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A B S T R A C T   

Daily increases in electricity prices accompany daily increases in energy consumption and use. An effective load- 
balancing scheduling system is necessary for the lowest cost of use and the lowest cost. Despite these devices 
having a significant capacity for power consumption, they must find a means to balance the load at a low price. 
Even if lowering the voltage is challenging, it is possible to do it at the lowest cost. Hybrid Whale Differential 
Evolution (HWDE) is a new optimization method that combines the well-known approaches of the Whale 
Optimization Algorithm (WOA) and Enhanced Differential Evolution (EDE). By balancing the required Real-Time 
Price (RTP) and Critical Peak Price (CPP) loads, WOA and EDE capabilities can save costs and ensure the device 
receives sufficient voltage. The three most recent performance indicators are kWh per charge, energy usage, and 
the maximum-average ratio. Existing models are evaluated according to their expenses (in rupees), energy 
consumption, cost per kilowatt-hour, and total cost. All simulation results indicate that HWDE is the optimal 
solution in every circumstance. In MATLAB simulations, HWDE consistently outperforms its rivals.   

1. Introduction 

Energy is becoming an increasingly important part of human life. 
Electricity is a major source of energy. Power is a necessity for human 
survival in the modern world. Before the invention of electricity, life was 
much simpler. Physical labor is a major part of the job description. Ex-
istence as a human is filled with difficulties, such as the need for enough 
illumination, food storage, preparation of meals, and cleaning up after 
oneself. It was not until Benjamin Franklin that electricity was made 
widely available to the public. Benjamin Franklin’s discoveries on 
lightning and electricity in the middle of the 18th century provided the 
groundwork for future scientists. In the late 1800s, Michael Faraday 
revealed the fundamentals of electricity production. Finally, with the 
help of Thomas Edison, clients could now access energy via new 
industrialization and innovations [1]. In the late 19th century, the first 

electrical network was created. Multiple power grids had been estab-
lished in various places by the end of the twentieth century due to the 
rapid development of the concept of the power grid. We began by pro-
ducing and providing electricity to customers before expanding into 
other businesses. The power plant is the name given to the structure. 
There are numerous methods for generating power. The creation of 
power necessitates that it be made available to customers. The power 
grid is responsible for all electricity generation, transmission, and dis-
tribution [2]. 

To reduce expenses and Peak Average Ratio (PAR), smart appliances 
can be programmed to shift load from peak to off-peak hours [3]. The 
CSUA (Candidate Solution Update Algorithm) algorithm was developed 
by merging some aspects of the JA (Java Algorithm) and the BAT (BA) 
approach. By using Energy Management Controller (EMC) in BA, JA, 
and CSUA, it is possible to convert Demand Management Strategy (DMS) 
peak load to actual load. They compared these scheduling methods 
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using a variety of Secure Household (SH) device algorithms. Using the 
CPP and Time to Use Pricing (ToUP) home energy management systems 
based on robots, load-matching and scheduling algorithms have been 
developed to reduce energy losses and utility costs [4]. Load balancing is 
utilized to keep SH’s power consumption rise within a preset maximum. 
The Least Slack Time (LST) technique is used to configure smart devices 
that are aware of Direct Current (DC). When designing intelligent de-
vices with LST, the primary focus should be maximizing DC. Multi-SH 
control through enhanced LST multiprocessor scheduling approach. 

Population-based Whale Optimization Algorithm (WOA) can avoid 
local optima and get a globally optimal solution. These advantages cause 
WOA to be an appropriate algorithm for solving different constrained or 
unconstrained optimization problems for practical applications without 
a structural reformation in the algorithm. The WOA is one of the recent 
meta-heuristic algorithms. WOA has advantages such as an exploration 
mechanism leading towards the global optimum, a suitable balance 
between exploration and exploitation that avoids the local optimum, 
and a good exploitation capability. It works by starting with a set of 
random solutions. At each iteration, search agents update their positions 
concerning either a randomly chosen search agent or the best solution 
obtained so far. Contrasting with the other optimization algorithms, it 
uses different techniques to test and evaluate combinations of hyper-
parameters to find the optimal configurations for model performance. 
The algorithm can often be used within the model itself to improve its 
effectiveness in light of its target function. 

In this work, demand-side management and device scheduling have 
been successfully combined as the core idea. The residential sector ac-
counts for more than 80 % of the increase in electricity demand (see). 
Energy can be wasted if the equipment is mishandled or used unantic-
ipatedly. When it comes to balancing electricity output and consump-
tion, this shows how difficult it is. There is a focus on how electricity is 
used and managed. Efforts to maximize energy use need the application 
of optimization strategies. An incentive-based strategy, Demand 
Response (DR), is expected to be particularly effective at enticing cus-
tomers. Utilities use a range of pricing schemes, including DSM, to 
reduce peak load and power consumption as an optimization problem 
and a metaheuristic technique. 

Regarding power supply, it’s well worth investigating how to design 
electronics. The Sharma and Saxena models [5] and EDE [6] have all 
been offered as power optimization strategies in this context as differ-
ential evolution of hybrid grey wolves [7]. These solutions, however, are 
not inexpensive. This research aims to develop a WOA- and EDE- 
optimized method for cost-effective energy management. Combining 
EDE with WOA algorithms yields an optimum hybrid whale differential 
evolution method (HWDE). To save energy, lower the PAR, and improve 
user comfort, this technology takes it a step further by grouping intel-
ligent appliances based on their use and power. 

• An improved planning method for energy management and effi-
ciency is provided by merging EDE and the WOA.  

• A DMS that transfers transferable peak load to actual load should be 
proposed and implemented to reduce PAR.  

• Perform an energy consumption, Kilo Watt Hour (kWh) load, and 
power factor analysis on the proposed strategy 

The benefit of the WOA is that it is a new optimization technique for 
solving optimization problems. This algorithm includes three operators 
to simulate the search for prey, encircling prey, and bubble-net foraging 
behavior of humpback whales. An optimization algorithm is a procedure 
executed iteratively by comparing various solutions until an optimum or 
satisfactory solution is found. Optimization has become part of 
computer-aided design activities with the advent of computers. The 
WOA is a swarm intelligence based Search-Algorithm while browsing for 
an optimal solution. However, it suffers from the poor & inconsistent 
exploration problem that causes the trapping of local optima in 
randomly deployed nodes that fail to guarantee network coverage. 
Hence, the WOA can also be utilized for computer networks and other 
Artificial Intelligence (AI) applications. The applications and other 
benefits of the WOA which differ from others are its unique character-
istics and high response time, and it takes less time to execute while 
operating. It is not accurate to say that the WOA is definitively the “best” 
optimization algorithm, as the choice of the most suitable optimization 
algorithm often depends on the specific problem being addressed and 
the resources available. However, WOA is a relatively recent and 
promising optimization algorithm that performs well on certain prob-
lems. The WOA is a metaheuristic algorithm inspired by the hunting 
behavior of humpback whales. It is particularly useful for solving opti-
mization problems involving many variables and complex, nonlinear 
functions. WOA maintains a population of candidate solutions, which 
are iteratively refined through search and update operations. One of the 
strengths of WOA is its ability to balance exploration (i.e., searching the 
solution space broadly for potentially promising regions) and exploita-
tion (i.e., intensively searching areas that are likely to contain the 
optimal solution). This is accomplished through a combination of 
random and adaptive search, which helps prevent the algorithm from 
becoming stuck in local optima. WOA has also effectively handled 
constrained optimization problems, where one or more constraints 
restrict the feasible solution space. The algorithm achieves this by 
dynamically adjusting the search space based on the constraints so that 
candidate solutions are always feasible. In summary, WOA is a prom-
ising optimization algorithm that has performed well on certain prob-
lems. However, as with any optimization algorithm, its suitability 
depends on the specific problem being addressed, and further research is 
needed to evaluate its effectiveness compared to other algorithms fully. 

The remainder of the article is as follows; Section 1 serves as an 
introduction and setting. The 2nd Section provides a theoretical exam-
ination of the relevant article. Section 3 explains how to investigate. 

Nomenclature 

AMI Advanced Metering Infrastructure 
BA Bat Algorithm 
CC Consumer Comfort 
CPP Critical Peak Price 
CSUA Candidate Solution Updating Algorithm 
DAP Day Ahead Pricing 
DR Demand Response 
DSM Demand Side Management 
EDE Enhanced Differential Evolution 
EHEMC Efficient Home Energy Management Control 
GWD Genetic Wind Driven 

GWO Gray Wolf Optimization 
HEMS Home Energy Management System 
HWDE Hybrid Whale Differential Evolution 
IBR Inclined Block Rate 
JA Jaya Algorithm 
LST Least Slack Time 
PAR Peak to Average Ratio 
RTP Real-Time Price 
SG Smart Grid 
SSM Supply Side Management 
TG Traditional Grid 
WOA Whale Optimization Algorithm  
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While Section 4 focuses on the facts and comments. Finally, Section 5 
concludes the paper. 

2. Related work 

An Efficient Home Energy Management Controller (EHEMC) based 
on the Genetic Harmony Search Algorithm (GHSA) was developed by 
[8], which was designed to maximize PAR and Critical Controller (CC) 
while keeping costs down GHSA. They are masters in single and multiple 
extension CPP and RTP procedures. The device’s power consumption 
over a range of operating hours reveals how well it will perform in the 
various types of homes for which it has been designed. The problem of 
energy optimization was tackled using a variety of heuristics. This 
method displays high search efficiency and the ability to solve problems 
quickly. In addition to higher PAR and CC, the data show significant cost 
savings. 

Authors of [9] name of the town HEMS and SH were created to 
replicate smart home appliances more realistically. The DC, PAR, and 
energy expenses can all be reduced with simple adjustments made be-
tween SH devices. Use the RTP and Day Ahead Pricing (DAP) protocol 
suites for your needs. Peak and trough expenditures might be used as a 
fitness measure. As a result, delay is minimized, and device health may 
be more easily assessed. The author uses dynamic programming to solve 
the challenge of managing the weight of a backpack. Based on simula-
tion findings, the proposed optimization technique has a 95 percent 
confidence interval. For example, authors of [10] presented a Glow 
Worm Optimization Genetic Algorithm (GWO/GA) hybrid to lower the 
energy consumption of PAR and SH. Multiple timings were supplied by 
executing algorithms on some SH. As a result, the price of PAR and 
power have both decreased. Authors of [11] have proposed techniques 
for prioritizing dynamic SH mode load. They suggest a four-premised 
evolutive ease-of-value technique for determining time-adjusted ta-
bles’ temporal and device-based attributes (EACA). Design ideal power 
consumption patterns and limit your electricity consumption to the 
range of peak demand to better adhere to your planned budgets. The DE 
approach proposed by authors of [12] uses crossover and mutation 
procedures more extensively. A detailed timetable has been created 
using the most up-to-date DE algorithms. 

Authors of [13] proposed QBPSO (Quad-Binary Particle Swarm 
Optimization) to address technical optimization challenges based on 
home consumer-based Particle Swarm Optimization (PSO). The author 
first introduces a user-friendly family taxation model into the Critical 
Peak Average (CPA). User-centric programming is a major focus of their 
products. They want to cut costs and the time it takes to complete a task 
by using technologies that search for or show data near the source. 
Second, PSO has been renamed QBPSO, and this is the result of a merger. 
The PSO’s binary engineering optimization problem is to blame for this. 
They created a second-order transfer function that targets devices that 
have been interrupted. The results show a decrease in resistance when 
the DC is only slightly impacted. In The Beyond, the housing market is 
discussed [14]. The DSM was treated as an optimization issue for cost 
and performance reasons. Hybrid Gray Wolf Differential Evolution 
(HGWDE) is a hybrid of Extended Differential Evolution (EDE) and Gray 
Wolf Optimization (GWO), which uses CPP and RTP as the two main 
elements. 

In [15], the system includes WOA, Determined Energy (DE), GWO, 
Anti-Defiant Challenge Differential Evolution (QODE), and Anti-Defiant 
Challenge Gray Wolf Optimization (QOGWO) algorithms. Two devices 
are used for reactive power planning: the Thyristor Controlled Series 
Compensator (TCSC) and the Static Supply Vector Compensator (SVC). 
Humpback whale hunters use a cutting-edge algorithm called WOA. 
Natural metaheuristics are usually referred to as this. Optimization is 
carried out using a genetic algorithm known as DE. The genetic features 
of mutations and crosses are exploited as genuine optimization param-
eters. As a result, GWO is built on the principles of natural meta-
heuristics. Using grey wolf hunting habits is like WOA. Use IEEE30 and 

IEEE57 bus test systems to evaluate the algorithm. Power flow analysis 
was used to locate the TCSC, and the voltage collapse proximity display 
(VCPI) approach was used to locate the SVC. It employs WOA, GWO, DE, 
QODE, and QOGWO algorithms to determine the optimal course of ac-
tion for control variables such as TCSC, SVC, and serial to reduce further 
the system’s dynamic power consumption and running expenses. 

This study was done by [16]. Home Energy Management System 
(HEMS) is an automatic switching mechanism and load balancing sys-
tem that we developed to reduce needless energy use. With their method 
of load balancing, they keep household spending in check. They design 
the device to the user’s comfort and apply the Least Slack Time (LST) 
method to program it. They performed simulations to compare the 
projected scenario to the current energy management situation. Using 
an automatic switching method, they found large cost increases and 
PAR. 

Authors in [17] coupled the Tabu Search Algorithm (TS) with the 
Bacterial Forging Algorithm (BFA) to train devices with variable duty 
cycles (BFA). To reduce power consumption and equipment latency, 
they increased the CC of the Hybrid Bacterial Forging Taboo Search 
(BFTS) algorithm that employs Real Time Pricing (RTP) to determine 
power consumption. The results of BFA and TS were compared to those 
of BFTS in this study. According to the findings, the proposed program 
has proven extraordinarily beneficial. 

Authors of [18] suggested particle swarm optimization (PSO) based 
on home energy consumption-based technologies and the engineering 
optimization issue of particle swarm optimization secondary binary 
particles (QBPSO). To begin with, the author introduces a user-friendly 
family taxation model for the CPA to adopt. They tailor their strategies 
to fit the needs of the target audience. They aim to reduce the load by 
reducing expenses and PAR by displaying or searching for data at the 
source of the demand. Second, QBPSO has brought PSO up to date. This 
is because of the PSO’s binary engineering optimization problem’s 
performance limits. Second-order transfer function interrupted devices 
are the focus of the suggested technique. The results reveal a decrease in 
resistance when the DC is slightly altered. 

Authors of [19] aimed to reduce residential electricity use. The 
expansion of household gadgets needs a growing fuel supply. The author 
asserts that domestic areas are more adaptable than industrial or com-
mercial ones. Their solution is the Candidates Solution Update Algo-
rithm (CSUA), which combines components of the JA and BAT 
algorithms to obtain the desired result. In high school, they used ToU 
and CPP in addition to fifteen smart devices for their experiment. They 
discovered that changing loads from peak to off-peak hours can cut 
electricity bills. Authors of [20] presented two heuristics to lower the 
PAR. Due to the 2-Dimensional (2D) packing issue, these techniques are 
known as G-MinPeak and Level Match. Each method has been evaluated 
in the actual world using a specific set of facts. Both tactics have been 
demonstrated to be effective in reducing PAR. In addition, they present 
five novel applications that utilize these tactics to lower PAR. 

Authors of [21] established a Microgrid (MG) technology alongside 
Hybrid Power Control (PFM) for Hybrid Renewable Energy (HRES). The 
approach proposed combines the Supply Source Airier (SSA) and WOA 
algorithms. The proposed project name was Supply State Analytical 
Worm Optimization (SSAWO). An SSA measures the supply-to-load 
voltage differential, which is subsequently used to generate a drive 
regulation signal. Multifunctional functions include the networks 
required to generate effective and efficient energy from available sour-
ces. The WOA approach ensures online control signals that use the same 
motion for various active and potent forces. The control model generates 
power control parameters based on the supplied flow type. The proposed 
method controls the MG system based on the PFM source and parameter 
distribution. Current technologies usually rely on renewable energy 
sources and storage to meet the grid’s energy demands. 

Authors of [22] used a comprehensive Demand-Side Management 
strategy; markers of indoor comfort, including thermal comfort, air 
quality, humidity, and visual comfort, can all be enhanced DSM. As a 
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solution, they propose identifying and resolving scheduling issues before 
building a new cluster-based, flexible WOA paradigm with many 
restarting alternatives. Work with the Map to modify crucial WOA set-
tings using various implementation strategies. Consider minimizing the 
number of testing and monitoring programs, and evaluate the suggested 
approach based on its well-established properties. A way to optimize 
your time through appointment scheduling. This strategy is expected to 
expedite metaheuristic integration. 

Authors of [23] estimated modeling of DSM with the force transfer 
approach from the day before is a little issue. Adaptive Moth Flame 
(AMF), or adaptable moth ignition processes, are a solution to the 
apparent optimization issue with DSM. The proposed inquiry studied 
residential, commercial, and industrial energy usage. Utilizing an AMF 
optimization technique may minimize peak loads and operational ex-
penses simultaneously. Comparing the outcomes of the commercial, 
residential, and industrial sectors employs multiagent and evolutionary 
techniques. Residentially and commercially, AMF-based DSM technol-
ogy has surpassed multi-agent and evolutionary approaches. The parti-
cle sampling method is more cost-effective than the suggested method 
[24–27]. 

Authors of [28] implement an Enhanced Whale Optimization Algo-
rithm (IWOA) in Mega Grids (MGs) to handle optimal energy trading 
concerns and save operating costs. This ideal transaction is realizable 
using Incentive-Based Demand Response (IBDR) and considering the 
volatility of renewable energy, taxes, and market clearing prices. 
Various probability distribution functions and scenario generation and 
reduction strategies represent these uncertainties. The applicability and 
effectiveness of the recommended strategy were evaluated by recreating 
the MG test procedure. This strategy will improve MG’s performance 
regarding the most effective solution and company operations. IBDR 
significantly affects the power system and provides the biggest end-user 
benefits with more robust incentives than price reductions. 

Authors of [29] the above-ground whale optimization technique 
developed by Zhengfei is based on four perspectives: dimension selec-
tion, reconnaissance control, enhanced environment rendering, and 
solution selection. Using this assignment as a test bed, we will use the 
whale optimization technique to determine the capacitance and induc-
tance of single- and three-phase unit lengths with varying amounts of 
bundled conductors. Beginning with 23 standard benchmarks, the al-
gorithm’s ability to find the optimal solution was evaluated against 
various other development strategies. Determine the proper trans-
mission line parameters above phases 1 and 3, considering the various 
combinations of inductors and conductors in the capacitor body, using 
the proposed method. Based on the findings, it is possible to conclude 
that the Mega Worm Optimization Algorithm (MWOA) method is more 
accurate and trustworthy for optimizing global or near-global flexibility 
management settings. In addition, the results demonstrate that the 
proposed strategy can compete with more sophisticated methods and 
solve real-world problems. 

Authors of [30] developed an interactive model incorporating user 
demand forecasts, energy supply estimates, and operational collabora-
tion optimization. Regional Climate Simulation (RCS), Demand Fore-
casting (DF), instrument output calculation (Mechanism Modeling), and 
Collaborative Processing Optimization (CPO) are all possible within an 
integrated framework. Included are the following: As a result of climate 
change, we are utilizing the PRESIS model to predict temperature and 
radiation changes and the TRNSYS software to predict future hospital 
patient needs. A simulation model has determined how much power a 
gas turbine mechanism can generate in various climates. Using this 
dynamic interaction model, each connection is considered in the oper-
ation and management of the supply system, thereby enhancing the 
system’s cost-effectiveness and adaptability. Most of the study focuses 
on the problem’s broader context and the underlying structure of the 
model. 

Authors in [31,32] proposed some novel schemas for efficient power 
optimization based on the optimization algorithms to effectively balance 

the load of power appliances. The home energy management system 
(HEMS) based on the advanced Internet of Things (IoT) Technology has 
attracted the special attention of engineers in the field of smart grid 
(SG), Which has the task of demand side management (DSM) and helps 
to control the equality Between demand and electricity supply. The 
authors introduced the optimal control of a DC motor based on a 
proportional-integral-derivative (PID) controller. In this study, an 
improved version of the whale optimization algorithm has been adopted 
for the optimal selection of the PID controller parameters for optimal DC 
motor speed control and minimum Settling time. 

Authors in [33,34,35,36,37,38,39] suggested that WOA is a promi-
nent problem solver broadly applied to solve NP-hard problems such as 
feature selection. However, it and most variants suffer from low popu-
lation diversity and poor search strategy. Introducing efficient strategies 
is highly demanded to mitigate these core drawbacks of WOA, particu-
larly for dealing with the feature selection problem. The squeezing of 
surrounding rock can be described as the large time-dependent defor-
mation during tunnel excavation, which appears in special geological 
conditions, such as weak rock masses and high in situ stress. Several 
problems, such as budget increases and construction period extension, 
can be caused by squeezing in the rock mass. It is significant to propose a 
model for accurate prediction of rock squeezing. In this research, the 
support vector machine (SVM) as a machine learning model was opti-
mized by the WOA. 

The overall evaluation of the related work is discussed in Table 1. 

3. Research methodology 

Fig. 1 displays the general organizational framework of the sug-
gested paradigm. In addition to the chosen instrument, the proposed 
method requires one SH. Each piece of equipment possesses a unique set 
of qualities. Design and development of a product in compliance with a 
set of requirements. The HEM protocol governs communication between 
the service provider and the client. The utility uses all of these signals to 

Table 1 
Tabular Summary of the Literature Review.  

Study. Year. Limitations and Suggestions 

[8] 2017 Only the energy efficiency is optimized and suggested to deploy 
in real-time applications 

[9] 2022 Authors approached to introduce optimization schema for the 
limited supply of power. 

[10] 2013 Only the load is decreased. 
[11] 2007 Load decreased. 
[12] 2018 Billing and load decreased. 
[13] 2011 Load balancing is achieved. 
[14] 2017 Load decreased. 
[15] 2019 Electric supply chain minimized. 
[16] 2017 Billing and load are balanced. 
[17] 2018 Focused on load differ from real-time. 
[18] 2018 Energy optimized to balance home appliances. 
[19] 2018 Energy harvesting is minimized. 
[20] 2018 Balancing property is achieved by deploying the optimization 

quickly to calculate the impact in real-time. 
[21] 2014 Load is balanced 
[22] 2008 The load is balanced. 
[23] 2018 The load is balanced. 
[28] 2022 Energy and load are balanced. 
[29] 2018 Consumption of power is optimized. 
[30] 2021 Consumption of power is optimized. 
[31] 2020 Consumption of power is optimized. 
[32] 2022 The workload is measured in real-time 
[33] 2022 Load is balanced 
[34] 2019 Load is balanced 
[35] 2022 Load is balanced 
[36] 2022 Energy and its consumption are minimized with an optimization 

approach by applying EDE 
[37] 2022 Load is balanced 
[38] 2022 Applied WOA to control the consumption of power and supply 
[39] 2021 The energy level is balanced by focusing on load balancing  
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measure the water flow. RTP is one of the most popular protocols. When 
a business is busy, customers’ weight requirements are the best indicator 
of their values. During peak hours, electricity is more expensive than at 
other times of the day or night. 

The model incorporates two-way communication. Initially, cus-
tomers split the electricity bill in half. The amount of available elec-
tricity decides which devices are powered on. During peak hours, power- 
hungry appliances are prohibited. Modify the EMC to automate and 
reduce energy usage. After receiving the load demand through SMS from 
the client, the power company returns the electricity to the user. Various 
devices are graded based on the amount of electricity they consume 
daily. The load on each device is optimized by assigning power levels 
following the proposed strategy. Load management is based on 
achieving the best possible results. The following parameters were 
solved using the MATLAB simulation tool to validate the suggested 
scheme:  

• The unit cost is presented in real-time.  
• Electricity consumption by planned and unplanned loads  
• Reduce the overall amount of planned and unanticipated tax 

expenses. 

Simulation parameters for the proposed work are illustrated in 
tabular form in Table 1. 

The parameters were applied to the evaluation of our proposed plan. 
Watts (W) or kilowatts (kW) can be used to measure power if the load on 
the equipment is sufficient (kW). Using RTP, the price per kilowatt-hour 
of electricity is determined (kWh). The energy consumption of each 
device is calculated based on anticipated and unanticipated demand. 
Additionally, utility providers must charge customers as little as possible 
for fees connected with anticipated and unanticipated usage. 

3.1. Flow chart for proposed scheme 

The WOA scheme has been applied for the load balancing and 
balancing of the properties among the home appliances and the ex-
penditures of these. The key concept has been deployed in the given 
Fig. 2, which demonstrates the methodology concept. The core meth-
odology lies in the major flowchart, which expresses how the load 
balancing of the electricity and home appliances has been handled. It is 
clear from the flowchart that this terminology has been exploited to be 
fully functional. The core system model deployment phases have been 
included in the major methodology. 

After that, the flowchart and explanation for the second suggested 
way are provided. Detailed and sequential instructions on how to install 
the application are provided. Following is an illustration of the proposed 
algorithm or pseudocode.  

Algorithm-1: Pseudo Code for Proposed System 

1. Input = 1 − cost of electricity 
2. Input = 2 − load in KWh (Kilowatts)
3. Input = 3 − PAR 
4. Required = EDE, WOA, DSM 
5. Output = Scheduled Procedure 
6. Start;
7. Initialization;
8. h(hours = 1) : p(rand numb) = [0,1] : g(distance from prey) : V(mutant vector : V* =

updated vector : H = max hours;
9. IF 
10. h <= H True;
11. Proceed to thenext step;
12. Else 
13. Proceed to the final step End;
14. ENDIF;
15. Calculate mutant vector v;
16. Iteration t = 1;

(continued on next page) 

Fig. 1. Proposed Scheme Model.  
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(continued ) 

Algorithm-1: Pseudo Code for Proposed System 

17. IF 
18. t <= max t;
19. Proceed to thenext step;
20. Else 
21. Go back to step 4 with h = h + 1;
22. ENDIF;
23. IF 
24. p < 0.5;
25. Proceed to thenext step;
26. Else 
27. Proceed with p >= 0.5;
28. Update V using current position − II;
29. Compare V* with thetarget vector;
30. ENDIF;
31. IF 
32. IgI < 1;
33. Proceed to the next step;
34. Update V using current position − I;
35. Go to step 16;
36. Else 
37. Update V using current position − II;
38. Go to step 16;
39. ENDIF;
40. IF 
41. V* < V;
42. Proceed to Update thevalue of the V step;
43. Else 
44. Go to step 9 with t = t + 1;
45. ENDIF;
46. IF 
47. Step 24 does not satisfy the condition;
48. Go to step 9 with t = t + 1 same as 25;
49. ENDIF;
50. End;

The overhead occurs when the implementation of the actual job and the 
bandwidth, like the paving of the target machine or device, is not 
operable and calculable. With the proposed work, the overhead can 
occur when the simulation or the required data exceeds the limit. The 
proposed algorithm has been placed in the controlled environment 
setup. The overhead of algorithm 1 will have occurred if the load and 
balancing of the WOA exceed the defined limit. In most cases, the 
overhead of an algorithm refers to the additional computational re-
sources, such as time or memory, that are required by the algorithm 
beyond the basic requirements of the problem being solved. Overhead 
can occur for various reasons, such as maintaining data structures, 
additional operations, or calculations required by the algorithm. Here 
are some examples of overhead in algorithms such as Sorting algorithms, 
Search algorithms, Dynamic programming algorithms, and Genetic al-
gorithms. In general, the overhead of an algorithm is a trade-off between 
the complexity of the problem being solved and the resources required 
by the algorithm. Efficient algorithms aim to minimize the overhead 
while providing accurate and reliable results. The overhead denotes the 
worst, average and best-case scenario of the algorithm. 

3.2. System model formulation 

Multiple mathematical formulas represent the mathematical model 
of the proposed system, each represented by an equation.  

• Initialization with V phase: EDE is an evaluation of specific families 
utilizing a variety of instruments and methods. Organize the devices 
into discrete sections depending on their relative efficacy and opti-
mize the schedule. Their plan moves the peak load to the genuine 
load, yielding significant cost and PAR reductions. EDE is an 
improved version of DE. The initial population for the population- 
based EDE method is produced at random. Four separate phases 
make up the EDE algorithm. It involves the production of 

populations, mutation, hybridization, and selection. The following 
formulae generate random populations: (8–10).  

• EDE detection.  
• The detection phase of the EDE has been deployed and implemented 

with the other WOA and HWDE approaches. Accordingly, each 
approach has been illustrated and expressed in Eqs. (1)–(3).  

• WOA detection: The combination of EDE and WOA results in HWDE, 
as seen in the following equations. 

The WOA detection refers to the CoE, which denotes the cost of 
electricity. The three approaches in combined methodology fashion 
have performed the major detection. 

Avgrate (EDE) =
∑n

i=1
xi − CoEini (1)  

Avgrate (WOA) =
∑n

i=1
xi − PARini (2)  

Avgrate (HWDE) =
∑n

i=1
xi − LiKWhini (3)    

• Supply of Maximum Volt Phase: At first, the electricity voltage needs to 
be balanced and supplied as required by the home appliances. For 
this aspect, the supply of maximum volt phase is implemented, which 
can deliver the obligatory voltage and increase appliance utilization. 

For the maximum voltage, given Eq. (4) illustrates as, 

Elecmax = max(220 − 240) (4) 

In Eq. (4), the voltage is given from 220v to 240; the lowest voltage is 
220 and the highest voltage is 240. 

• Time t and Vector v phase: The time and vector phase here demon-
strates that both depend on each other and possess the properties of 
the variables that change with the passage of time. Here the t and v 
implement the key concept of the three approaches by the given 
expression. 

The time and vector of the three approaches are given in Eq. (5); 

tt− v = max (tEDE + tWOA = tHWDE) (5) 

While for transition in which vector is superior to time is given in Eq. 
(6) as; 

tv− t = max (tHWDE = tWOA + tEDE) (6) 

In Eq. (6), the vectors and times of each model are considered. Both 
the word and the vector convey information regarding the duration of 
time and the flow direction at a given time point.  

• Vector V* Updating: For updating the v phase in this terminology, the 
three approaches have been implemented, and a hybrid approach 
HWDE has resulted, which here can update the average of the v 
accordingly 

Where the proposed method is given as; 

tHWDE = tHWDE × aaverage × v*avector*average (7) 

Equation (7) illustrates the update of the vector with the multipli-
cation of another vector in which the update takes place by increasing 
the amount of processing.  

• Applying EDE: For the proposed model, the hybrid approach is given 
with three different approaches in which the value has been started 
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from 0.3, 0.6, and 0.9 [30]. If the values are less than or equal to the 
given statement with random prey, proceed with Equation (8) [31]. 

In this case, the three conceptual implementations have taken place 
by calculating the three random values, which are three balanced 
values. They hence are applied and implemented by using these ex-
pressions. 

Hb,a,D+1 =

{
Zb,a,D+1ifrandomb(b) ≤ 0.3

yb,a,Dotherwise
(8) 

Similarly, if the value is less than or equal to 0.6, proceed with this 
method using Equation (9). 

Then two more vectors are created using Equations (9) and (10), 
pronounced as fourth and fifth train vectors. 

Hb,a,D+1 =

{
Zb,a,D+1ifrandomb(b) ≤ 0.6

yb,a,Dotherwise
(9) 

If the value is less than or equal to 0.9, use the expression in Equation 
(10) [31]. 

Fig. 2. The Proposed Work’s Flow Chart.  
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Hb,a,D+1 =

{
Zb,a,D+1ifrandomb(b) ≤ 0.9

yb,a,Dotherwise
(10) 

The crossover ratio is denoted by H, with values of 0.3, 0.6, and 0.9. 
Multiple H, Z, and Y denote mutant, trial, and target vectors. Equations 
(8), 9, and 10 illustrate the conditional aspects of the values generating 
the threshold voltage with three ×, y, and z.  

• Applying WOA 

The WOA works on three methods which are given below with 
mathematical models.  

• Exploration Phase 

D→=
(
CXrand
̅̅̅→

− X→
)

(11)  

X(t+ 1) = Xrand − AD (12)  

denotes a random position of I and II [30]. The distance vector is illus-
trated in this scenario in which the D and X bars represent two different 
ordering of the exploration phase.  

• Exploitation Phase 

X(t+ 1) = D ebtcos(2πt)+X*(t) (13)  

X(t+ 1)
{

X(t) − ADp < 0.3
Debtcos(2πt) + X(t)p ≥ 0.6 (14) 

In Eqs. (13) and (14), the term shows the distance of the initial ith 

values from the whale to the prey [32].  

• Attack on Prey 

D = C.Xp(t) − X(t) (15)  

X(t+ 1) = Xp(t) − AD (16) 

In Eqs. (15) and (16), the coefficient vectors A and C and the position 
vector Xp are depicted [33]. The initial iteration of the vector is repre-
sented by an independent X whale’s position [34]. 

The overall performance of the proposed approach has been imple-
mented by using the major mathematical model to balance and optimize 
the key aspects of the methodology. 

4. Performance evaluation 

This section provides the simulation results in graphs and tables, and 
the findings are explained and understood. The three suggested pa-
rameters have been thoroughly examined and demonstrated. Continu-
ally, the simulated scenario is displayed. In this context, each property’s 
applicability is separate. The three evaluation criteria are summarized in 
the table below.  

• Cost of Electricity: The item’s power consumption is broken down to 
reveal anticipated and unanticipated expenditures.  

• Load in KWh (Kilowatts): The total electrical load per kilowatt-hour 
can be determined by calculating the cost per kilowatt-hour and 
multiplying it by the kilowatt-hour. Calculating the load and 24-hour 
electricity usage  

• Peak to Average Ratio (PAR): This statistic demonstrates the average 
ratio of simulation values to the initial twenty-four hours of simu-
lation. In this instance, the peak ratio is seen well, although the 
lowest value is deemed undesirable in other instances. In addition, 
table and graph data are provided for each indicator in the section 
presented. 

4.1. Electricity cost (in Rupees) 

There are four ways to compute your electricity bill in rupees. 
Beginning with the first hour, the simulation might last up to twenty- 
four hours. Fig. 4 displays the individual values for each approach. It 
is unclear which method is which in the following table and diagram 
(proposed model). The simulation cost is 0.61, the EDE is 0.39, the WOA 
is 0.89, the HGWDE is 0.21, and the HWDE cost of the suggested model 
is 0.18. The unexpected expenses for EDE, WOA, and HGWDE in the 
second hour of the simulation are $0.62, $0.39, $0.89, and $0.22, 
respectively. While all other models cost at least one-tenth as much as 
the HWDE model (0.18), two options are available: divide the full 
simulation time into 24 equal sections totaling 24 h, as depicted in 
Fig. 3, or evaluate the duration of each phase differently. During the 
simulation’s peak time, HWDE was determined to be the model with the 
best overall performance. In all time frames, from one hour to twenty- 
four hours, HWDE is the most cost-effective and least expensive alter-
native. Reasons why energy is necessary: In this instance, it is shown that 
the proposed method is more effective than existing models. As simu-
lation execution time increases, so do costs. The proposed plan is 
founded on models that could aid an optimization technique, resulting 
in energy savings and improved output. Due to a variety of reasons, one 
model may fail, while the proposed model may handle the problem 
effectively. Hopefully, this will prove useful. They occasionally work 
together to attain the same objective. As a result, astonishing accom-
plishments will be accomplished. 

4.2. Energy consumption (KWh) 

Regarding energy consumption, it is advised to utilize the least 
amount possible. Across four models, the cost value can range from one 
hour to twenty-four hours. HWDE has the best overall performance and 
uses the least energy in this circumstance. Employing WOE, HGWDE, 
and EDE to construct and assess the suggested model is essential. The 
promise of additional time also promotes utilization; however, the 
proposed HWDE technique can maintain performance while reducing 
consumption in all circumstances while maintaining performance. Fig. 4 
Demonstration of Simulated durations for various plots ranging from 
one hour to twenty-four hours. The unit of measurement for energy 
usage is the kilowatt. The suggested model value begins at 1 h 132 K-Wh, 
while the unplanned value is 400.9, the EDE cost is 909.05, the WOA 
cost is 537, and the HGWDE cost is 180. A simulation demonstrates that, 
even though the proposed model spends more energy, this HWDE con-
sumes the least energy in total power usage (time). The essential ele-
ments are constant maintenance and a small operating budget. This 
model is the most popular on the market. HWDE has the highest average 
and total expenses, notwithstanding the success of other departments. 

Due to its improved performance and lower energy consumption, the 
proposed model is preferable to all others (measured in dollars and ru-
pees). Several models have tracked and analyzed the overall average 
cost of HWDE. Reasons why energy is necessary: According to current 
models, the performance of the suggested work is superior. As the 
simulation continues, the costs also increase. The proposed plan is 
founded on models that could aid an optimization technique, resulting 
in energy savings and improved output. Due to a variety of reasons, one 
model may fail, while the proposed model may handle the problem 
effectively. Hopefully, this will prove useful. They occasionally work 
together to attain the same objective. As a result, astonishing accom-
plishments will be accomplished. 

4.3. Cost in ($/KWh) 

Considering RTP and Critical Peak Price (CPP), we evaluated the four 
models presented in the preceding sections (CPP). These two standards 
are utilized when calculating and measuring energy costs. The RTP is 
recorded as real-time pricing, and the price volume is sorted to replicate 

K. Zaman et al.                                                                                                                                                                                                                                  



Alexandria Engineering Journal 79 (2023) 652–670

660

Fig. 3. Electricity Cost (Rs) vs Time (Hours).  

Fig. 4. Energy Consumption (KWh) vs Time (Hours).  
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the actual activity during one to twenty-four hours. Fig. 5 illustrates the 
circumstance. RTP, unlike CPP, can analyze and identify the value of 
normal to extremely high-power consumption in the presence of a 
processing environment. Certain crucial computations can only be per-
formed during crucial simulations in which CPP plays a crucial role. 
Several measurements of RTP and CPP were utilized to calculate the 
overall average cost of RTP ($/KWh) and the cost of CPP ($/KWh), and 
the results indicated that they increased from the first simulation to the 
last by 13,52208 and 14,84458 respectively A. 

Eight per kilowatt-hour; in the following paragraphs, we will explain 
how pricing is determined. Compared to other modern models, our 
described method performs far better. Cost per kilowatt-hour rises as 
simulation duration increases. The proposed plan is founded on models 
that could aid an optimization technique, resulting in energy savings 
and improved output. Due to a variety of reasons, one model may fail, 
while the proposed model may handle the problem effectively. Hope-
fully, this will prove useful. They occasionally work together to attain 
the same objective. As a result, astonishing accomplishments will be 
accomplished. 

4.4. Total cost ($) 

The four models’ total power costs (in US dollars) are estimated and 
documented. The least expensive technique is the most cost-effective. 
During the simulation, unexpected expenditures of $3.21 arose, with 
EDE’s costs at $3.11, HGWDE’s at $2.63, and WOAs at $2.57. The WOA 
performance schedule was superior. The suggested HWDE model has 
two fees, which is uncommon for models. A strategy centered on the 
energy planning process, a variable tax rate for rupee and US dollar costs 
and expenditures, and the strictest RTP and CPP standards are urged. 
This statement is an integral part of the recommended maintenance 

work. RTP and CPP are utilized to limit the strain on mobile and sta-
tionary devices. 

The proposed method is more energy-efficient than current practices 
and justifies the total energy use. According to the given R and projected 
USD, the cost of the simulation increases proportionally with its dura-
tion. It can vary significantly Depending on the technology and algo-
rithm employed. The proposed plan is founded on models that could aid 
an optimization technique, resulting in energy savings and improved 
output. Combining two existing models has the benefit that if one model 
fails, the other model takes care of the problem and continues to func-
tion properly, etc., which is advantageous if both models strive toward 
the same objective. Advantageous if both models fail. And the ultimate 
result will be magnificent. 

Regarding cost ($), RTP, and CPP, Fig. 6 suggested model out-
performed all other options. As stated in Table 2, all RTP and CPP costs 
were determined from the general average of power prices. Fig. 7 in-
dicates that unscheduled loads are the most expensive. The HWDE 
model provides the highest quality while remaining more cost-effective 
than previous methods. 

Each model is documented after a thorough reading and assessment 
of valid grounds. The previous section documents and discusses the 
outcomes. Fig. 6 depicts five distinct models for your consideration. 
Specifically, the average electricity use, the average electricity cost, and 
the average power consumption. Fig. 6 and Fig. 7 also display the 
average RTP and CPP values. In this case, the four performance mea-
sures utilize RTP and CPP. All these components are necessary to 
maintain a suitable transmission load at a low cost and with little energy 
use. Fig. 8a, 8b and 8 are three examples of Table 2 from Table 3. (c). 

This section contains four models that explain various situations 
where the greatest and worst performance are recorded. It was deter-
mined that power consumption, power consumption, load per KWh, 

Fig. 5. RTP and CPP Cost ($/KWh) vs. Time (Hours).  
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peak-average ratios EDE and WOA, and four proposed performance 
metrics were studied. It is also important to note that the anticipated 
load positively influences electricity usage and costs. HWDE is an 
outstanding simulator for both removable and non-removable devices. 
This technique loads the scheduling mechanism while maintaining a 
regulated RTP and CPP environment. 

The four performance evaluation parameters have been introduced 
and deployed with proper implementation and justification for the 
proposed work. The main focus of these parameters is to generally 
balance the performance of the electricity and other home appliances. 
The key concept of these regarding their implementation in the algo-
rithm is these are the sole parameters that can find out or via which it 
can be seen and measured that in previous works, how much was the 
utilization and consumption and how much is with the current WOA 
schema. To calculate the cost in Rs and $, with the kilowatts and total 
cost, the mentioned parameters have performed their duties well. 
Concluding it, the parameters are the measurement values that can be 
regarded as the sole objects in the implementation and testing of the 
proposed work. 

4.5. Performance evaluation using additional parameters 

For analysis and evaluation, the proposed HWDE model has been 
evaluated with additional parameters which are given as under;  

• Heat (J/goC) Joules Per Gram Per Degree  
• Initial Cost  
• Annual Cost Saving (12 Months) 

The performance has been achieved and evaluated with the heat, 
initial cost, and annual cost. Each parameter has been tested with the 
unscheduled model and is compared with the proposed model. The heat 
parameter has been evaluated in terms of joules shown in Fig. 9. The 
joules per gram per degree is the measurement values which has been 
witnessed that the proposed model can perform better compared with 
the unbiased and unscheduled one. Likewise, other parameters have also 
achieved the best performance with the proposed model shown in 
Figs. 10 and 11 respectively. The kay factor is that the scheduled model 
has the ability to perform better. The WOA and EDO models of opti-
mization can achieve the best performance when combined in a single 
scheme. 

4.6. Statistical analysis 

The variable time_slots is quantitative in nature. While the regressors 
(independent) variables are of binary nature (qualitative). Linear 
regression model is run on data. The output suggests that average value 
of regression model when regressors are zero is 8.44 min. That means in 
case of no dryer, dish washer and washing machine average time slot is 
8.44 min. For dish water the regression coefficient is 4.750 that shows 
that one-unit increase in dish washer will raise the time slot by 4.75. 
Similarly, regression coefficient for washing machine is − 3.44. That 
shows decrease in dependent variable time_slot by 3.44 for one-unit 
increase in washing machine. The p value shows no significance for 
regressors. That may be due to nature of data because all the indepen-
dent variables are measured on binary scale. Figs. 12, 13, 14, 15, 16, and 
17 illustrates differently the statistical analysis of the proposed model 
with each electric home appliances. 

This is scatter plot for the fitted model. Which shows that plot is 
reasonable. However, individual scatter plot of time_slot with dish_-
washer, drayer and washing_machine are not very convincing because of 
the nature of said independent variables. 

4.7. Correlation analysis 

Figs. 18 and 19 represents the analysis of the proposed model w.r.t 
the correlation. The correlation analysis has been implemented. Here, 
each appliance denotes differently each correlation with the direct and 

Fig. 6. Value of cost ($), Recorded RTP, and CPP.  

Table 2 
Simulation Setup.  

Parameter Value 

Simulator MATLAB R2021a 
Performance Metrics Cost of ElectricityLoad in Kwh  

(Kilowatts) 
Peak to Average Ratio (PAR) 

Additional Evaluation 
Parameters 

Heat (J/goC) Joules Per Gram Per Degree 
Initial CostAnnual Cost Saving 

Proposed Values For Scheduling 0.3 
0.60.9 

Simulation Time 24 Hours 
Optimization Methods WOA 

DSMEDE 
Simulation Plot Size 600 m*600 m 
Existing Approaches EDEWOA 
Proposed Approach Hybrid Whale Differential Evolution (HWDE) 
Maximum Voltage 220–240 V 
Electricity Cost and Scheduling Shiftable Appliances 

Controllable AppliancesNon-shiftable 
Appliances  
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indirect relation. 

4.8. Sensitivity analysis of the proposed HWDE model 

The proposed model has focused on the optimization and load 
balancing of the cost, heat, energy, and cost of annual demand, cost in 
units, and cost in dollars. The values of these parameters have been 

taken form the Meta heuristic analysis based on the performance and the 
type of electricity. Based on the household usage of the daily electricity 
the proposed work parameters have been taken into consideration to 
evaluate effectively with the unscheduled approaches. The values have 
been derived from the simulation readings. Each cycle and round has 
been measured and calculated in the MATLAB environments. 

Fig. 7. Total Cost ($) vs. Time (Hours).  

Fig. 8. (a) Average Cost of Electricity, (b) Average Energy Consumption, and (c) Average Total Cost.  
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4.9. Scalability and applicability of the proposed HWDE model 

There are a lot of advantages from which the proposed work can be 
benefited. The proposed work can be effectively utilized in the envi-
ronment where the load of electricity can cause a serious issue. Some of 
the key points of scalability and applicability of our proposed work are 

as follows;  

• To effectively functionalized the proposed model.  
• To enhance the quality of the appliances.  
• To enhance the lifetime of the appliances by utilizing the proposed 

model. 
• By expanding the nature and usage of the appliances and to maxi-

mize the utilization and reduce the energy consumption.  
• To deliver a best way of load balancing and to reduce the risk and 

danger.  
• To consume less energy, less heat, less cost, and less optimization 

time and to deliver the best performance based WOA and EDE model. 

5. Conclusions 

The cost of electricity has been proven to be proportional to the 
average daily electricity usage rate. To maximize resource utilization 
and cost savings, it is essential to have a system capable of balancing and 

Table 3 
Average Results of Proposed Model with Existing Models.  

Model 
Name 

Average Cost of 
Electricity 

Average Energy 
Consumption 

Average Total 
Cost 

Unscheduled  2.3429  1.11  3.21 
HWDE  0.7192  658.3417  0.14 
EDE  1.4883  911.62  3.11 
WOA  0.9129  1212.3  2.57 
HGWDE  0.8046  840.25  2.63 
Average RTP  13.52208 
Average CPP  14.84458  

Fig. 9. Evaluation of the step by step process of HWDE vs unscheduled Model.  

Fig. 10. Weekly Evaluation of the Cost in Units.  
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Fig. 11. Annual Cost Evaluation in Rupees vs Each Month.  

Fig. 12. Statistical Analysis of the Proposed Model vs Residual Comparison.  
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scheduling loads effectively. These devices can still utilize the necessary 
amount of power, but they must do so while incurring as little load- 
balancing expense as is humanly possible. Even though lowering the 
voltage is challenging, it is still possible to provide adequate voltage at 
the lowest possible cost. This is true despite the complexity of reducing 
the voltage. During this investigation, the existing WOA and EDE opti-
mization strategies were integrated to create a novel model called 

HWDE. The name of this model was derived from the combination of 
two optimization procedures. It is the offspring of two separate species 
that were interbred. Load balancing utilizing WOA, HGWDE, and EDE 
components consumes much energy; this is required for RTP and CPP 
cost savings. There is a cost involved with this, however. The device’s 
overall costs and expenditures must be decreased while remaining at the 
same level. The power supply introduces three unique metrics: the 

Fig. 13. Statistical Analysis of the Proposed Model vs Each Appliances.  

Fig. 14. Statistical Analysis of the Proposed Model vs Each Time_Slot with Appliances.  
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maximum average ratio, the load per kWh, and the total power 
consumption. 

Existing models are analyzed to evaluate their energy costs ($/KWh), 
energy consumption, price ($/Rs), and total costs. HWDE consistently 
achieved the best results across all MATLAB-modeled scenarios. Before 
the establishment of the tax, the EDE was 1.4883, the EDE, WOA, 
HGWDE, and HGWDE were all 0.8046, and the HGWDE was 0.7192. The 
average electricity rate was 2.3429, while the WOA was 0.9129. The 

WOA had a value of 0.9128. The average amounts of energy consumed 
by unscheduled loads were comparable to the average amounts of en-
ergy consumed by scheduled loads: 981.11 kWh, 911.62 kWh, 1212.3 
kWh, 658.3417 kWh, and 840.25 kWh. A shipment could range from 
$3.21 to $4.00, depending on size and weight.  

• Features and Limitations 

Fig. 15. Statistical Analysis of the Proposed Model vs Histogram Comparison with Time_Slot.  

Fig. 16. Statistical Analysis of the Proposed Model vs Observations.  
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Effective for complex, nonlinear optimization problems: WOA has been 
shown to be particularly effective for optimization problems involving 
many variables and complex, nonlinear functions. 

Balances exploration and exploitation: WOA uses a combination of 
random search and adaptive search, which helps to balance exploration 
and exploitation, preventing the algorithm from getting stuck in local 
optima. Handles constrained optimization problems: WOA effectively 
handles constrained optimization problems, where one or more 

constraints restrict the feasible solution space. Easy implementation: 
The algorithm is relatively simple and can be applied to various opti-
mization problems. 

Not guaranteed to find the global optimum: Like all metaheuristic al-
gorithms, WOA does not guarantee that the global optimum will be 
found. The algorithm may get trapped in local optima, especially for 
highly complex optimization problems. Requires fine-tuning of param-
eters: The performance of WOA can depend on the choice of several 

Fig. 17. Statistical Analysis of the Proposed Model vs Each Electricity Appliances.  

Fig. 18. Correlation Analysis of the Proposed Model vs Confusion Matrix.  
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parameters, such as the population size, search range, and crossover 
rate. Fine-tuning of these parameters can be time-consuming and re-
quires expertise. High computational complexity: WOA can be compu-
tationally expensive, especially for large-scale optimization problems, as 
it requires many iterations and evaluations of the objective function. 
Sensitivity to initial conditions: WOA can be sensitive to the initial 
conditions, and different initializations may result in different solutions. 
Therefore, multiple runs with different initial conditions may require a 
more robust solution.  

• Future Work 

In the future, these evaluation and optimization algorithms can also 
be tested under diverse simulations and other home appliance setup 
settings. The idea of the optimizations can be expanded and enhanced by 
using hybrid optimization algorithms, which can possess the features 
and positive aspects of the advanced optimization schemes. This idea 
can be effectively deployed with the new parameters and other new 
statistical implementations. 
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