
Zayed University Zayed University 

ZU Scholars ZU Scholars 

All Works 

1-1-2023 

2-Uniform covering groups of elementary abelian 2-groups 2-Uniform covering groups of elementary abelian 2-groups 

Dana Saleh 
Zayed University, dana.saleh@zu.ac.ae 

Rachel Quinlan 
University of Galway 

Follow this and additional works at: https://zuscholars.zu.ac.ae/works 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Saleh, Dana and Quinlan, Rachel, "2-Uniform covering groups of elementary abelian 2-groups" (2023). All 
Works. 6070. 
https://zuscholars.zu.ac.ae/works/6070 

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All 
Works by an authorized administrator of ZU Scholars. For more information, please contact scholars@zu.ac.ae. 

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F6070&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=zuscholars.zu.ac.ae%2Fworks%2F6070&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/6070?utm_source=zuscholars.zu.ac.ae%2Fworks%2F6070&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholars@zu.ac.ae


Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lagb20

Communications in Algebra

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/lagb20

2-Uniform covering groups of elementary abelian
2-groups

Dana Saleh & Rachel Quinlan

To cite this article: Dana Saleh & Rachel Quinlan (14 Sep 2023): 2-Uniform
covering groups of elementary abelian 2-groups, Communications in Algebra, DOI:
10.1080/00927872.2023.2246078

To link to this article:  https://doi.org/10.1080/00927872.2023.2246078

© 2023 The Author(s). Published with
license by Taylor & Francis Group, LLC

Published online: 14 Sep 2023.

Submit your article to this journal 

Article views: 116

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=lagb20
https://www.tandfonline.com/loi/lagb20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00927872.2023.2246078
https://doi.org/10.1080/00927872.2023.2246078
https://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00927872.2023.2246078
https://www.tandfonline.com/doi/mlt/10.1080/00927872.2023.2246078
http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2023.2246078&domain=pdf&date_stamp=14 Sep 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2023.2246078&domain=pdf&date_stamp=14 Sep 2023


COMMUNICATIONS IN ALGEBRA®
https://doi.org/10.1080/00927872.2023.2246078

2-Uniform covering groups of elementary abelian 2-groups

Dana Saleha and Rachel Quinlanb

aZayed University, Dubai, UAE; bUniversity of Galway, Ireland

ABSTRACT
This article is concerned with the classification of Schur covering groups of the
elementary abelian group of order 2n, up to isomorphism. We consider those
covering groups possessing a generating set of n elements having only two
distinct squares. We show that such groups may be represented by 2-vertex-
colored and 2-edge-colored graphs of order n. We show that in most cases, the
isomorphism type of the group is determined by that of the 2-colored graph,
and we analyze the exceptions.
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1. Introduction

For a finite group G, a Schur cover or covering group or stem cover of G is a finite group H with a normal
subgroup N ⊆ Z(H)∩H′ with H/N ∼= G, that has maximal order amongst all groups with this property.
A pair of groups (H, N) with N ⊆ Z(H)∩ H′ and H/N ∼= G is referred to as a stem extension of G. Thus
a covering group is a stem extension of maximal order. A group may have multiple non-isomorphic
covering groups, but in all cases the normal subgroup N is isomorphic to the Schur Multiplier M(G) of
G. We refer to Chapter 7 of [4] for an account of the general theory of covering groups and their role in
the study of projective representations.

The theme of this article is the classification, up to isomorphism, of covering groups of elementary
abelian 2-groups. For a prime p and positive integer n, the elementary abelian p-group of order pn is the
direct product of n copies of the cyclic group Cp of order p. Written additively, it is the vector space of
dimension n over the field Fp of p elements. Elementary abelian groups possess a particular abundance
of distinct covering groups.

If (H, N) is a stem extension of an abelian group G, then N = H′ and H is either abelian or nilpotent
of class 2. Then the following commutator identities are satisfied for all elements x, y, z of H, where [x, y]
denotes the element xyx−1y−1.

[x, z][y, z] = [xy, z], and [x, y][x, z] = [x, yz]. (1)

Consequently, for elements x, y of H and any positive integer t, the commutator [x, y] satisfies [x, y]t =
[xt , y] = [x, yt]. In particular, if either xt or yt is central in H, then [x, y]t = id in N. Since N is abelian
and generated by commutators, it follows that the exponent of N divides that of G. In particular, if G
is an elementary abelian p-group, then either N is trivial or it is also elementary abelian of exponent
p. If {x1, . . . , xn} is a set of elements of H for which H/N is generated by the xiN, then {x1, . . . , xn}
generates H, and N is generated by the

(n
2
)

simple commutators [xi, xj]i<j, each of which is either trivial
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or has order p. The maximum possible order of N is p(n
2), and this order occurs when the [xi, xj] are

independent. When this occurs, H is a covering group of Cn
p . The full structure of H, in terms of the

elements of the prescribed generating set {x1, . . . , xn}, is determined by the expression for each of the
elements xp

i as a product of powers of the simple commutators [xi, xj]i<j.
A covering group of Cn

p may be constructed by specifying a set of generators x1, . . . , xn and freely
choosing the integers aijk from {0, . . . , p − 1} in the n expressions

xp
k =

∏
1≤i<j≤n

[xi, xj]aijk . (2)

This point will be discussed in more detail in Section 2. The number of choices available for the
collection of indices {aijk} is pn(n

2). While a superficial inspection shows that many different choices yield
isomorphic covering groups, it is also clear that many non-isomorphic examples may occur as the value
of n increases. In [5], Ursula Martin Webb investigates the number A(p, n) of all isomorphism types of
covering groups of Cn

p for odd p and shows that it is bounded below by

pn(n
2)

|GL(n, p)|
(

p−3n2/2+9n/2−4(pn − 1)(p + pn−1 − 1)(p − 1) + 1
)

.

This result alone shows that the elementary abelian group of order 81 has at least 12555 distinct covering
groups. The term pn(n

2) that appears in the numerator of the above expression is the number of choices
for the coefficients aijk in the expression (2).

Our aim in this article is not to attempt an enumeration of all isomorphism types, but to consider
how isomorphic groups can be recognized on the basis of descriptions of the form in (2), possibly for
different choices of distinguished generating sets. Our focus is on the case of 2-groups, for which the
analysis is markedly different from that of odd primes, mostly because of the following observation,
which is a direct consequence of (1).

Lemma 1.1. Let G be a covering group of an elementary abelian p-group, for an odd prime p. Then the pth
power map on G, defined by x → xp for x ∈ G, is a group homomorphism.

Proof. Let x, y ∈ G. Then yx = xy[x, y] and, since [x, y] ∈ Z(G) it follows that

(xy)p = xpyp[x, y] p(p−1)
2 .

Since p − 1 is even, the integer p(p−1)

2 is a multiple of p, and since G′ has exponent p it follows that
(xy)p = xpyp.

For a covering group G of an elementary abelian p-group of odd order pn, Lemma 1.1 may be
interpreted as the statement that the pth power map is a linear transformation from G/G′, which is a
vector space of dimension n over Fp, to G′, which is a vector space of dimension

(n
2
)

over Fp. Since
this mapping determines the group G up to isomorphism, the problem of distinguishing and classifying
covering groups may be regarded as a problem of linear algebra. We define the rank of the covering group
G to be the rank of its pth power mapping as a linear transformation, and note that isomorphic covering
groups have the same rank. The rank of G is k if the elementary abelian subgroup of G consisting of
all pth powers has order pk. For odd p, Cn

p has one covering group of exponent p and rank 0. Covering
groups of rank 1 are those in which the pth powers comprise a single cyclic group of order p. They are
investigated in [1], where it is shown that the number of their isomorphism types is n − 1.

Since (xy)2 = x2y2[x, y] for all elements x, y of any group G, the squaring map in a covering group of
a non-cyclic elementary abelian 2-group is never a homomorphism. The set of squares in such a group is
not a subgroup, and so the concept of rank, at least in terms of linear transformations, does not translate
directly to the case of 2-groups. Nevertheless, by considering the least number of distinct elements that
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may occur as the squares of the elements of a generating set, we propose an invariant for 2-groups that
may be regarded as an analogue of rank.

For odd p, a covering group of rank 1 of Cn
p is one that is generated by n elements all having the

same pth power. This version of the definition may also apply to 2-groups, and we say that a covering
group of Cn

2 is uniform if it possesses a generating set consisting of n elements all having the same
square. Included in this designation is the unique covering group that is generated by n involutions.
A detailed investigation of uniform covering groups is presented in [3]. It is shown there that the
number of isomorphism types of uniform covering groups of Cn

2 is equal to the number of isomorphism
types of simple undirected graphs on n unlabeled vertices. This number generally greatly exceeds the
corresponding number n − 1 for the case of odd p and rank 1, reflecting the fact that the classification
problem is one of combinatorics rather than linear algebra. The goal of this article is to extend the
investigation to the class of 2-uniform covering groups, which are those non-uniform covering groups
that possess a generating set whose elements have just two distinct squares. We begin with some further
background information from [3], about the uniform property and its connection to graphs.

2. Uniform covering groups of elementary abelian 2-groups

In this section, we discuss the graph representation of central elements of covering groups of elementary
abelian 2-groups.

Definition 2.1. For a positive integer n, a covering group of the elementary abelian 2-group Cn
2 is a group

G of order 2n+(n
2) with the following properties:

• G has a generating set {x1, . . . , xn} with n elements.
• The commutator subgroup of G is equal to the center of G, and is an elementary abelian group of

order 2(n
2), generated by the

(n
2
)

simple commutators [xi, xj], with i < j.
• G/Z(G) = G/G′ is elementary abelian of order 2n, generated by the cosets of G′ represented by

x1, . . . , xn.

We now let G be a covering group of Cn
2 . We will refer to any minimal generating set of G as a basis of G.

We say that a subset of G is independent if its elements represent linearly independent elements of G/G′,
regarded as a vector space over F2. Thus a basis is a maximal independent set. Since the commutator
subgroup of G has exponent 2, the commutators [x, y] and [y, x] coincide for all pairs of elements x and
y of G, and we may consider the element [x, y] to be determined by the unordered pair {x, y}. We now
let B = {x1, . . . , xn} be a basis of G, and introduce a set V of n vertices labeled by the elements of B. For
1 ≤ i < j ≤ n, the basic simple commutator [xi, xj] is represented by the graph on V whose only edge
comprises the two vertices labeled by xi and xj. Every element of G′ has an expression as a product of
distinct basic simple commutators, which is unique up to order. Thus each c ∈ G′ is represented by the
graph on V whose edges correspond to the pairs of elements of B whose commutators occur in c. The
choice of a basis of G determines a bijective correspondence between G′ and the collection of all graphs
on n labeled vertices.

Let F be a free group of rank n, with generators X1, . . . , Xn. and let G be a covering group of Cn
2 with

basis {x1, . . . , xn}. Then there is an epimorphism φ : F → G with φ(Xi) = xi for each i. Since G has
exponent 4, G′ has exponent 2, and all commutators and squares are central in G, the kernel R of φ

contains the subgroup H of F generated by all elements of the forms

X4, [X2, Y], [X, Y]2, [[X, Y], Z], for X, Y , Z ∈ F.

We write X̄i for the element of F/H represented by Xi. The center of the group F/H is elementary
abelian of order 2

n(n+1)
2 , generated by X̄2

1, . . . , X̄n
2 and the

(n
2
)

simple commutators [X̄i, X̄j]i<j. See [2]
for a discussion of this point. Since the center of F/H strictly contains the commutator subgroup, F/H
is not a covering group of Cn

2 . However, every covering group of Cn
2 may be realized as a quotient of



4 D. SALEH AND R. QUINLAN

F/H, modulo a subgroup C of order 2n that is a complement of (F/H)′ in Z(F/H). Such a subgroup is
elementary abelian, generated by elements of the form X2

1c1, . . . X2
ncn, where each ci belongs to (F/H)′

and has a unique expression as a product of the [X̄i, X̄j]. If ci = θi(X̄i, . . . , X̄n) and G = (F/H)/C, then
x2

i = θi(x1, . . . , xn) in G. Choosing a complement C of (F/H)′ in Z(F/H) amounts to designating the
square of each of the generators x1, . . . , xn of G as a product of the basic simple commutators [xi, xj].
This can be done freely and independently for each xi, with different choices corresponding to different
choices of C. Different choices for the squaring map on generators may lead to isomorphic covering
groups, and determining when this occurs is a difficult problem in general.

Example 2.2. In the case n = 2, a covering group of C2 × C2 has generators x1, x2 and commutator
subgroup of order 2, generated by [x1, x2]. This information, along with the expressions for x2

1 and x2
2 as

elements of G′, determines the group. We have four choices for the pair (x2
1, x2

2).

1. x2
1 = x2

2 = id. In this case G is generated by two involutions, and their product x1x2 satisfies (x1x2)
2 =

[x1, x2]. For this choice, G is isomorphic to D8, the dihedral group of order 8.
2. x2

1 = id, x2
2 = [x1, x2]. In this case (x1x2)

2 = id and again G is dihedral of order 8, generated by two
involutions.

3. x2
1 = [x1, x2], x2

2 = id. This is equivalent to 2. above, again G ∼= D8.
4. x2

1 = x2
2 = [x1, x2]. In this case the elements x1, x2 and x1x2 all have order 4, and G is isomorphic to

the quaternion group of order 8.

Thus both non-abelian groups of order 8 are covering groups of C2 × C2.

Definition 2.3. A covering group G of Cn
2 is uniform if it has a basis consisting of n elements all having

the same square. A basis with this property is called a uniform basis.

To designate a uniform covering group from the starting point of a uniform basis {x1, . . . , xn}, we
need only select a subcollection of the

(n
2
)

commutators [xi, xj]i<j, whose product is the common square
of the basis elements. This amounts to selecting a graph on n vertices, labeled by the basis elements.
For a uniform covering group G with uniform basis B, we define �B(G) to be the graph with vertices
labeled by the elements of B, in which the vertices labeled by xi and xj are adjacent if and only if [xi, xj]
appears in the expression for the common square of all elements of B as a product of the basic simple
commutators.

It is shown in [3] that the isomorphism type of the graph determined by a uniform covering group
of Cn

2 does not depend on the choice of uniform basis, and that in most cases there is a unique uniform
basis, up to the cosets of G′ to which the generators belong. The exception to this is the case where the
group is represented by a clique on an even number of vertices, and in this case distinct uniform bases
correspond to isomorphic graphs. The following statement is Theorem 2.11 of [3].

Theorem 2.4. For a positive integer n, the isomorphism types of uniform covering groups of Cn
2 are

in bijective correspondence with the isomorphism classes of simple undirected graphs on n unlabeled
vertices.

Example 2.5. Both the dihedral group D8 of order 8 and the quaternion group Q8 of order 8 are uniform
covering groups of C2 × C2. The dihedral group is generated by a pair of involutions, corresponding to
the null graph on two vertices, and the quaternion group is generated by a pair of elements x1 and x2,
with x2

1 = x2
2 = [x1, x2]. This group is represented by the complete graph on two vertices. It is only in

the case n = 2 that all covering groups of Cn
2 are uniform.

Subject to the choice of a basis B for a covering group G of Cn
2 , any element of G′ may be described, as

outlined above, by a graph on a set of n vertices labeled by the elements of B. The distinguishing feature
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of uniform covering groups is that a single such graph is sufficient to fully specify the group. Our theme
in this article is to explore the case of covering groups that are not uniform but possess a basis whose
elements have only two distinct squares. Such groups will be called 2-uniform, and they can be described
using graphs with a 2-coloring of both their vertex and edge sets.

For an element c of G′, the graph of c with respect to B is denoted by �B(c). Its vertices are labeled by
the elements ofB, and its edges are those pairs of basis elements that appear as commutators in the unique
expression for c as a product of basic simple commutators from B. One may consider the relationships
between the graphs that represent c with respect to different bases of G. The case of a pair of bases that
differ only in one or two elements will be of particular interest, and we conclude this section by noting
the graph transformations that correspond to basis changes of this nature. If B and B′ are two bases of
G that differs in either exactly one or exactly two elements, we assume that �B(c) and �B′(c) have the
same vertex set, with the relevant vertex or pair of vertices relabeled in the transition from one graph to
the other.

If the element c is a nonidentity commutator in G, then c = [p, q] for some p, q ∈ G. Since c depends
only on the cosets pG′ and qG′, we may assume that each of p and q are products of elements of B. Let P
and Q respectively denote the sets of vertices of �B(c) that represent the basis elements that occur in p
and q. Expanding the expression [p, q] in terms of the basis elements, we observe that the edges of �B(c)
and their incident vertices comprise a complete tripartite graph with parts P\Q, Q\P and P ∩ Q, or a
complete bipartite graph if one of these three sets is empty. It follows that a graph represents a simple
commutator (i.e. an element of G′ of the form [p, q]) if and only if it has a connected component that
is complete tripartite or complete bipartite, with remaining vertices isolated. This situation will arise
frequently in our analysis, so we introduce the following notation for the set of edges that represents the
commutator of a pair of elements from specified cosets of G′ in G.

Definition 2.6. For sets of vertices P and Q, we denote by E(P, Q) the set of edges of the complete
tripartite (or bipartite or null) graph whose parts are P\Q, Q\P and Q ∩ P.

In general, we write E(�) for the edge set of a graph �. For a pair of sets A and B, A	B denotes the
symmetric difference of A and B.

Theorem 2.7. Suppose that B and B′ = (B\{x}) ∪ {y} are bases of G, and let c ∈ G′. Let v be the vertex
that represents x in �B(c) and y in �B′(c). Let P be the set of neighbors of v in �B(c), and let Q be the set
of vertices representing elements of B\{x} that occur in the expression for y as a product of elements of B
(modulo G′). Then

E(�B′(c)) = E(�B(c))	E(P, Q).

Proof. Let q and p respectively denote the products (in some specified order) of the elements of B
represented by the vertices of P and of Q. Then

c = [x, p]c′ = [yq, p]c′ = [q, p][y, p]c′,

where c′ is a product of simple commutators involving the elements of B ∩ B′. Since c′ is represented
by the same set of edges in both graphs, and the edges that represent [y, p] with respect to B′ coincide
with those that represent [x, p] with respect to B, it follows that the graph �B′(c) is obtained from �B(c)
by switching the status of all edges that represent commutators that occur in the expansion of [q, p] in
terms of elements of B\{x}. These edges are exactly those of the set E(P, Q).

If the sets P and Q coincide in the situation of Theorem 2.7, then the graphs �B(c) and �B′(c) differ
only in the label on the vertex v, which represents x in �B(c) and represents y in �′

B(c). In particular,
the two are isomorphic, via the unique bijection between their vertex sets that preserves the n − 1 labels
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that are common to both. We note the following special case of this situation, which will arise in our
analysis.

Corollary 2.8. Let c be an element of G′ whose graph with respect to the basis B consists of a clique on
k ≥ 2 vertices, with any remaining vertices isolated. Let x be the product in G, in some order, of those
basis elements x1, . . . , xk that are represented by non-isolated vertices. Let B′ be a basis obtained from B by
replacing some xi ∈ {x1, . . . , xk} with x. Then the graphs �B(c) and �B′(c) are isomorphic, via the unique
bijection that preserves the labels of the n − 1 vertices representing elements common to both bases.

We now consider the relationship between �B(c) and �B′′(c), where c ∈ G′ and the basis B′′ is
obtained from B by replacing two elements x1 and x2 with y1 and y2. Through two applications of
Theorem 2.7, we describe the relationship between the edge sets of �B(c) and �B′′(c). Since B and B′′
are both generating sets of G, we may assume that the expression for y1 as a product of elements of B
(modulo G′) involves x1 but not x2, and that the corresponding expression for y2 involves x2. We write
P1 and P2 respectively for the sets of neighbors of the vertices representing x1 and x2 in �B(c). We write
Q1 and Q2 for the respective sets of vertices representing elements of B\{x1} and B\{x2} that appear in
the expressions for y1 and y2 as products of elements of B.

We write B′ for the basis of G that results from replacing x1 with y1 in B. From a direct application of
Theorem 2.7,

E(�B′(c)) = E(�B(c))	E(P1, Q1).

We now write P′
2 for the set of neighbors of the vertex representing x2 in �B′(c), and Q′

2 for the set of
vertices representing elements of B′\{x2} that occur in the expression for y2 as a product of elements of
the basis B′. By applying Theorem 2.7 again, we may describe the edge set of �B′′(c) in terms of the sets
P1, Q1, P′

2 and Q′
2. To describe it in terms of the original data pertaining to B, we need to consider how

P′
2 and Q′

2 depend on P1, P2, Q1, Q2 and the edges of �B(c).
If the commutator [x1, x2] occurs in the description of c in terms of simple commutators involving

elements of B, then the vertex representing x2 belongs to P1\Q1, and P′
2 = P2	Q1. Otherwise P′

2 = P2.
If x1 is involved in the expression for y2 as a product of elements of B, then the vertex representing

x1 belongs to Q2, and Q′
2 = Q2	Q1. Otherwise Q′

2 = Q2.
The following theorem summarizes the possible relationships between the graphs �B(c) and �B′′(c).

Theorem 2.9. The edge set of �B′′(c) depends on c and y2 as follows:

1. If the vertices representing x1 and x2 are not adjacent in �B(c), and the expression for y2 as a product of
elements of B does not include x1, then

E(�B′′(c)) = E(�B(c))	E(P1, Q1)	E(P2, Q2).

2. If the vertices representing x1 and x2 are adjacent in �B(c), and the expression for y2 as a product of
elements of B does not include x1, then

E(�B′′(c)) = E(�B(c))	E(P1, Q1)	E(P2	Q1, Q2).

3. If the vertices representing x1 and x2 are not adjacent in �B(c), and the expression for y2 as a product of
elements of B includes x1, then

E(�B′′(c)) = E(�B(c))	E(P1, Q1)	E(P2, Q2	Q1).

4. If the vertices representing x1 and x2 are adjacent in �B(c), and the expression for y2 as a product of
elements of B includes x1, then

E(�B′′(c)) = E(�B(c))	E(P1, Q1)	E(P2	Q1, Q2	Q1).
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3. 2-Uniform covering groups and 2-uniform graphs

In this section, we discuss an extension of the graph representation of uniform covering groups, to the
case of covering groups possessing generating sets whose elements have two distinct squares.

Definition 3.1. A covering group G of Cn
2 is 2-uniform if it is not uniform, and it has a basis B with the

property that

|{x2 : x ∈ B}| = 2.

We refer to a basis of the type described in Definition 3.1 as a 2-square basis of G. Any covering
group that possesses a 2-square basis is either 2-uniform or uniform. We may use a 2-square basis to
associate a graph to G, by extending the graph interpretation of a uniform basis as defined in Section 1.
We use vertex colors to distinguish the elements of a 2-square basis according to their two distinct
squares, and corresponding edge-colors to distinguish their respective squares. By a 2-colored graph,
we mean a loopless undirected graph in which every vertex is colored either blue or red, and every
edge is colored either blue or red. A pair of vertices may be adjacent via both a blue edge and a
red edge, but multiple edges of the same color cannot occur. We say that two 2-colored graphs are
isomorphic if there is a bijection between their vertex sets that preserves adjacency and non-adjacency,
and either preserves the colors of both vertices and edges, or switches the colors of all vertices and all
edges.

Let B = {x1, . . . , xk, yk+1, . . . , yn} be a 2-square basis of a covering group G of Cn
2 , where x2

i = r for
i ≤ k, y2

j = s for j > k, and r and s are distinct elements of G′. We define the 2-colored graph of G with
respect to the basis B, denoted �B(G), as follows.
• The vertex set of �B(G) consists of k blue vertices, corresponding to the basis elements x1, . . . , xk,

and n − k red vertices, corresponding to the basis elements yk+1, . . . , yn;
• The blue edges of �B(G) comprise the edge set of the graph �B(r).
• The red edges of �B(G) comprise the edge set of the graph �B(s).

On the other hand, if � is a 2-colored graph, we may associate to � a covering group with a generator
for each vertex of �, in which the square of each of the generators corresponding to blue vertices is the
element of G′ represented by the blue edges, and the square of each of the generators corresponding to
red vertices is the element of G′ represented by the red edges.

A 2-uniform group may have multiple 2-square bases, and may be represented by non-isomorphic
2-colored graphs, as the following example shows.

Example 3.2. Let G be the 2-uniform covering group of C4
2 with 2-square basis {x1, x2, y3, y4}, where

x2
1 = x2

2 = [x1, x2][y3, y4], and y2
3 = y2

4 = [x1, y3]. Then (x1y3)2 = x2
1y2

3[x1, y3] = x2
1. It follows that

{x1, x2, x1y3, y4} is another 2-square basis of G, in which

x2
1 = x2

2 = (x1y3)
2 = [x1, x2][x1y3, y4][x1, y4],

and y2
4 = [x1, x1y3]. Thus the following nonisomorphic 2-colored graphs both represent this 2-uniform

covering group G of C4
2.

Example 3.2 shows that, even for bases consisting of elements with the same pair of squares, some
variation is possible in the numbers of blue and red vertices in the corresponding graphs. This difficulty
will be resolved by refining the concept of a 2-square basis to that of a 2-uniform basis, which is one
which maximizes the number of elements having a single square.
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Definition 3.3. For any covering group G of Cn
2 , the uniform rank of G, denoted ρ(G), is the maximum

k with the property that k independent elements of G have the same square. The uniform corank of G is
defined as n − ρ(G).

In a 2-uniform covering group of Cn
2 , the uniform rank is at least

⌊n
2
⌋

and at most n−1. The uniform
rank is at least equal to the uniform corank.

Definition 3.4. Let G be a 2-uniform covering group of Cn
2 . A 2-uniform basis of G is a generating set

{x1, . . . , xn} with the following properties:
• x1, . . . , xk have the same square r.
• xk+1, . . . , xn have the same square s, where s �= r.
• k is the uniform rank of G.

We now establish that every 2-uniform covering group of an elementary abelian 2-grouo possesses a
2-uniform basis. Let G be a 2-uniform covering group of Cn

2 , with uniform rank k. Let B be a 2-square
basis of G, consisting of elements with two distinct squares r and s. If either r or s is the square of k
distinct elements of B, then B is a 2-uniform basis of G. Otherwise, we consider whether B can be
adjusted to a 2-uniform basis, by the addition of further elements with one of the squares r and s, and
the omission of some with the other. Such an adjustment requires that either r or s is the square of k
independent elements of G. We will prove that this condition holds for every 2-square basis if n ≥ 7, as
a consequence of Theorem 3.5. The existence of 2-uniform bases in the remaining cases with n ≤ 6 will
be considered separately.

Before stating Theorem 3.5, which is one of the main technical ingredients of this work, we introduce
some notation that is used in its proof. If X is a subset of a covering group G of Cn

2 , we write C(X) for
the element of G′ that is given by the product of the commutators [x, y], over all unordered pairs {x, y} of
distinct elements of X. If X = {x1, x2, . . . , xt}, we may write C(x1, . . . , xt) for C(X). If the elements of X
are independent in G and are included in a basis B, then �B(C(X)) consists of a clique on those vertices
representing the elements of X, with remaining vertices isolated.

Theorem 3.5. Let G be a 2-uniform covering group of Cn
2 , where n ≥ 4, and let B = {x1, . . . , xk, yk+1, . . . ,

yn} be a generating set of G, where x2
i = r for i = 1, . . . , k, and y2

j = s for j = k + 1, . . . , n, and where
k ≥ n − k. Then no element of G′\{r, s} is the square of four independent elements of G.

Proof. Let t ∈ G′\{r, s}, and suppose that t is the square of four independent elements z1, z2, z3, z4 of
G. Since the squaring map on G is constant on cosets of G′, we may assume that each zi is a product of
some elements of the basis B. For i = 1, . . . , 4, let Xi and Yi respectively denote the sets of elements of
{x1, . . . , xk} and {yk+1, . . . , yn} that occur in zi. We note that |Xi ∪ Yi| ≥ 2 in each case, since z2

i �∈ {r, s}.
Comparing the four expressions for the common square of the elements zi, we have

r|X1|s|Y1|C(X1 ∪ Y1) = r|X2|s|Y2|C(X2 ∪ Y2) = r|X3|s|Y3|C(X3 ∪ Y3) = r|X4|s|Y4|C(X4 ∪ Y4).

In each case, the expression r|Xi|s|Yi| is either equal to id, r, s or rs. No two of these can coincide, since
the four elements C(Xi ∪ Yi) of G′ are distinct. After relabeling if necessary, we write

C(X1 ∪ Y1) = rC(X2 ∪ Y2) = sC(X3 ∪ Y3) = rsC(X4 ∪ Y4). (3)

where |X1|, |Y1|, |Y2| and |X3| are even, and |X2|, |Y3|, |X4| and |Y4| are odd. Multiplying the
expressions in (3) together, we obtain

C(X1 ∪ Y1)C(X4 ∪ Y4) = C(X2 ∪ Y2)C(X3 ∪ Y3). (4)

Let V be a set of vertices corresponding to the elements of B, and for i = 1, . . . , 4, let Vi be the subset of
V corresponding to Xi ∪ Yi. Let �i be the graph on vertex set V , whose edges form a complete graph on
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Vi. The sets V1, . . . , V4 are distinct, and each has at least two elements since t �∈ {r, s}. The statement (4)
translates to the following equality involving edge sets.

E(�1)	E(�4) = E(�2)	E(�3).

We write � for the graph consisting of the edges in E(�1)	E(�4), and their incident vertices. We note
that � has at least three vertices, and that � is not a complete graph.

Let u and v be a pair of non-adjacent vertices in �. Then either u and v both belong to V2 ∩ V3, or
one of these vertices belongs to V2\V3 and the other to V3\V2. Moreover, either u and v both belong to
V1 ∩ V4, or one belongs to V1\V4 and the other to V4\V1.

Suppose that {u, v} ⊆ V2 ∩ V3. Then u and v have the same set of neighbors in �, and this set is
V2	V3. The subgraph of � induced on V2	V3 is complete (if V2 ⊇ V3 or V3 ⊇ V2), or consists of
two complete components, on the disjoint sets V2\V3 and V3\V2. The set consisting of u, v and their
non-neighbors in � is V2 ∩ V3. Thus the sets V2 and V3 are determined by the non-adjacent pair {u, v}
and the hypothesis that {u, v} ⊆ V2 ∩ V3. If, in addition, {u, v} ⊆ V1 ∩ V4, then the same reasoning
leads to the contradiction that {V1, V4} = {V2, V3}. Thus if {u, v} ⊆ V2 ∩ V3, then we may assume that
u ∈ V1\V4 and v ∈ V4\V1.

Similar reasoning leads from the hypothesis u ∈ V2\V3 and v ∈ V3\V2 to the conclusion that {u, v} ⊆
V1 ∩ V4. In this case V2 consists of u and its neighbors in �, and if u �∈ V1 ∩ V4 then either V1 = V2 or
V4 = V2. Again we find in this situation that {V2, V3} = {V1, V4}.

We proceed with u ∈ V1\V4, v ∈ V4\V1, and {u, v} ⊆ V2 ∩ V3. The vertices u and v have the same
set of neighbors in �, which is V2	V3. It follows that V1\V4 = {u} (since any other vertex in V1\V4
would be adjacent to u but not v in �) and that V4\V1 = {v}.

If any vertex of � belongs to all four of the �i, then its neighbor set is simultaneously equal to V1	V4
and V2	V3. Since these two sets are different, it follows that V1 ∩ V2 ∩ V3 ∩ V4 is empty, and V2 ∩
V3 ⊆ V1	V4 = {u, v}. Hence V2 ∩ V3 = {u, v}. Moreover, V1 ∩ V4 = V2	V3. We may assume that
V2\V3 includes an element x, since V2	V3 is not empty. Then x ∈ V1 ∩ V4, and u and v are the only
neighbors of x in �. It follows that V2\V3 = {x}. Similarly V3\V2 has at most one element. We have two
possibilities.

1. V1 = {u, x}, V4 = {v, x}, V2 = {u, v, x}, V3 = {u, v}. In this case � is a path on three vertices, with
edges ux and vx.

2. There is a single vertex y in V3\V2. In this case V1 = {u, x, y}, V4 = {v, x, y}, V2 = {u, v, x}, V3 =
{u, v, y}. The graph � is a cycle of length 4, and it has two different representations as the symmetric
difference of two copies of K3.

Neither of these solutions satisfies the parity restrictions in (4), and we conclude that no ele-
ment of G′\{r, s} can occur as the square of elements from more than three independent cosets
of G′ in G.

We highlight the following immediate consequence of Theorem 3.5, which has a key role in our
analysis.

Corollary 3.6. The squares of the elements of a 2-square basis are uniquely determined in a covering group
of Cn

2 whose uniform corank is at least 4.

We return now to the task of showing that every 2-uniform covering group possesses a 2-uniform
basis. Suppose that G is a 2-uniform covering group of Cn

2 , whose uniform rank is at least 4. Let
{x1, . . . , xm, ym+1, . . . , yn} be a basis of G, where x2

i = r for i ∈ {1, . . . , m}, and y2
j = s �= r, for

j ∈ {m + 1, . . . , n}. If ρ(G) ∈ {m, n − m}, then this is a 2-uniform basis of G. If not, let S be a set
of ρ(G) independent elements of G all having the same square. By Corollary 3.6, this common square
must either be r or s, and after relabeling the elements of the generating set if necessary, we may assume
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that it is r. Then we may extend the set {x1, . . . , xm} to a set {x1, . . . , xρ(G)} of independent elements of G
with square r, discarding an element yi from the original basis for each of the newly introduced elements
xm+1, . . . , xρ(G). The result is a 2-uniform basis of G.

It remains to consider the case where G is a 2-uniform covering group of Cn
2 with ρ(G) ≤ 3. In this

case n ≤ 6. Both covering groups of C2
2 are uniform, so the cases of interest occur when n ∈ {3, 4, 5, 6}.

We first observe that if ρ(G) = n − 1, then any set of n − 1 independent elements with the same square
can be extended to a 2-uniform basis by adding one further element. If ρ(G) = �n

2 �, then every 2-square
basis of G must have ρ(G) elements with one square and n − ρ(G) elements with the other. Every 2-
square basis is therefore a 2-uniform basis. This observation accounts for the remaining cases, which
occur when (ρ(G), n) ∈ {(2, 4), (3, 5), (3, 6)}. We have proved the following statement.

Theorem 3.7. If n is a positive integer and G is a 2-uniform covering group of Cn
2 , then G possesses a

2-uniform basis.

Theorem 3.7 allows us to restrict our attention to 2-colored graphs that arise from 2-uniform bases.
We will refer to such graphs as 2-uniform graphs, and give a descriptive characterization of them in terms
of their graph-theoretic properties. We also establish conditions for the existence of a unique 2-uniform
basis in a covering group. This step identifies a large class of covering groups that are represented by a
unique 2-uniform graph. The exceptions to this situation will be categorized in this section, and analyzed
later.

If G is a 2-uniform covering group of Cn
2 , then the graph that represents G with respect to a 2-uniform

basis has ρ(G) vertices of one color, and n−ρ(G) of the other. We adopt the convention that the color blue
is used for ρ(G) vertices representing basis elements with the same square, and red for the remainder.
From now on, we will only consider graphs that are written with respect to 2-uniform bases, and thus
only graphs that have at least as many blue as red vertices.

Definition 3.8. A 2-uniform graph is a 2-colored graph that represents a 2-uniform covering group with
respect to a 2-uniform basis.

The remainder of this section discusses how to recognize a 2-uniform graph. We consider the question
of how a 2-colored graph of order n ≥ 5, with at least n

2 blue vertices, could fail to be 2-uniform. Suppose
that B = {x1, . . . , xk, yk+1, . . . , yn} is a 2-square basis of a covering group G of Cn

2 , where n ≥ 5, k ≥ n
2 ,

x2
i = r for each xi, y2

j = s for each yj, and s �= r. We write X for {x1, . . . , xk} and Y for {yk+1, . . . , yn}. If
ρ(G) = 3, then n ∈ {5, 6} andB is a 2-uniform basis of G. IfB is not a 2-uniform basis of G, then ρ(G) ≥
4 and k < ρ(G). It follows from Theorem 3.5 that a 2-uniform basis of G possesses ρ(G) elements with
square r, or ρ(G) elements with square s. This means either that g2 = r for some g ∈ G\〈x1, . . . xk〉, or
that h2 = s for some h ∈ G\〈yk+1, . . . , yn〉, and in the latter case that G contains enough independent
elements h of this type to extend {yk+1, . . . , yn} to a set of ρ(G) elements. Our next lemma establishes
the circumstances under which such adjustments are possible.

Lemma 3.9. Let G be a 2-uniform covering group of Cn
2 , with a 2-square basis B as above. If none of the

following conditions holds, then the maximum number of independent elements of G having square r is k.
If exactly one of them holds, this number is k + 1. If (b) and (c) hold with Sb ∩ Y = Sc ∩ Y , it is k + 1. In
other cases where two of the three conditions hold, it is k + 2.
(a)There is a subset Sa of B, consisting of an even number of elements of X and a positive even number of

elements of Y , for which r = C(Sa).
(b)There is a subset Sb of B, consisting of an odd number of elements of X and an odd number of elements

of Y , for which s = C(Sb).
(c) There is a subset Sc of B, consisting of a positive even number of elements of X and an odd number of

elements of Y , for which rs = C(Sc).
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Proof. The maximum number of independent elements of G that have square r is the dimension of the
vector subspace of G/G′ spanned by all cosets consisting of elements with square r. Since the set of cosets
represented by elements of X extends to a basis of this space, it is sufficient to consider whether G can
include elements with square r that do not belong to the subgroup generated by X and G′.

If such an element x exists, we may assume that x = s1s1 . . . sm, where the si are elements of B. We
write S = {s1, . . . , sm}. Then

r = x2 = resf C(S),

where e = |S ∩X |, f = |S ∩Y|, and f ≥ 1 since x �∈ 〈X , G′〉. This equation is satisfied if and only if one
of the following occurs:
(a)e and f are both even and r = C(S);
(b)e and f are both odd and r = rsC(S), so s = C(S);
(c)e is even, f is odd and r = sC(S), so rs = C(S).
Each of these conditions can hold for at most one subset S of B. Since there is no relation between r
and s that is intrinsic to the definition of a 2-square basis, any pair of the three conditions may hold
simultaneously, for a different subset S in each case. However, it is not possible for all three conditions
to be satisfied. Suppose that the first two both hold, for respective subsets Sa and Sb of B, each having at
least two elements. If |Sa ∩ Sb| ≥ 2, let x and y be elements of Sa ∩ Sb and let z ∈ Sa	Sb. Then [x, z] and
[y, z] occur in rs, but [x, y] does not, so rs cannot be represented by a clique as in (c). If Sa ∩ Sb = {x},
then Sa\Sb and Sb\Sa are non-empty, with respective elements y and z. Then [x, y] and [x, z] occur in rs
but [y, z] does not, which is again inconsistent with (c). Finally if Sa ∩ Sb = ∅, let x, y ∈ Sa and z, w ∈ Sb.
Then [x, y] and [z, w] occur in rs but [x, z] does not, so rs does not have the form described in (c).

Each one of the three conditions (a), (b), (c) that holds in G yields an element of square r that is
independent of {x1, . . . , xk}, represented by a product of the basis elements in the relevant set S. If both
(b) and (c) hold with Sb ∩Y = Sc ∩Y then the process yields only k + 1 independent elements that can
occur together in a basis. Otherwise, if two of the three conditions hold, we obtain k + 2 independent
elements with square r.

Applying Lemma 3.9 to the element s instead of r, we note that the number of independent elements of
G whose square is s is at most n−k+2, and the value of this number is determined by the conditions (a),
(b), (c) in the statement of the lemma, with the roles of X and Y reversed. The conditions of Lemma 3.9
may be expressed as properties of the graph �B(G) and used to characterize 2-uniform graphs. Before
proceeding with this description, we introduce some notation that will apply to 2-colored graphs in
general.

For a 2-colored graph �, we write �B and �R, respectively for the subgraphs of � whose edge sets
are the sets of blue and red edges, on their respective sets of incident vertices. We write �B	R for the
subgraph of � whose edge set is E(�B)	E(�R), on the vertices incident with these edges, with each edge
retaining its color in �. We write �� for the color opposite of �, which is obtained from � by switching
the color of every vertex and every edge, from blue to red or from red to blue. It is clear that � and ��

represent the same group G, with respect to the same two-square basis.
The following description of 2-uniform graphs now follows from Lemma 3.9.

Theorem 3.10. Let � be a 2-colored graph on at least 5 vertices, with at least as many blue vertices as red.
Then � is a 2-uniform graph if and only if the following conditions hold.

(a) �B is not a clique on an even number of blue vertices and a positive even number of red vertices;
(b) �R is not a clique on an odd number of blue vertices and an odd number of red vertices;
(c) �B	R is not a clique on an even number of blue vertices and an odd number of red vertices;
(d) If the numbers of blue and red vertices in � are equal, then items (a), (b), and (c) above apply to the

color opposite �� of �.
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(e) If the numbers of blue and red vertices in � differ by 1, then �� fails at most one of conditions (a), (b),
(c), or fails both (b) and (c) with cliques involving the same set of red vertices.

Example 3.11. These three 2-colored graphs, each having more blue than red vertices, all fail to be 2-
uniform graphs, respectively on the basis of items (b), (c), and (e) of Theorem 3.10.

4. Exchange operations on 2-uniform graphs

Our ambition is to construct a bijective correspondence between isomorphism classes of 2-uniform
covering groups of Cn

2 , and an appropriate collection of 2-colored graphs of order n. A graph is
constructed not intrinsically from a group, but from a 2-square basis. As Example 3.2 indicates, a
covering group of Cn

2 may have multiple 2-square bases, possibly even corresponding to graphs whose
vertex colorings partition n differently.

Theorem 3.10 gives a full description of 2-uniform graphs of order 5 or greater. We now consider the
question of when non-isomorphic 2-uniform graphs describe isomorphic groups. This requires that the
graphs have the same numbers of blue and red vertices, since the number of blue vertices is the uniform
rank, an invariant of the group. The remainder of the article is devoted to the question of when a 2-
uniform covering group of an elementary abelian 2-group has multiple 2-uniform bases, determining
non-isomorphic 2-uniform graphs. We remark that this always occurs in the case of a 2-uniform graph
of Cn

2 of uniform corank 1, since a set of n−1 independent elements can be extended to a 2-uniform basis
by the addition of any element from outside their span. The special case of corank 1 will be discussed in
Section 7; in the meantime we restrict attention to 2-uniform covering groups whose uniform corank is
at least 2.

We begin by considering the possibility that a group has multiple distinct 2-uniform bases involving
elements with the same pair of squares r and s.

Lemma 4.1. Let G be a covering group, with 2-square basis B = {x1, . . . , xk, yk+1, . . . , yn}, where x2
i = r,

y2
j = s �= r, and where k and n−k are both at least 2. Suppose that B′ = (B∪{z})\{w} is another 2-square

basis of G, where z ∈ G with z2 ∈ {r, s}, no element of zG′ belongs to B, and w ∈ B. Then at least one of
the following occurs.

1. �B
B is a clique on an even number of blue and an even number of red vertices.

2. �R
B is a clique on an even number of blue and an even number of red vertices.

3. �B
B is a clique on an odd number of blue and an odd number of red vertices.

4. �R
B is a clique on an odd number of blue and an odd number of red vertices.

5. �
B	R
B is a clique on an even number of blue and odd number of red vertices.

6. �
B	R
B is a clique on an odd number of blue and an even number of red vertices.

Proof. We may assume that z is a product of at least two elements of B, in specified order. Relabeling as
necessary, we write z = x1 . . . xpyk+1 . . . yk+q. We write S for the subset {x1, . . . , xp, yk+1, . . . , yk+q} of
B. Then

z2 = rpsqC(S).
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Suppose first that z2 = r. We consider the parities of p and q. Since |S| ≥ 2, it is not possible for p to be
odd and q even. This leaves the remaining possibilities and outcomes.
• If p and q are both even, then z2 = C(S) = r, corresponding to Item 1.
• If p and q are both odd, then z2 = rsC(S) = r, so s = C(S), corresponding to Item 4.
• If p is even and q odd, then z2 = sC(S) = r, and C(S) = rs, corresponding to Item 5.
In the alternative case where z2 = s, the possibility that p is even and q odd is excluded, and we have the
following possibilities.
• If p and q are both even, then z2 = C(S) = s, corresponding to Item 2.
• If p and q are both odd, then z2 = rsC(S) = s, so r = C(S), corresponding to Item 3.
• If p is odd and q even, then z2 = rC(S) = s, and C(S) = rs, corresponding to Item 6.

In each of the six cases of Lemma 4.1, any element w of S can be eliminated from B ∪ {z} to form
the alternative 2-square basis B′. If B′ = (B ∪ {z})\{w}, a description of the relationship between the
edge sets of the graphs �B′ and �B is provided by a direct application of Theorem 2.7. The vertex sets
may differ by the color of a single vertex, if the elements w and z have different squares. These general
considerations may be applied to all 2-square bases. Our interest however is in the case of 2-uniform
graphs, in which the number of blue vertices coincides with the uniform rank of the associated group,
and is thus maximal among all 2-colored graphs representing that group. If �B is a 2-uniform graph, a
basis change of the type described above cannot replace a red vertex with a blue one; graphs that admit
this possibility are excluded by Theorem 3.10. Basis changes that replace a blue vertex with a red one do
not preserve the 2-uniform property and are thus not of interest (except in the case where the numbers
of blue and red vertices differ by 1, which is considered below).

For a 2-uniform graph of uniform corank at least 2, we refer to the operation of adjusting one 2-
uniform basis to another, by replacing a single element, as an exchange operation. We refer to the
transition between their corresponding graphs as an exchange operation of graphs, where we assume
that both graphs have the same vertex set, with a single vertex relabeled in the transition. In Theorem 4.2,
we give a graph-theoretic description of the exchange operations on 2-uniform graphs that preserve the
color of the relabeled vertex (and hence preserve the 2-uniform property). We refer to exchanges of this
type as simple exchanges.

Theorem 4.2 is the result a straightforward application of Theorem 2.7 and Corollary 2.8 to the simple
exchange possibilities that preserve the 2-uniform property for graphs, as outlined in Theorem 3.10.
Before stating it, we introduce some notation for describing the neighbor set of a vertex, via colored or
uncolored edges.

For a vertex v of a 2-colored graph �, we write E(v) for the set E(NB(v), NR(v)), where NB(v) and
NR(v) respectively denote the sets of neighbors of v in �, via blue and red edges. If NB\R(v) denotes the
set of vertices of � that are adjacent to v via blue edges only, and NR\B(v) and NR∩B(v) are similarly
defined, then E(v) is the edge set of the complete tripartite (or bipartite or null) graph with parts
NB\R(v), NR\B(v) and NB∩R(v). We consider E(v) itself to be a set of uncolored edges, and write ER(v)
and EB(v) respectively for the same set of edges, all colored red or all blue.

Theorem 4.2. Let � be a 2-uniform graph of order n, with at least two red vertices, describing a 2-uniform
covering group G of Cn

2 , with respect to a basis B. An alternative 2-uniform graph �′, describing G with
respect to a basis obtained from G by a simple exchange operation, may arise under the following conditions
and in the following ways. In all cases we consider that � and �′ have the same vertex set, with a single
vertex relabeled in the transition from one graph to the other.

1. (Type 1) If �B is a clique on an even number of blue vertices, then E(�′) may be given by E(�)	ER(v)
for any vertex v of the clique.

2. (Type 2) If �R is a clique on an even number of blue vertices and a positive even number of red vertices,
then E(�′) may be given by E(�)	EB(v), for any red vertex v of the clique.
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3. (Type 3) If �B is a clique on an odd number of blue and an odd number of red vertices, then E(�′) may
be given by E(�)	ER(v), for any red vertex v of the clique.

4. (Type 4) If �B	R is a clique on an odd number of blue and an even number of red vertices, then E(�′)
may be given by E(�)	ER(v)	EB(v), for any red vertex v of the clique.

It remains to consider exchange operations that switch the vertex colors. If the uniform rank k of G
exceeds the uniform corank n − k by only 1 or 2, then Lemma 3.9 gives conditions under which G may
possess a 2-uniform basis having k elements of square s and n − k of square r. We conclude this section
by giving a description of the corresponding graph operations in such cases.

First suppose that k = (n − k) + 1. Suppose that exactly one of the conditions of Lemma 3.9
holds. Then G contains an element z of square s that is independent of {yk+1, . . . , yn}. In the graph
�B(G), either the blue edge set, or the red edge set, or their symmetric difference, forms a clique
on those vertices representing the elements of B that occur in z. We may adjust B to another 2-
uniform basis B′ by replacing an element xi of square r with z. Then B′ has k elements of the
square s and k − 1 of square r. In a 2-uniform graph �′ corresponding to B′, elements of square
s and r are respectively represented by blue and red vertices (opposite to the situation in �). The
following theorem describes transformations of 2-uniform graphs corresponding to exchanges of this
type.

Theorem 4.3. Let � be a 2-uniform graph of order 2k − 1, with k blue vertices and k − 1 red vertices.
Alternative 2-uniform graphs �′ describing the same group may arise in the following ways.

1. If �R is a clique on a positive even number of blue vertices and an even number of red vertices, we may
choose a blue vertex v of this clique, transform � to �1 by switching the color of v from blue to red, and
then define �′ to be the color opposite of the graph with edge set E(�1)	EB(v).

2. If �B is a clique on a odd number of blue vertices and an odd number of red vertices, we may choose
a blue vertex v of this clique, transform � to �1 by switching the color of v from blue to red, and then
define �′ to be the color opposite of the graph with edge set E(�1)	ER(v).

3. If �B	R is a clique on an odd number of blue vertices and an even number of red vertices, we may choose
a blue vertex v of this clique, transform � to �1 by switching the color of v from blue to red, and then
define �′ to be the color opposite of the graph with edge set E(�1)	ER(v)	EB(v).

Theorem 4.3 is proved by direct application of Theorem 2.7 and Corollary 2.8.
Finally, if k = (n−k)+2, and exactly two of the three conditions of Theorem 4.3 hold in � (involving

different sets of blue vertices), we can increase of independent elements of square s by 2, to obtain a 2-
uniform basis in which the number of elements of square s is the uniform rank k. We refer to a change
of basis of this nature as a double exchange. Let the 2-uniform graph �, with vertex set V , corresponding
to a 2-uniform basis of a covering group G, with k elements of square r represented by the blue vertices,
and k − 2 vertices of square s represented by the red vertices. Let �1 and �2, with vertex sets V1 and V2,
respectively, be the subgraphs of � that respectively satisfy two of the three conditions in Theorem 4.3,
and let c1 and c2 be the elements of G′ represented by the edge sets of the cliques �1 and �2. Then
{c1, c2} ⊂ {r, s, rs}.

A double exchange operation from � to �′ begins with the selection of a blue vertex v1 of the clique
�1, and a blue vertex v2 of the clique �2, representing elements x1 and x2 of a basis B. In the alternative
basis B′, x1 and x2 are respectively replaced by z1 and z2, which are the products of the elements of B
represented respectively by the vertices of �1 and �2. A necessary condition for B′ to generate the group
is that the vertices v1 and v2 do not both belong to both �1 and �2. We may assume that �1 includes the
vertex v1 and not v2.

Since v2 is incident with no edge of �1, it follows from Corollary 2.8 that the set of edges representing
c1 is the same for both bases. We apply Theorem 2.9 to c2. The sets P2 and Q2 coincide; both are equal
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to V2\{v2}. If v1 is incident with no edge of �2, then P2 is empty and c2 is described by the same set of
edges with respect to both bases, by item 1. of Theorem 2.9.

If the vertex v1 belongs to the clique �2, then Item 4 of Theorem 2.9 applies, and (since P2 = Q2),
it asserts that the edge sets that represent c2 with respect to the two bases differ by E(P1, Q1) = E(v1),
where P1 and Q1 are respectively the sets of neighbors of v1 in �1 and �2. The color(s) of the adjusted
edges depends on whether c2 coincides with the element r, s or rs.

The following statement summarizes the double exchange operation on graphs.

Theorem 4.4. Let � be a 2-uniform graph in which the numbers of blue and red vertices differ by 2. Suppose
that � satisfies exactly two of the three conditions of Theorem 4.3, on cliques �1 and �2, with vertex sets
V1 and V2 respectively, involving different sets of red vertices. Let v1 and v2 be blue vertices of �1 and �2
respectively, where v2 does not belong to �1. Let � be the graph obtained from � by recoloring the vertices
v1 and v2 from blue to red, and adjusting the edge set as follows:

1. If v1 does not belong to �2, then E(�) = E(�).
2. If v1 belongs to �2 and �2 = �R, then E(�) = E(�)	ER(v1).
3. If v1 belongs to �2 and �2 = �B, then E(�) = E(�)	EB(v1).
4. If v1 belongs to �2 and �2 = �R, then E(�) = E(�)	ER(v1)	EB(v1).

Then the color opposite of � is a 2-uniform graph representing the same covering group as �.

5. Groups of uniform corank 3

Section 4 gives an account of those 2-uniform covering groups of Cn
2 that admit multiple 2-uniform

bases consisting of elements with the same pair of squares. By Corollary 3.6, if r and s are the squares
of the elements of a 2-uniform basis of a covering group G of corank at least 4, then every 2-uniform
basis of G consists of elements with squares r and s, and may be obtained from B through a sequence
of exchange operations of the types described in Section 4. In the case of a 2-uniform covering group
of Cn

2 whose uniform rank k is at least n − 3, a 2-uniform basis B consists of k elements with square r
and up to three elements with a different square s. If n − k ≤ 3, Theorem 3.5 leaves open the possibility
that some element s′ of G′, with s′ �∈ {r, s} could be the square of n − k independent elements of G. If
this occurs, an alternative 2-uniform basis of G might be obtained from B by replacing the elements of
square s with elements of square s′. This certainly occurs in the case n − k = 1, where a set of n − 1
independent elements with the same square may be extended to a 2-uniform basis by the addition of any
element outside their span.

In this section we consider the possibility of multiple choices for the element s, in the case of groups
of uniform corank 3. Our analysis is presented subject to the assumption that n ≥ 7, but can easily
be extended to the case of groups whose uniform rank and corank are both equal to 3. In this case all
considerations apply to the color opposite of all graphs in question, as well to the graphs themselves.

Let G be a 2-uniform covering group of Cn
2 of uniform corank 3, where n ≥ 7. Let B =

{x1, . . . , xk, y1, y2, y3} be a 2-uniform basis of G, where x2
i = r and y2

i = s, r �= s. We write X and Y
for the subsets {x1, . . . , xk} and {y1, y2, y3} of B. By Theorem 3.5, no element of G′, except r and possibly
s, is the square of more than three independent elements of G′. We now establish the conditions under
which B may be adjusted to a new 2-uniform basis B′, by replacing y1, y2, y3 with independent elements
z1, z2, z3 having the same square s′, where s′ �= s.

Suppose that z1, z2, z3 are elements of G with these properties. Since the squaring map in G is constant
on cosets of G′, we may assume that each of z1, z2, z3 is the product of some elements of B. We write Zi
for the set of elements of B that occur in zi. For each i, we may write

s′ = z2
i = r|Zi∩X |s|Zi∩Y|Ci, (5)
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where Ci = C(Zi). Since C1, C2 and C3 are distinct elements of G′, their prefixes r|Zi∩X |s|Zi∩Y| must
also be distinct for i = 1, 2, 3.

After relabeling if necessary, we may assume that |Z1 ∩ Y| and |Z2 ∩ Y| have the same parity. Then
|Z1 ∩X | and |Z2 ∩X | have opposite parity. Comparing the descriptions of z2

1 and z2
2 in (5), we find that

r = C1C2, where C1 and C2 are elements of G′ whose graphs with respect to B are nontrivial cliques,
whose numbers of blue vertices have opposite parity, and whose numbers of red vertices have the same
parity. Now |Z3 ∩ X | has the same parity as exactly one of |Z1 ∩ X | and |Z2 ∩ X |; we may assume this
to be |Z2 ∩ X |, after relabeling again if necessary. We note that |Z3 ∩ Y| and |Z2 ∩ Y| have opposite
parity. Comparing the expressions for z2

2 and z2
3 in (5) gives s = C2C3, where C3 ∈ G′ is represented on

the vertex set of �B by a clique whose numbers of blue and red vertices are respectively of the same and
opposite parity to those of the graph representing C2.

The following lemma notes the meaning of these observations in terms of a 2-uniform graph
representing G. We note that a graph satisfying the conditions of Lemma 5.1 cannot also satisfy the
conditions in any of Theorems 4.2, 4.3, or 4.4. If a 2-uniform covering group of corank 3 has multiple 2-
uniform bases related by exchange operations of the types described in Section 4, the same group cannot
have multiple 2-uniform bases related by the considerations in this section.

Lemma 5.1. Let � be a 2-uniform graph of order n ≥ 7, with three red vertices. Let G be the 2-uniform
covering group of Cn

2 with basisB determined by �. Then G contains elements z1, z2, z3 representing different
cosets of G′ and all having the same square s′, with s′ �∈ {r, s} if and only if the following conditions hold
in �.

1. E(�B) = E(�1)	E(�2), where �1 and �2 are nontrivial cliques whose numbers of blue vertices have
opposite parity and whose numbers of red vertices have the same parity, and;

2. E(�R) = E(�2)	E(�3), where �3 is a nontrivial clique whose numbers of blue and red vertices
respectively have the same and opposite parity to the corresponding numbers in �2.

If these conditions are satisfied, let zi be the product in G of the basis elements represented by the vertices of
�i (in any order). Then z2

1 = z2
2 = z2

3 .

For a graph � satisfying the conditions of Lemma 5.1, it is not automatic that the elements z1, z2, z3
are independent of the n − 3 basis elements represented by blue vertices in �. This requires a linear
independence condition which we express in matrix terms as follows. Let v1, v2, v3 be labels on the red
vertices of �. Define a 3 × 3 matrix B ∈ M3(F2) whose (i, j) entry is 1 if the vertex vj occurs in the clique
�i, and 0 otherwise. Then {z1, z2, z3} extends the set of elements of B represented by blue vertices in �

to a 2-uniform basis B′ of G, if and only if B is nonsingular in M3(F2).
Our theme for the remainder of this section is a description of the relationship between the graphs

determined by the 2-uniform bases B and B′ of G, when the matrix B is nonsingular.
We begin with some remarks on the uniqueness of �1, �2, and �3, under the conditions of

Lemma 5.1. This involves the application of Theorem 3.5 and its proof. It was shown there that the edge
set of any graph has at most one expression as the symmetric difference of the edge sets of two cliques,
with the two exceptions of the path P3 on 3 vertices, and the cycle C4 on four vertices. Each of these has
two expressions as the symmetric difference of a pair of cliques. Under the conditions of Lemma 5.1,
the question of alternative possibilities for the �i (and hence the zi) arises only if �B or �R is a copy of
P3 or C4. For both P3 and C4, it is routine to check that there is no coloring of the vertices that yields
multiple decompositions satisfying both the parity conditions of Lemma 5.1 and the requirement that
the 3 × 3 matrix B is nonsingular. We conclude that if B = {x1, . . . , xn−3, y1, y2, y3} is a 2-uniform basis
of a covering group G of Cn

2 of corank 3, with x2
i = r and y2

i = s �= r, then there is at most one choice for
a set {z1G′, z2G′, z3G′}, with the property that B′ = {x1, . . . , xn−3, z1, z2, z3} is an alternative 2-uniform
basis of G′, where z2

i = s′ �= s.
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We now assume that G is a covering group of corank 3 of Cn
2 , possessing 2-uniform bases B and

B′ as above. We write P for the change of basis matrix from B′ to B, whose jth column records the
B-coordinates of the jth element of B′. The first n − 3 columns of P coincide with those of the identity
matrix, and the last three columns, respectively correspond to z1, z2, z3, which we assume to be ordered
according to the description in Lemma 5.1. Thus P has the following form, where v1, v2, v3 are vectors in
F

n−3
2 , with the property that the numbers of entries equal to 1 in v1 and v2 have opposite parity, and the

numbers of entries equal to 1 in v2 and v3 have the same parity. The lower right block B is a nonsingular
matrix in M3(F2), with the property that the numbers of entries equal to 1 in its first two columns have
the same parity, and the number of entries equal to 1 in its third column has the opposite parity to these.

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

| | |
In−3 v1 v2 v3

| | |

0(n−3)×3 B3×3

⎤
⎥⎥⎥⎥⎥⎥⎦

. (6)

The graph �B(G) can be constructed from P as follows. For i = 1, 2, 3, we write Ei for the edge set of the
clique on the set of vertices representing those elements of B where a 1 occurs in column (n − 3) + i of
P; i.e. those elements of B that occur in zi. The set of blue edges in �B(G) is E1	E2, and the set of red
edges is E2	E3. The change of basis matrix from B to B′ is the inverse of P in Mn(F2), given by

P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

| | |
In−3 v1B−1 v2B−1 v3B−1

| | |

0(n−3)×3 B−1
3×3

⎤
⎥⎥⎥⎥⎥⎥⎦

. (7)

The graph �B′ that represents G with respect to B′ can be constructed from P−1 as �B is from P. The
subgraph �B

B′ comprising its blue edges has the form �1	�2, where �1 and �2 are cliques whose
numbers of red vertices have the same parity and whose numbers of blue vertices have opposite parity.
If we assume �B and �B′ to have the same vertex set (with the red vertices labeled differently), the
vertices of the cliques �1 and �2 are written in some pair of the last three columns of P−1; these are the
two columns in which the numbers of 1s among the last three entries have the same parity. Similarly,
�R
B′ = �2	�3, where the clique �3 is described by the remaining columns of P−1, which also contains

sufficient information to distinguish �1 from �2, on the basis that that the numbers of blue vertices in
�2 and �3 have the same parity.

We now detail the transformations from �B to �B′ corresponding to the distinct possibilities for the
matrix B in the lower right 3 × 3 block of the matrix P. In the following analysis of these cases, we write
S, T, U respectively for the vertex sets of the cliques �1, �2, and �3, and use the superscripts B and R
to denote their sets of blue and red vertices. We may reorder the elements y1, y2, y3 in B as necessary, to
ensure that the 3×3 matrix B in the lower right block of P has one of the following standard forms. Each
of these forms occurs in two versions, depending on whether |SB|, which is the number of 1s in v1, is
even or odd. We have a total of 16 cases, some pairs of which are equivalent under the transition between
the two bases. In order to distinguish the cases on the basis of the graph �B , we generally require the
expression for the sets of blue and red edges as symmetric differences of cliques.

1. B =
⎡
⎣ 1 0 1

1 1 0
0 1 0

⎤
⎦ . Case 1.(a): |SB| is odd. Case 1.(b): |SB| is even.
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2. B =
⎡
⎣ 1 0 0

1 1 1
0 1 0

⎤
⎦ . Case 2.(a): |SB| is odd. Case 2.(b): |SB| is even.

3. B =
⎡
⎣ 1 0 0

1 1 0
0 1 1

⎤
⎦ . Case 3.(a): |SB| is odd. Case 3.(b): |SB| is even.

4. B =
⎡
⎣ 1 0 1

1 1 1
0 1 1

⎤
⎦ . Case 4.(a): |SB| is odd. Case 4.(b): |SB| is even.

5. B =
⎡
⎣ 1 0 1

0 1 0
0 0 1

⎤
⎦ . Case 5.(a): |SB| is odd. Case 5.(b): |SB| is even.

6. B =
⎡
⎣ 1 0 0

0 1 1
0 0 1

⎤
⎦ . Case 6.(a): |SB| is odd. Case 6.(b): |SB| is even.

7. B =
⎡
⎣ 1 1 1

0 1 0
0 1 1

⎤
⎦ . Case 7.(a): |SB| is odd. Case 7.(b): |SB| is even.

8. B =
⎡
⎣ 1 1 1

1 0 0
1 0 1

⎤
⎦ . Case 8.(a): |SB| is odd. Case 8.(b): |SB| is even.

We now analyze the transformation between �B and �B′ in all cases.

1. In Case 1, we write P as in (6) and observe

P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

| | |
In−3 v3 v1 + v3 v1 + v2 + v3

| | |
0 1 1

0(n−3)×3 0 0 1
1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

After reordering the last three columns and last three rows to obtain a standard form as above, we
have the following descriptions of the change of basis matrix from B to B′, respectively for Cases 1(a)
and 1(b).

1.(a)

⎡
⎢⎢⎢⎢⎢⎢⎣

| | |
In−3 v3 v1 + v2 + v3 v1 + v3

| | |
1 1 1

0(n−3)×3 0 1 0
0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

1.(b)

⎡
⎢⎢⎢⎢⎢⎢⎣

| | |
In−3 v1 + v2 + v3 v3 v1 + v3

| | |
1 1 1

0(n−3)×3 1 0 0
1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

The matrices above are of types 7(b) and 8(b) respectively, and we conclude that Cases 1(a) and 1(b)
are respectively equivalent to 7(b) and 8(b), in terms of the covering groups that they describe.
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2. In Case 2,

P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

| | |
In−3 v1 + v3 v3 v2 + v3

| | |
1 0 0

0(n−3)×3 0 0 1
1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

After reordering the last three columns and last three rows to obtain a standard form as above, we
have the following descriptions of the change of basis matrix from B to B′, respectively for Cases 2(a)
and 2(b).

2.(a)

⎡
⎢⎢⎢⎢⎢⎢⎣

| | |
In−3 v1 + v3 v2 + v3 v3

| | |
1 0 0

0(n−3)×3 1 1 1
0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

2.(b)

⎡
⎢⎢⎢⎢⎢⎢⎣

| | |
In−3 v2 + v3 v1 + v3 v3

| | |
1 0 0

0(n−3)×3 1 1 1
0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

The matrices above are again of types 2(a) and 2(b) respectively, for these cases the graphs with respect
to both B and B′ are of the same type, 2(a) or 2(b). In these cases, the graphs �B and �B′ are related
in Case 2(a) by

V(�1) = V(�1)	VB(�3), V(�2) = V(�2)	VB(�3), V(�3) = V(�3),

and in Case 2(b) by

V(�1) = V(�2)	VB(�3), V(�2) = V(�1)	VB(�3), V(�3) = V(�3).

3. In Case 3,

P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

| | |
In−3 v1 + v2 + v3 v2 + v3 v3

| | |
1 0 0

0(n−3)×3 1 1 0
1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

In Cases 3(a) and 3(b), this may be adjusted to the following standard forms

3.(a)

⎡
⎢⎢⎢⎢⎢⎢⎣

| | |
In−3 v1 + v2 + v3 v3 v2 + v3

| | |
1 1 1

0(n−3)×3 1 0 0
1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

3.(b)

⎡
⎢⎢⎢⎢⎢⎢⎣

| | |
In−3 v3 v1 + v2 + v3 v2 + v3

| | |
1 1 1

0(n−3)×3 0 1 0
0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

The matrices above are of types 8(a) and 7(a), respectively, and we conclude that Cases 3(a) and 3(b)
are respectively equivalent to 8(a) and 7(a), in terms of the covering groups that they describe.
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4. In Case 4,

P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

| | |
In−3 v2 + v3 v1 + v2 + v3 v1 + v3

| | |
0 1 1

0(n−3)×3 1 1 1
1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

In Cases 4(a) and 4(b), this may be adjusted to the following standard forms

4.(a)

⎡
⎢⎢⎢⎢⎢⎢⎣

| | |
In−3 v2 + v3 v1 + v3 v1 + v2 + v3

| | |
1 0 1

0(n−3)×3 1 1 1
0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

4.(b)

⎡
⎢⎢⎢⎢⎢⎢⎣

| | |
In−3 v1 + v3 v2 + v3 v1 + v2 + v3

| | |
1 0 1

0(n−3)×3 1 1 1
0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

The matrices above are again of types 4(b) and 4(a), respectively; the graphs that represent 4(a) and
4(b) are equivalent.

5. In Case 5,

P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

| | |
In−3 v1 v2 v1 + v3

| | |
1 0 1

0(n−3)×3 0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

In Cases 5(a) and 5(b), this may be adjusted to the following standard forms

5.(a)

⎡
⎢⎢⎢⎢⎢⎢⎣

| | |
In−3 v2 v1 v1 + v3

| | |
1 0 0

0(n−3)×3 0 1 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

5.(b)

⎡
⎢⎢⎢⎢⎢⎢⎣

| | |
In−3 v2 v1 v1 + v3

| | |
1 0 0

0(n−3)×3 0 1 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

The matrices above are again of types 6(b) and 6(a), respectively, and we conclude that Cases 5(a) and
5(b) are respectively equivalent to 6(b) and 6(a), in terms of the covering groups that they describe.

If n ≥ 7, a 2-uniform covering group of corank 3 of Cn
2 that satisfies the conditions of Lemma 5.1

possesses exactly two 2-uniform bases B and B′, up to coset representatives modulo G′. The graphs
corresponding to the two bases are encoded by the change of basis matrices P and P−1, and are typically
non-isomorphic. The conclusion of this section is that in order to list all isomorphism types of such
groups, it is sufficient to consider matrices of types 1(a), 1(b), 2(a), 2(b), 3(a), 3(b), 4(a), 5(a) and 5(b).
The associated graphs capture every group isomorphism type once, except for those encoded by matrices
of types 2(a) and 2(b), which are generally represented by two different graphs. Since the three columns
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in the upper right (n − 3) × 3 region can be chosen independently, the number of matrices of each of
these types is (2n−4)3. Most isomorphism types of groups of types 2(a) and 2(b) are counted twice by
this count of distinct matrices, but in all other cases, the distinct matrices correspond bijectively with the
isomorphism classes of groups. The number of isomorphism types of 2-uniform covering groups of Cn

2
and uniform corank 3, that admit two different choices for the common square of exactly three elements
of a 2-uniform basis, is approximately

8 × (2n−4)3 = 23n−9.

The qualifier “approximately” refers to the few cases in which the two 2-uniform bases of a covering
group of type 2 determine isomorphic 2-colored graphs.

6. Groups of uniform corank 2

Let G be a 2-uniform covering group of Cn
2 of uniform corank 2, where n ≥ 6. LetB = {x1, . . . , xk, y1, y2}

be a 2-uniform basis of G, where x2
i = r and y2

i = s, r �= s. By Theorem 3.5, no element of G′, apart from
r and possibly s, is the square of more than three independent elements of G′, but it is possible that y1 and
y2 can be replaced in B by elements z1 and z2, to form an alternative 2-uniform basis B′. In this situation,
B′ = {x1, . . . , xk, z1, z2}, where z2

1 = z2
2 = s′ and s′ �∈ {r, s}. We now consider the conditions on �B(G)

which admit this possibility, and discuss the relationship between the graphs �B(G) and �B′(G).
We assume that G contains elements z1 and z2 as described above, and as in Section 5 we write X

and Y for the subsets {x1, . . . , xk} and {y1, y2} of B. We may assume that each of z1 and z2 is a product of
elements of B, and we write Z1 and Z2 respectively for the sets of elements of B that occur in z1 and z2.
We note that each of Z1 and Z2 has at least two elements. That X ∪{z1, z2} generates G requires that the
sets Z1 ∩ Y and Z2 ∩ Y are distinct and non-empty. Comparing the expressions for z2

1 and z2
2 in terms

of the elements of B, we observe that z2
1 = z2

2 if and only if one of the following conditions holds.

Case 1 r = C1C2, where C1 and C2 are elements of G′ represented with respect to B by cliques on the
sets of vertices corresponding to Z1 and Z2 respectively. This occurs if |X ∩ Z1| and |X ∩ Z2|
have opposite parity, and |Y ∩Z1| and |Y ∩Z2| have the same parity (which must be odd). After
relabeling, we may interpret this last condition as saying that y1 ∈ Z1\Z2, y2 ∈ Z2\Z1, |Z1| is
odd and |Z2| is even.

Case 2 s = C1C2, where C1 and C2 are elements of G′ represented with respect to B by cliques on the
sets of vertices corresponding to Z1 and Z2 respectively. This occurs if |X ∩ Z1| and |X ∩ Z2|
have the same parity, and |Y ∩ Z1| and |Y ∩ Z2| have opposite parity. After relabeling, we may
infer from this last condition that y1 ∈ Z1 ∩ Z2, and y2 ∈ Z2\Z1. We distinguish the following
subcases:
Case 2(a)|X ∩ Z1| and |X ∩ Z2| are odd.
Case 2(b)|X ∩ Z1| and |X ∩ Z2| are even.

Case 3 rs = C1C2, where C1 and C2 are elements of G′ represented with respect to B by cliques on the
sets of vertices corresponding to Z1 and Z2 respectively. This occurs if |X ∩ Z1| and |X ∩ Z2|
have opposite parity, and |Y∩Z1| and |Y∩Z2| have opposite parity. As in the second case above,
we may assume in this situation that y1 ∈ Z1 ∩ Z2, and y2 ∈ Z2\Z1. Again we consider two
subcases, depending on the numbers of blue vertices in the cliques describing C1 and C2.
Case 3(a)|X ∩ Z1| is odd and |X ∩ Z2| is even.
Case 3(b)|X ∩ Z1| is even and |X ∩ Z2| is odd.

It is possible for more than one of Cases 1, 2 and 3 to occur simultaneously, so that there may be multiple
choices for the pair of elements {z1, z2}. It is even possible, in Case 3(b), that the same graph may admit
two different choices for C1 and C2, in a case where rs is represented by a 4-cycle that has two different
descriptions as the symmetric difference of two copies of the complete graph K3. In all other cases,
it follows from Theorem 3.5 and the parity restrictions that there is only one possible choice for the
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pair (C1, C2) corresponding to the description of r, s or rs as a product of two elements represented by
complete graphs.

In each of the three cases, we write B′ for the basis obtained from B by replacing y1 and y2 by z1 and
z2, and consider the relationship between the graphs �B and �B′ . We consider these two graphs to have
the same vertex set, where the red vertices that represent y1 and y2 in �B respectively represent z1 and
z2 in �B′ . In all cases, Theorem 2.9 provides a template for the description of the relationship between
the two graphs.

As in Section 5, we may consider the change of basis matrix P from B′ to B, whose columns list the
coordinates of the elements of B′ with respect to B. Unlike the case of uniform corank 3, this matrix
does not fully describe the group, but only one of the three elements r, s and rs. The matrix P, and its
inverse, have the following forms.

P =

⎡
⎢⎢⎢⎢⎣

| |
In−2 v1 v2

| |
1 e

0(n−2)×2 0 1

⎤
⎥⎥⎥⎥⎦ , P−1 =

⎡
⎢⎢⎢⎢⎣

| |
In−2 v1 ev1 + v2

| |
1 e

0(n−2)×2 0 1

⎤
⎥⎥⎥⎥⎦ ,

where e = 0 or 1, and v1 and v2 are columns with entries inF2. We write n(v) for the number of non-zero
entries in the column vector v. If e = 0, then n(v1) is even and n(v2) is odd. The condition that z2

1 = z2
2

means that the above cases and subcases are encoded in the matrix P as in the following table.

e n(v1) n(v2)
Case 1 0 even odd

Case 2(a) 1 odd odd
Case 2(b) 1 even even
Case 3(a) 1 odd even
Case 3(b) 1 even odd

From the description of P−1 in terms of P, we note that if P describes an instance of Case 2(a), then
P−1 describes one of Case 3(a), and vice versa. Hence every 2-uniform graph that satisfies condition 2(a)
is equivalent to one that satisfies condition 3(b), and it is sufficient to consider one of these conditions in a
description of graphs that describe 2-uniform covering groups of uniform corank 2, up to isomorphism.

In all other rows of the table above, the matrices P and P−1 correspond to the same row of the
table. In these cases, the relationship between the 2-uniform graphs �B(G) and �B′(G) is described
by Theorem 2.9.

1. In Case 1, we have s′ = z2
1 = sC1. By Corollary 2.8, the graphs representing C1 and C2, and hence r,

are the same with respect to both bases, so �B(G) and �B′(G) have the same sets of blue edges. We
write Q1 and Q2 for the respective sets of blue vertices in the cliques representing the elements C1 and
C2 with respect to B, and we write P1 and P2 for the sets of neighbors of the vertices representing y1
and y2 in �B(s). Then the set of red edges of �B′(s′), hence of �B′(G), is given by E(�B′(s))	E(C1),
and from Theorem 2.9 we have

E(�B′(s)) =
⎧⎨
⎩

E(�B(s))	E(P1, Q1)	E(P2	Q1, Q2) if the red vertices of �B(G) are
adjacent via a red edge

E(�B(s))	E(P1, Q1)	E(P2, Q2) otherwise

2. In Case 2(b), s′ = z2
2 = C2. By inspecting the entries of the last two columns of P−1 (or by applying

Theorem 2.9 to the graph of C2 with respect to B), we observe that the set of red edges in �B′(G) is
the symmetric difference of the edge sets of the cliques on the sets of vertices representing Z1 and
(Z1	Z2) ∪ {z1}. The blue edges of �B(G) are independent of the red edges and of condition 2(a),
and Theorem 2.9 describes how they change under the change of basis. We write P1 and P2 for the
sets of neighbors in �B(r) of the vertices representing y1 and y2 respectively, and Q1 and Q2 for the
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sets of vertices respectively representing Z1\{y1} and Z2\{y2}. Then the set of blue edges of �B′(G)

is given by

E(�B′(r)) =
⎧⎨
⎩

E(�B(r))	E(P1, Q1)	E(P2	Q1, Q2) if the red vertices of �B(G) are
adjacent via a blue edge

E(�B(r))	E(P1, Q1)	E(P2, Q2) otherwise

3. In Case 3(a), s′ = z2
1 = sC1. From the matrix P−1 we note that �B′(rs′) is the symmetric difference

of the cliques on the sets of vertices representing Z1 and (Z1	Z2) ∪ {z1}, which respectively involve
an even and odd number of blue vertices. The set of blue edges in �B′(G) is given, as in Case 2(b), by

E(�B′(r)) =
⎧⎨
⎩

E(�B(r))	E(P1, Q1)	E(P2	Q1, Q2) if the red vertices of �B(G) are
adjacent via a blue edge

E(�B(r))	E(P1, Q1)	E(P2, Q2) otherwise
,

where P1, P2, Q1, Q2 have the same definitions as in Case 2(b). Finally, the set of red edges in �B′(G)

is the symmetric difference of the edge sets of the graphs representing rs′ and r.

7. Groups of uniform corank 1

Throughout this section, we suppose that G is a 2-uniform covering group of Cn
2 , with ρ(G) = n − 1,

where n ≥ 5. Let x1, . . . , xn−1 be independent elements of G, all with square r. Then {x1, . . . , xn−1}
may be extended to a 2-uniform basis of G by the addition of any element y of G that does not belong
to the subgroup X = 〈x1, . . . , xn−1〉. Every 2-uniform basis includes n − 1 elements with square r, by
Theorem 3.5. Having chosen y, we write �(y) for the graph of G with respect to the basis {x1, . . . , xn−1, y},
which has n − 1 blue vertices representing x1, . . . , xn−1, and a single red vertex representing y.

Lemma 7.1. The neighbors in �(y) of the red vertex, via blue edges, do not depend on the choice of y.

Proof. Suppose that y and y′ are different elements of G\X. Then y ∈ y′xG′ for some x ∈ X. After
relabeling the elements of B we may suppose that

r = [y, x1 . . . xp]c,

where c ∈ X′. Then

r = [y′x, x1 . . . xp]c = [y′, x1 . . . xp]c′,
where c′ ∈ X′. Hence the neighbors of the red vertex in the blue parts of both �(y) and �(y′) are the
vertices representing x1, . . . , xp.

We continue to write {x1, . . . , xp} for the set of neighbors of the red vertex via blue edges, in a 2-
uniform graph representing G.

Lemma 7.2. If p is even, then for every subset S of {x1, . . . , xn−1}, there is exactly one choice of y for which
the red vertex is adjacent via red edges in �(y) precisely to those vertices representing elements of S. In
particular there is exactly one choice of y for which the red vertex is incident with no red edge in �(y).

Proof. We assume that p is even, and choose z ∈ G\X. If xj1 , . . . , xjq are the basis elements representing
the neighbors of the red vertex via red edges in �(z), we may write

z2 = [z, xj1 . . . xjq] c,

where c ∈ X′. Define y by

y =
{

zxj1 . . . xjq if q is even
zxj1 . . . xjq x1 . . . xp if q is odd
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For even q, y2 = z2rqC(z, xj1 , . . . , xjq) ∈ [z, xj1 . . . xjq]2X′, and the red vertex in �(y) is incident with no
red edge.
For odd q, y2 = z2rq[z, xj1 . . . xjq x1 . . . xp]C({xj1 . . . , xjq}	{x1, . . . , xp}). Since rq = r ∈ [z, x1 . . . xp]X′,
again in this case we have y2 ∈ X′, and the red vertex in �(y) is incident with no red edge.

For any subset S = {xi1 , . . . , xit } of {x1, . . . , xn−1}, we may define yS by

yS =
{

yxi1 . . . xit if t is even
yxi1 . . . xit x1 . . . xp if t is odd

Then it is easily confirmed that the neighbors via red edges of the red vertex in �(yS) are exactly those
blue vertices that represent elements of S. Moreover every possible neighbor set occurs for exactly one
choice of an element of G/G′ that completes {x1G′, . . . , xn−1G′} to a basis of G/G′.

The following lemma deals with the alternative case, where the red vertex is adjacent via blue edges
to an odd number of blue vertices.

Lemma 7.3. If p is odd, then the red degree of the red vertex is either even for every choice of y or odd for
every choice of y. Furthermore,

1. If this degree is even for all y, then for every subset S of even cardinality of {x1, . . . , xn−1}, there are
exactly two choices of yG′ for which the neighbors via red edges of the red vertex in �(y) are precisely
those vertices representing elements of S. These two choices of y differ from each other (modulo G′) by
the element x1 . . . xp, the product of the basis elements represented by the neighbors of the red vertex via
blue edges. In particular, in this case there are two choices of yG′ for which the red vertex is incident with
no red edge in �(y).

2. If this degree is odd for all y, then for every subset S of odd cardinality of {x1, . . . , xn−1} there are exactly
two choices of yG′ for which the neighbors via red edges of the red vertex in �(y) are precisely those
vertices representing elements of S. These two choices of y differ from each other (modulo G′) by the
element x1 . . . xp. In particular, there are two choices of yG′ for which the red vertex in �(y) has the
same neighbor set via red and blue edges.

Proof. We assume that p is odd and choose z ∈ G\X. We write
z′ = zx1 . . . xp.

Then
(z′)2 = z2rpC(z, x1, . . . , xp)

= [z, x1 . . . xp]r[z, x1 . . . xp]c,
= rc.

where c ∈ X′. Thus the red vertex has the same set of neighbors in �(z) and �(z′), whenever z′ and z
are related by z′ ∈ zx1 . . . xpG′.

Now let S be any subset of x1, . . . , xn−1 and let x be the product of the elements of S (in some order).
Choose y ∈ G\〈X〉, and let Ny be the set of neighbors of the red vertex via red edges in �(y). Then

(yx)2 ∈ y2r|S|[yx, x]X′.
Thus the set of neighbors via red edges of the red vertex in �(yx) is
• Ny	S, if |S| is even;
• Ny	S	{x1, . . . , xp}, if |S| is odd.
Since p is odd, the red degree of the red vertex has the same parity in �(y) and �(yx), for all choices of
x. Since the symmetric difference is a group operation on the power set of {x1, . . . , xn−1}, every subset
whose cardinality has the same parity as Ny occurs (as the neighbor set via red edges of the red vertex)
for two choices of S, one with odd and one with even cardinality.
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In particular, if |Ny| is even, then {x1, . . . , xn−1} may be extended (in two ways) to a 2-uniform basis
of G whose graph has the property that its red vertex is incident with no red edge. If |Ny| is odd, the
{x1, . . . , xn−1} may be extended (in two ways) to a 2-uniform basis whose graph has the property that
the neighbors of the red vertex via red edges coincide with those via blue edges.

It remains to consider the relationship between the two 2-uniform graphs representing G, and having
the properties described in Lemma 7.3, in the case that p is odd. Suppose that G is a group satisfying the
hypotheses of Lemma 7.3, and that the element y of G\X has been chosen so that the red vertex in graph
�(y) is either incident with no red edge, or has the same set of p neighbors via both blue and red edges.
Then we have the following lemma.

Lemma 7.4. Let x1, . . . , xp be the basis elements represented by the neighbors of the red vertex, via blue
edges, in �(y), where p is odd. Let y′ = x1 . . . xpy. Then the graph �(y′) that represents G with respect to
the basis {x1, . . . xn−1, y′} is related to �(y) as follows:
• The two graphs are considered to have the same vertex set, where the red vertex represents y in �(y) and

y′ in �(y′);
• �(y) and �(y′) have the same set of blue edges;
• The set of red edges in �(y′) is given by ER(�(y))	S	T, where S and T respectively denote the set of blue

edges amongst the blue vertices of �(y) and the edge set of the complete graph on the vertices representing
x1, . . . , xp.

Proof. That the sets of blue vertices coincide in �(y) and �(y′) follows from the fact that

r = [y, x1 . . . xp]C = [y′, x1 . . . xp]C,

where C is a product of commutators involving the elements x1, . . . , xn−1, which is represented by the
same set of edges in both graphs.

That the sets of red edges are related as described above follows from the observation that

(y′)2 = (x1 . . . xpy)2

= rps[x1 . . . xp, y]
∏

1≤j<k≤p
[xj, xk]

= rs[x1 . . . xp, y′]
∏

1≤j<k≤p
[xj, xk].

The red edges of �(y′) are those that represent commutators that occur in the element s′ = (y′)2 of
G′, with respect to the basis {x1, . . . , xn−1, y′}. For 1 ≤ j ≤ p, the commutators [xj, y′] all occur in r,
and either all or none of them occur in s. Hence they occur in s′ if and only if they occur in s, and the
sets of red edges incident with the red vertex coincide in �(y) and �(y′). For basis elements xi and xj
represented by blue vertices, the commutator [xi, xj] occurs in s′ if and only if it occurs in exactly one of
s, r and

∏
1≤j<k≤p[xj, xk] or in all three of them, hence the conclusion.

In order to classify 2-uniform covering groups of Cn
2 of uniform corank 1 with 2-uniform graphs, it

is sufficient to consider 2-uniform graphs with a single red vertex, which is either incident with no red
edge, or has the same set of neighbors, of odd cardinality, via both red and blue edges. We refer to such
graphs as being in standard form. Such a graph could admit a simple exchange operation of Type 1 in
Theorem 4.2, if its blue edges form a clique on an even number of blue vertices. If n ≥ 5, no other graph
transformations can arise, that preserve the property of being in standard form and the isomorphism
type of the group.

Assume that n ≥ 5 and let G be a covering group of Cn
2 of uniform corank 1. If G is represented by

a 2-uniform graph in standard form, in which the red vertex is incident with a positive even number of
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blue edges, then this is the only example in standard form that represents G. If G is represented by a 2-
uniform graph in standard form where the red vertex is isolated, then this is the only graph in standard
form that represents G, unless it admits exchange operations as mentioned above. If the red vertex is
incident with an odd number of blue edges in a standard 2-uniform graph representing �, then it follows
from Theorem 4.2 that no exchange operations preserving the property of being in standard form are
possible. However, each group of this type is represented by two generally non-isomorphic graphs in
standard form, as described in Lemma 7.4. The collection of all standard 2-uniform graphs in which the
red vertex is incident with an odd number of blue edges has two graphs representing each of the groups
that occur, with exceptions only in cases where the two graphs described in Theorem 7.4 are isomorphic.
Graphs in this collection have a natural occurrence in pairs; corresponding to each example in which the
red vertex is incident with no red edge, is one in which the red vertex has the same neighbors via red edges
as blue. Those graphs in which the red vertex is incident with no red edge account for half of all graphs in
this collection, and their number approximates (and slightly overestimates) the number of isomorphism
types of covering groups involved. We conclude that for n ≥ 5, the number of isomorphism types of
covering groups of uniform corank 1 of Cn

2 is closely approximated by the number of 2-uniform graphs
of standard form on n vertices, in which the red vertex is incident with no red edge.

8. Conclusion

A goal of this article was to identify a class of 2-colored graphs of order n, whose graph isomorphism
types encode the isomorphism types of 2-uniform covering groups of the elementary abelian group
Cn

2 . A description of such a class would establish a 2-uniform analogue of Theorem 2.4, which states
that the isomophism types of uniform covering groups of Cn

2 are in bijective correspondence with the
isomorphism types of simple undirected graphs on n vertices. The proof of this theorem in [3] amounts
to the observation that a uniform covering group has a unique uniform basis, except in a few special
cases, where the alternative uniform bases determine isomorphic graphs. For 2-uniform graphs, there
are much more extensive conditions admitting the existence of multiple 2-uniform bases in a particular
group. When the uniform corank exceeds 3, the description of 2-uniform graphs in Theorem 3.10 is
an approximate analogue of Theorem 2.4. It provides a correspondence that fails to be bijective only
in the few special cases detailed in Section 4. In the exceptional cases where multiple non-isomorphic
graphs are equivalent in the sense of representing the same group, we have not found a systematic way
to refine the correspondence by selecting a single representative of each equivalence class. This situation
is exacerbated in the case of uniform corank 2 and 3, due to a wider range of configurations in which
multiple 2-uniform bases occur.

The case of 2-uniform graphs of uniform corank 1 is special, because of the possibility to restrict
attention to bases, and graphs, of standard form. As outlined in the conclusion of Section 7, the results
of this section most closely resemble Theorem 2.4. The cases of 2-uniform graph of uniform rank at
most 3 remain to be considered, and will be the subject of another article.
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