 of 32

Algorithm 1 Federated Data Quality Profiling Algorithm
Input:
Sn, . No of Edges
AList, . List of Attributes
DList, . List of Dimensions
RList, . List of Rules
QTol , . Acceptable Quality Tolerance
v = 0 . Version of the DQ Profile(DQP)
Output:
DQPFed . Federated DQ Profile
PScoreFed . Federated Patient Similarity Score

//Baseline Profiling
1: DQPv ← initializePro f ile(DList,AList,RList) . Data Quality Profile - Generate

baseline profile with quality dimensions and rules.

//Edge Profiling
2: WLPe ← EdgeWorkloadPro f ileCreate(Config_e,RealTime_e) . Create Workload

Profile based on config file and edge resource real time parameters.

3: DQPe ← ClientPro f ileCreate(DQP_v) + WLPe . each Edge i

//Federated Profiling
4: DQPFed ← DQFedPro f (∑

n
e=1 DQPe) . Federated DQ Profile Aggregation.

//Edge Processing
5: DQEnrichedDatae ← ClientPro f ileUpdate(DQPFed) . each Edge i
6: PScoreedge ← PSNFusionModelpssing(DQEnrichedData) . Quality Enriched Data is

passed to the Edge PSN Model to determine the patient similarity score.

//Federated PSN and Centralised Processing
7: PScoreFed ← FederatedPSNModelpssing(∑n

e=1 PScoreedge)
8: while (Accuracy(PScoreFed) < QTol) . Quality Score Evaluation
9: v← v + 1 . Increments Profile Version

10: DQPv ←DQP_Fed . Baseline Profile is updated with the Federated Profile.
11: Repeat . The process is repeated until the target accuracy is obtained.

//Client process: running on the clients

12: procedure CLIENTPROFILECREATE(DQPv)
13: DQP = GenerateEdgePro f ile(DQPv) . DQ Profile
14: return(DQP)
15: end procedure

16: procedure CLIENTPROFILEUPDATE(DQPFed)
17: DQtolerance ← extractDQLimits(DQPFed)
18: for DListi ← 1, DListn do . each quality dimension
19: if DListi ≤ DQtolerance[DListi] then disconnectClient()
20: return 0
21: end if
22: end for
23: LFDQP← UpdateLocalClientPro f ile(DQPFed) . Local Federated DQ Profile
24: ClientDataDQEnriched ← ApplyClientDataPro f iling(LFDQP)
25: return ClientDataDQEnriched
26: end procedure
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Algorithm 2 Federated Feature Selection Algorithm
Input:
Sn, . Participating Edge Source Nodes
DQPFeatures, . Node Features extracted from DQP
FeatureTol . Tolerance of number of selected features

Output:
FeaturesFed . Federated Selected Features

//Aggregating Features based on FeatureValue, Outlier and Missing Data from n nodes

1: procedure FEDERATEDFEATURESELECTION(Sn,DQPFeatures,FeatureTol)
2: FeaturesAgg ← ∑n

e=1 DQPFeatures(FeatureValue, Outlier, Missing)
3: FeatureValueRank ← sort DESC Features_Agg(FeatureValue)
4: OutlierDataRank ← sort Features_Agg(Outlier)
5: MissingDataRank ← sort Features_Agg(Missing)
6: [Feature]Rank ← FeatureValueRank + OutlierDataRank + MissingDataRank
7: FeaturesFed ← sort [Feature]Rank limit by FeatureTol
8: return(FeaturesFed)
9: end procedure

Table 3. Illustration of federated feature selection.

Federated Feature Selection

Ranking
Criteria

Best Rank: 1
(Most Feature Value)

Worst Rank: N

Best Rank: 1
(Least Outlier %)

Worst Rank: N

Best Rank: 1
(Least Missing %)

Worst Rank: N

Best Rank: 1
(Most Valuable)
Worst Rank: N

Feature (N) Aggregated Feature
Selection Rank

Aggregated Feature
Outlier Rank

Aggregated Feature
Missing Rank

Federated
Feature Rank

A 3 1 8 12
B 5 4 7 16
C 9 8 2 19
D 1 2 5 8
E 7 23 13 43

. . . . . . . . . . . . . . .

3.6. Computational Complexity of FDQP

The overall computational complexity of the FDQP approach includes the computa-
tional complexity of the FDQP algorithm and the federated feature selection algorithm.

3.6.1. Federated Data Quality Profiling Algorithm (FDQP)

Baseline profiling: The complexity of creating the baseline DQ profile (DQPv) is
O(D ∗W ∗ R), where D represents the number of attributes, W represents the number of
data quality dimensions, and R represents the number of rules.

Edge profiling: Creating the edge workload profile (WLPe) at each edge node can be
assumed to have a complexity of O(1), as it depends on the specific configuration and
real-time parameters.

Federated profiling: Aggregating the DQPs from multiple edge nodes involves com-
bining the profiles, which can be completed in linear time, resulting in a complexity of
O(E ∗ D ∗W ∗ R), where E is the number of edge nodes.

Edge Processing: Updating the local client profile (DQEnrichedDatae) based on the
federated profile (DQPFed) can be assumed to have a complexity of O(1), as it depends on
the specific update operation.
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3.6.2. Federated Feature Selection Algorithm

Aggregating features based on feature values, outliers, and missing data from E node
edges can be performed in linear time, resulting in a complexity of O(E).

Sorting the aggregated features based on ranks can be performed in O(NlogN) time
complexity, where N is the number of features.

Selecting the top K features based on the tolerance (FeatureTol) can be done in O(N)
time complexity.

Thus, the overall complexity of the federated feature selection algorithm is
O(NlogN + N), which is = O(NlogN).

Overall Complexity = Baseline Profiling + Edge Profiling + Federated Profiling +
Edge Processing + Federated Feature Selection

Therefore, the overall computational complexity can be expressed as:

O(D ∗W ∗ R + E ∗ D ∗W ∗ R + NlogN) = O(E ∗ D ∗W ∗ R + NlogN)

It is linear with the number of edges, and has log-linear complexity with the number
of features. It is important to note that the above analysis focuses on the computational
complexity of the algorithm itself. Other factors, such as data transfer, network latency, and
edge node resources, can also impact the overall performance in edge computing environ-
ments. Thorough investigation and benchmarking considering the specific constraints and
requirements of the edge environment are necessary to assess the computational demands
of the FDQP approach accurately.

3.7. DQ XML Profile Illustration

All of our DQPs are written in XML format, which are lightweight and easily readable
by humans and machines alike. This makes them incredibly versatile, allowing for the data
to be used in various application contexts and shared between any OS platforms at different
nodes. A representative XML profile at one of the selected nodes after LDQP processing is
shown in Figure 4. The profiling process takes care of the following, which can provide
valuable insight into the structure of the data and make it easier to manage DQ.

1. Attribute-wise feature updating that includes maximum value, minimum value,
mode, uniqueness, skew, outlier detected, uniqueness, etc. The XML profile structure
includes these elements, allowing for a more thorough comprehension of the data.

2. Missing value identification and reporting in XML (attribute-wise, overall). It also
allows for quick debugging, as well as making it easier to identify and deal with
data anomalies.

3. How missing values were removed is detailed, using either a specified threshold or
specific criteria.

4. Missing data imputation rules and the DQ measurements
5. Rank the attributes for feature selection according to their relative importance, and

the DQ metrics are evaluated.

Figure 5 depicts the federated XML attributes snippets as a subset of the full FDQP
attributes in the FDQP model. We can see that according to the FDQP formulation in
Section 3.3, only the resulting decisions are highlighted in FDQP. The global threshold
value for all the nodes has been established for the delete rows as seen in XML. The selected
features are listed according to the algorithm presented in federated feature selection
(Algorithm 2), and the data imputation rules for each attribute common to all nodes are
presented. After applying FDQP to the data along all of its edges and enforcing constraints
in accordance with FDQP’s rules, we remeasure the data metrics to assess how well the
profiling worked. We can guarantee that as the data model evolves, so will the associated
attribute-level constraints, allowing for a broader range of query and data manipulation
capabilities.
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Figure 4. Node 1 consolidated LDQP-snippet.

Figure 5. FDQP XML snippet.

4. Experimental Evaluation

This section describes the experiments conducted to evaluate our proposed FDQ
profiling model. The primary goals are to evaluate the data quality and the accuracy of the
training model both before and after the FDQ profiling model is applied to the data at the
edges. In the subsections that follow, we will describe the various aspects of the experiments
conducted, such as the experimental setup, the dataset employed, the experimental design,
and the various scenarios tested. We will conclude by discussing the results, which depict
an improvement in accuracy, and the reasoning behind it. Initial assumption: We assume
that the data collected at the nodes are homogenous and identically distributed (i.i.d).
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4.1. Dataset

The dataset we chose for our experiments contains 2126 instances and 23 attributes
derived from cardiotocograms, which are continuous measurements of the fetal heart rate
using an ultrasound transducer placed on the mother’s abdomen and categorized by expert
obstetricians. The parameters used for data analysis are instantaneous fetal heart rate (FHR)
and simultaneously communicated uterine contraction signals. The classification results
were based on the fetal state labels (N = normal; S = suspect; P = pathologic) [56].

For the selection stage and reduction of attributes, in particular the numerical input
data and a categorical (class) target variable, there are two well-known feature selection
techniques, mainly ANOVA-f statistics and mutual information statistics. The results of
this test can be used for feature selection by removing from the dataset those features that
are independent of the target variable.

4.2. Experiment Setup

All of our experiments for this study were conducted in IPython, which is enhanced
interactive Python software V.3.11.1 for the experimental configuration that includes multi-
ple machine learning libraries for deep learning and federated learning. The entire Fetal
Health dataset is randomly divided into five datasets, each corresponding to one of the five
edge nodes. The dataset has a few quality issues, so we synthesized errors and noise at
the dataset’s edges to reflect a true clinical distribution and to illustrate how FDQP will
improve it.

4.3. Scenarios—Proposed FDQP Evaluation

To evaluate our proposed FDQ profiling model, we implemented eight scenarios.
The first scenario evaluates the data quality profiling with the main focus on accuracy
considering baseline accuracy, after missing data imputation, applying local DQP (LDQP),
which includes feature selection and rules application. The second scenario illustrates the
node selection criteria defined in FDQP, which takes into consideration the completeness
and consistency of DQ parameters. In the third scenario, the federated feature selection
and ranking are evaluated. The fourth scenario compares the accuracy of the FDQP to
that of the LDQP and the baseline. In the fifth scenario, the accuracy, completeness, and
consistency of the data quality metrics are examined before and after FDQP. The sixth
scenario analyzes the accuracy of various classifiers using FQQP to determine the most
accurate classifier. The seventh scenario indicates the number of features selected and the
associated training time at each node. Finally, the eighth scenario depicts the PSN accuracy
before and after FDQP.

4.3.1. Scenario 1

Create a data quality profile (DQP) based on the XML file containing the dataset
and send it to the edge nodes. The quality characteristics of the profile are updated by
generating LDQP and sent to the server. As shown in Figure 6, LDQP is applied at the edge
node and the experiment’s accuracy is evaluated node-by-node with baseline and after
each of the processes (missing data imputation and LDQP).

Node 2 showed the highest increase in accuracy, with a boost from 70.71% to 91.92%
after LDQP, and Node 4 exhibited a notable improvement in accuracy, increasing from
65.13% to 89% after LDQP. Node 3 demonstrated a considerable increase in accuracy after
rows were removed, with the accuracy rising from 53.66% to 83.53%. This significant en-
hancement underscores the impact of data preprocessing steps, such as removing rows with
missing or incomplete data, in improving the overall accuracy within the FDQP framework.
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Figure 6. Local data quality profile (LDQP) accuracy evaluation.

4.3.2. Scenario 2

Edge node selection occurs before FDQP is applied at the edge node. In other words,
LDQP will be used to select nodes on the server. If the DQ metrics values (accuracy,
completeness or consistency) are less than the tolerance, the node is eliminated.

One of the first and most important steps in our proposed FDQ profiling is assessing
the edge-level distribution of classes and establishing criteria for node selection. Figure 7
illustrates the problem with the consistency and completeness of the Node-3 dataset. The
FDQ profiling criteria determine what levels of information must be present in a node’s
representation. Accordingly, Node-3 is eliminated from further processing after failing to
comply with the DQ requirements.

Figure 7. Node selection based on LDQP data quality metrics.
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4.3.3. Scenario 3

The server federates the profile data from the edges. Features are eliminated (feature
selection) according to the feature selection algorithm, and the retained features are docu-
mented in the feature driven FDQP. The resulting FDQP includes data imputation rules
and is transmitted to the edge nodes. In order to assess the PSN’s accuracy and precision, it
is necessary to apply FDQP to the edge node. Figure 8 depicts the federated feature rank
for each of the attributes in our experimental dataset.

Figure 8. Federated feature selection.

4.3.4. Scenario 4

Evaluation of FDQ profiles is one of the most crucial aspects of our experimentation.
Node 3 has already been deleted, and the accuracy after FDQP profiling for the remaining
nodes is compared to accuracy after LDQP and baseline accuracy, as seen in Figure 9.
We can see that accuracy has improved significantly around 10% with LDQP and to a
maximum of 5% with FDQP.

4.3.5. Scenario 5

Before and after applying FDQP, we analyzed the metrics for data quality. Figure 10
shows that the coefficient of variation was reduced following FDQP, suggesting enhanced
consistency and that the completeness factor was increased to 100%, indicating that certain
data quality issues had been addressed by the process.
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Figure 9. Accuracy (baseline, after LDQP, and after FDQP).

Figure 10. Data quality metrics assessment after LDQP and FDQP.

4.3.6. Scenario 6

In this scenario, an evaluation is performed using various ML models to determine
which classifier is the most accurate in forecasting fetal health at each node, and the results
are displayed in Figure 11. Both the random forest classifier and the decision tree classifier
have been shown to have the best performance in all of the edge nodes. Edge 2 had the
greatest accuracy gain, with random forest classifier attaining 95
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Figure 11. Accuracy comparisons with different classifiers.

4.3.7. Scenario 7

The selection of features is one of the primary characteristics of our suggested FDQP,
and its evaluation can be found in Figure 12. We can see that the number of features has
been reduced in each of the nodes, which has led to a shorter amount of training time when
compared to the initial amount of training time.

Figure 12. FDQP feature selection vs. training time.

4.3.8. Scenario 8

Patient similarity evaluation is performed after FDQP is reviewed, and we observed
in Figure 13 that FDQ profiling has unquestionably increased the accuracy, with an average
increase of 7% and a maximum gain of 9% accuracy.
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Figure 13. PSN accuracy before and after federated data quality profiling.

5. Discussion

The experimental evaluation of our proposed FDQ profiling model provided valuable
insights into its effectiveness and impact. The key findings from the experiments are
as follows:

• Improved accuracy: FDQ profiling resulted in an average accuracy increase of
10% with LDQP and a maximum improvement of 15%, attributed to data quality
enhancement through missing data imputation, feature selection, and rule-based
processing.

• Enhanced data quality metrics: FDQ profiling significantly improved consistency and
completeness, reducing the coefficient of variation and achieving 100% completeness.

• Effective node selection: FDQ profiling’s node selection criteria successfully identified
high-quality nodes, ensuring accuracy improvement by considering completeness and
consistency.

• Classifier evaluation: Random Forest Classifier and Decision Tree Classifier consis-
tently achieved the highest accuracy in fetal health forecasting, suggesting the potential
for selecting the best classifier based on dataset and node characteristics.

• Patient similarity accuracy: FDQ profiling improved patient similarity accuracy by
7% on average and up to 9%, which can have significant implications for various
applications, such as personalized medicine and recommendation systems.

• Profile aggregation and optimized feature selection: Profile aggregation with feder-
ated feature selection of attributes from various nodes can improve the efficiency of
discriminative features and restrain interference from relatively ineffective features.
They are calculated by feature aggregation and then optimized via the proposed rules
for elimination, combining the idea of survival of the fittest. The feature with low
weight is eliminated in the experiments, leading to improved accuracy and reduced
training time.

• Ensemble-like results: We can see that the results obtained by profiling the data at
multiple nodes are, in some cases, more stable with the overall ranking concerning
management and resource utilization. The concept of distributing features across
nodes and then federating the profile’s results into a final one is analogous to that of
ensemble learning or a mixture of experts, and produces more reliable results than a
single expert.



Sensors 2023, 23, 6443 28 of 32

In summary, the experimental evaluation showcased the effectiveness of FDQ profiling
in enhancing data quality and improving the accuracy of machine learning models. The
results not only validate the approach, but also highlight its potential for broader applica-
tions across various domains beyond healthcare. By prioritizing data quality components
and selecting feature nodes based on relevant metrics, FDQ profiling emerges as a valuable
tool for optimizing data quality and advancing machine learning model classification.

The FDQP approach proposed in this paper is founded on several underlying princi-
ples that make it a promising technique for evaluating the quality of patient data collected
from edge nodes in federated environments. Understanding these principles is essential to
value the relevance and potential of FDQP across various domains.

Federated learning and data quality profile (DQP): The foundation of FDQP lies in the
federated learning paradigm, which enables collaborative model training across distributed
edge nodes without centralizing raw data. By preserving data privacy at the edge, FDQP
addresses the challenges of data silos and privacy concerns in healthcare and other domains.
The DQP encapsulates data quality dimensions, defining a framework to assess the quality
of data attributes, such as completeness, accuracy, and consistency. FDQP encapsulates
DQPs from different edge nodes into a unified formal model. This formalization enables
seamless comparisons, aggregation, and analysis of data quality metrics, facilitating better
decision making during model aggregation in federated learning.

Federated feature selection: FDQP employs federated feature selection, which com-
bines local feature selections at each edge node and global feature ranking. This technique
enhances the precision of classifiers by selecting relevant features while mitigating the
impact of noisy or irrelevant attributes. The use of outlier percentage and missing data
percentage as criteria in feature selection makes FDQP robust to variations in data quality
across different edge nodes.

Lightweight profile exchange: FDQP introduces a lightweight profile exchange mech-
anism based on XML that shares summary statistics of data quality attributes among edge
nodes. This exchange avoids the transmission of raw data, optimizing data quality achieve-
ment, and improving the overall efficiency of the federated learning process. This approach
is particularly relevant in resource-constrained edge computing environments.

Enhancing data quality and accuracy: The primary motivation behind FDQP is to
enhance data quality and, consequently, the accuracy of federated learning models. By
identifying and quantifying data quality issues at the edge nodes, FDQP enables targeted
data cleaning, outlier detection, and imputation strategies. This results in improved data
quality, reducing the impact of noisy or biased data on the global model’s performance.

Scalability and efficiency: FDQP addresses the scalability and efficiency challenges of
traditional centralized data quality assessment methods. By conducting quality evaluations
locally at the edge nodes and sharing aggregated quality metrics, FDQP preserves privacy
and reduces the risk of data breaches.

Limitations

While our current work focuses on addressing the challenges of federated data quality
profiling in edge computing environments, there are still a few challenges that warrant
further investigation and future research.

Generalizability: The methodology’s validation on a specific fetal dataset raises con-
cerns about its generalizability to other types of patient data and different domains. Further
research, including different types of data and real-world scenarios, would provide a more
comprehensive evaluation of FDQP’s effectiveness.

Trustworthiness of edge nodes: The assumption of reliable and trustworthy edge
nodes might not always align with real-world scenarios. FDQP should be examined under
situations where edge nodes might be unreliable or malicious to ensure the approach’s
robustness and security.

Limited quality dimensions: The current implementation of FDQP focuses on specific
data quality dimensions such as accuracy, completeness, and consistency. Extending the
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model to incorporate additional quality dimensions could provide a more comprehensive
evaluation.

Privacy and security: While FDQP incorporates security measures through federated
learning, it might not address extremely stringent privacy and security requirements,
particularly in high-sensitivity data scenarios. Future research should explore additional
privacy-enhancing techniques to accommodate diverse security needs.

By recognizing these remaining challenges and conducting further research to address
them, the FDQP approach can be refined to enhance its applicability, robustness, and
credibility. This will facilitate its adoption in various domains, leading to improved data
quality, more accurate machine-learning models, and better decision-making processes.

6. Conclusions and Future Work

To ensure reliable and meaningful insights from any data analytics process, quality
is a determining factor of utmost importance. The end-to-end process of data integrity is
required to achieve DQ, which is attained through a meticulous process of data cleansing
and data governance. Poor data, on the other hand, will have an adverse effect on ML clas-
sification results because it will lead to poor analytics. In conclusion, we have demonstrated
that FDQ profiling can handle various quality issues at multiple edges while keeping data
localized, thereby enabling data privacy and reducing data resource consumption and trans-
portation costs. Erroneous data reduce the performance of learning algorithms, but this is
the first time federated profiling has been used to mitigate the consequences of improving
data quality and enhancing ML classification at multiple edges. In our future research, we
plan to extend the application of FDQ profiling beyond healthcare and explore its synergies
with other domains, such as finance, e-commerce, manufacturing, and more, with the
goal of optimizing data quality and decision-making processes in diverse industries. By
embracing this interdisciplinary approach, we aim to contribute to the advancement of
data quality management practices and drive innovation in various fields. In addition, we
will explore potential advancements on edge node data compression and PSN similarity
as a powerful tool for data imputation, which has the potential to significantly enhance
data quality.
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TDQM Total data quality methodology
DQA-FPSN Data-quality-aware federated PSN
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