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A B S T R A C T   

The use of Advance Oxidation Process (AOPs) has been extensively examined in order to eradicate organic 
pollutants. This review assesses the efficacy of photolysis, O3 based (O3/UV, O3/H2O2, O3/H2O2/UV, H2O2/UV, 
Fenton, Fenton-like, hetero-system) and sonochemical and electro-oxidative AOPs in this regard. The main 
purpose of this review and some suggestions for the advancement of AOPs is to facilitate the elimination of toxic 
organic pollutants. Initially proposed for the purification of drinking water in 1980, AOPs have since been 
employed for various wastewater treatments. AOPs technologies are essentially a process intensification through 
the use of hybrid methods for wastewater treatment, which generate large amounts of hydroxyl (•OH) and 
sulfate (SO4⋅− ) radicals, the ultimate oxidants for the remediation of organic pollutants. This review covers the 
use of AOPs and ozone or UV treatment in combination to create a powerful method of wastewater treatment. 
This novel approach has been demonstrated to be highly effective, with the acceleration of the oxidation process 
through Fenton reaction and photocatalytic oxidation technologies. It is clear that Advance Oxidation Process are 
a helpful for the degradation of organic toxic compounds. Additionally, other processes such as •OH and SO4⋅−
radical-based oxidation may also arise during AOPs treatment and contribute to the reduction of target organic 
pollutants. This review summarizes the current development of AOPs treatment of wastewater organic 
pollutants.   

1. Introduction 

In recent years, the use of advanced oxidation processes (AOPs) such 
as cavitation, photolytic oxidation, Fenton’s, and Ozonation has become 
increasingly significant in wastewater treatment (Zhao and Yin, 2023; 

Yang et al., 2022). This method has been successfully employed in the 
elimination and degradation of organic pollutants (Elmolla and 
Chaudhuri, 2009; Giwa et al., 2021). The most advanced and modern 
developments in H2O treatment involve the oxidation of intractable 
organic constituents, resulting in the creation of highly reactive moieties 
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that can degrade the most difficult molecules into small, biologically 
degradable species or inorganic compounds such as CO2 and water 
(Oturan, 2014; Yuan et al., 2023). Emerging contaminants such as 
pharmaceuticals, pesticides, hormones, UV filters, surfactants, and dyes 
have presented a major challenge for environmental researchers 
(Taheran et al., 2018; Gogoi et al., 2018). AOPs, or hybrid processes 
such as ultrasound-assisted Fenton, sono-photocatalytic, O3/H2O2, have 
been developed to improve the efficiency and minimize the limitations 
and drawbacks of separate AOPs in treating pollutants (Adewuyi, 2001; 
Bae et al., 2023). Antibiotics, which are used to treat microbial in-
fections and are utilized to treat human and animal diseases (Ghisi, 
2014; Sun and Pittman, 2000), can cause hazardous pollution when 
misused or mishandled (Iqbal et al., 2021a; Focazio et al., 2008; Li et al., 
2022). 

It has been found that conventional biotic treatments are not only 
ineffective but also problematic in degrading persistent antibiotics 
(Imran et al., 2021; Wan and Wang, 2016; Liu et al., 2023). Recent 
studies have shown that it is not possible to degrade the majority of new 
compounds through artificial, mechanical, chemical, biotic, or physical 
treatments (Cincinelli et al., 2015; Iqbal et al., 2021b). Additionally, the 
occurrence of antibiotics and their metabolites in manure run-offs is a 
major cause of their entry into marine ecosystems (Manyi-Loh et al., 
2018; Guo et al., 2022). Low concentrations of antibiotics in surface and 
drinking water pose potential threats to the environment and serious 
health risks for humans (Hussain et al., 2021; Kim et al., 2019). These 
drugs and their hazardous metabolites can lead to various problems, 
such as chronic toxicity, endocrine disruption, and soil toxicity (Hussain 
et al., 2021). Antibiotics have been detected in various expected envi-
ronments, such as rivers (Khan et al., 2021a; Ye et al., 2019; Khan et al., 
2021b), surface water (Khan et al., 2021b), drinking water (Shah et al., 
2021; Xiao et al., 2023), topsoil (Shi et al., 2022). Long-term exposure to 
antibiotics can lead to the generation of antibiotic-resistant genes 
(ARGs) and bacteria (ARBs), which poses a threat not only to the envi-
ronment but also to human health and the ecosystem as a whole (Ben 
et al., 2019; Peng et al., 2022). Various techniques, such as coagulation, 
membrane separation, sorption and biodegradation have been discussed 
to treat a range of drugs found in drinking and discarded water (Cer-
queira et al., 2019; Zhuang and Wang, 2019a). However, these ap-
proaches are often not applicable due to their high operational cost and 
low removal efficacy. Nanotechnology, on the other hand, is being 
explored as a promising alternative for this purpose due to its applica-
bility in many areas of life (Gaur et al., 2022). 

Nanomaterials have recently gained a lot of attention and interest 
from the scientific community due to their extraordinary properties, 
such as size and shape, and their diverse applications (Zhuang and 
Wang, 2019b). Furthermore, nanomaterials can be easily delivered and 
bound to the intended target site due to their small size (Zhuang, 2019). 
Some novel and modified nanotechnologies that can be used to remove 
contaminants from wastewater include carbon nanomaterials (CNTs), 
graphene (GRA) and fullerene (C60) (Ul-Islam et al., 2017; Dong et al., 
2022), electrochemical and ionizing radiation (Ul-Islam et al., 2014), 
reverse osmosis (Peng et al., 2020) and adsorption on activated carbon. 
Advanced oxidation processes such as Fenton or Photo-Fenton system, 
UV light peroxidation, and photocatalysis through TiO2 have been used 
for remediation of groundwater, drinking water, and wastewater 
(Oturan, 2014). 

Recently, nanotechnology has been employed to improve, represent, 
create, and display nanomaterials at the nanometer scale for the same 
purpose (Zhuan, 2020). This application of nanomaterials has led to the 
development of efficient treatment systems, which are simpler and less 
expensive than conventional technologies (Zhuan, 2020; Knepper et al., 
1999). Pesticides are often converted into persistent metabolites that 
remain in the environment for years. Their ability to enter the food chain 
makes them especially hazardous, as their bioaccumulation can be 
dangerous (Jia et al., 2022; Lazartigues et al., 2013). Assessing the ef-
fects of organic pollutants on the ecosystem is difficult, as their effects 

depend on both their mode of action, persistence time, and degradation 
byproducts (Lazartigues et al., 2013). It is difficult to accurately estimate 
the effects organic pollutants have on the ecosystem due to factors such 
as their mode of action, persistence time, and the byproducts created by 
their breakdown. In some cases, these by products may be even more 
toxic than the original pollutant and require a more time for degradation 
(Dong et al., 2022). For the purpose of eliminating detrimental organ-
isms in the environment, pesticides are used to protect agricultural 
products. Only 10–15% of functional pesticides have a meaningful effect 
on the targeted pollutants, reducing their impact on the environment 
(Lazartigues et al., 2013). Research has demonstrated that most of these 
pollutants are not only hazardous but also have carcinogenic properties. 
This has led to a global water pollution crisis due to the presence of toxic 
and persistent organic contaminants. To combat this, researchers 
worldwide have been utilizing nanotechnology for environmental 
remediation (Sayan et al., 2013), as nanomaterials are highly effective 
for the removal of organic pollutants (Cahill et al., 2011; Jiang et al., 
2023). Nanomaterials have proven their effectiveness in improving the 
detection of organic and inorganic pollutants at trace levels in both 
aquatic and terrestrial systems. Adsorption, photocatalysis, bioremedi-
ation, and nanoparticle reduction are all techniques used to control 
contamination and its effects on the environment. Nanomaterials are 
also utilized for the detection of pesticides, herbicides, and drugs, as well 
as for the degradation and transformation of pollutants into less toxic 
forms (Dolar et al., 2012; Herrera et al., 2023). 

The selective capture and elimination of pollutants via oxidation or 
reduction reactions are made possible by the functional and novel 
characteristics of nanomaterials (Zhuang and Wang, 2020; Zhuang, 
2019). A variety of AOPs are used to speed up the photo-degradation 
process, including hydrogen peroxide and/or ozone, metallic salts, and 
semi-conductors such as titanium dioxide (TiO2) (Brame and Alvarez, 
2011; Tang et al., 2023). Nanostructures of TiO2 and zinc oxide (ZnO) 
are commonly used as photo-catalysts. The most effective AOPs for 
pesticide degradation are photocatalytic oxidation (e.g., TiO2/UV), 
Photo-Fenton, and Fenton-like coordination (H2O2/UV/Fe3+). In this 
review, different nanomaterials and techniques such as Fenton or 
Fenton-like reaction, catalytic O3 process, POR (photocatalytic oxida-
tion reaction), and EOIP (electrochemical oxidation, ionizing process 
techniques) will be discussed in regards to their ability to degrade 
various pharmaceuticals and organic pollutants such as herbicides and 
pesticides (Tang et al., 2023; Zhao, 2015). 

1.1. Advanced oxidation process 

Advance Oxidation Process (AOP) is commonly used to oxidize 
complex organic pollutants that originate from industrial wastewater. 
These contaminants are difficult to breakdown into smaller molecules 
through biological processes (Gangupomu and Ramirez, 2014; Man-
isankar, 2015). In chemical advance oxidation (CAOPs), ozone and 
hydrogen peroxide are used to breakdown organic toxins or at least 
break them down into harmless products. In certain degradation pro-
cesses, the byproducts of the solution can demonstrate equivalent or 
increased toxicity when compared to the original compounds (Man-
isankar, 2015). In such cases, contaminants can be removed through a 
special type of oxidation known as Advanced Oxidation Processes 
(AOPs) (Zhao, 2015). The biodegradability and rate of removal of an-
tibiotics and their inhibitory effect on microbes can be improved by the 
use of AOPs, which can effectively breakdown antibiotics into small 
molecules. These AOPs employ strong oxidation proxies such as Hy-
droxyl radical (•OH), ozone (O3) and superoxide radical (O2− ⋅) (G. 
Covinich et al., 2014; Kurt et al., 2017). Further, Fenton oxidation, 
photo-catalytic oxidation reaction, and electrochemical oxidation reac-
tion are very useful and versatile methods of AOPs for generating 
oxidizing agents (Macwan and Chaturvedi, 2011; Srivastava, 2020). 
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1.2. Theory of advanced oxidation 

The generation of Hydroxyl Radical (··OH) serves as a potent 
oxidizing agent for the breakdown of organic contaminants which 
cannot be oxidized with commonly used oxidants such as O3, O2 and Cl2 
(Munter, 2001). The hydroxyl radical is essential in the destruction of 
toxic molecules. Once created as a result of a chemical reaction, the 
hydroxyl radical starts a chain reaction leading to the complete degra-
dation of organic pollutants (Munter, 2001). The process involves a 
series of steps, as outlined in Eqs. 1–3 and summarized in Table S1, 
which involve the production of OH radicals, a non-selective chemical 
oxidant (Munter, 2001). 

R+HO⋅→OH (1)  

R+OH⋅→R+H2O (2)  

Rn HO⋅→R− 1
n +OH− (3) 

Most advanced oxidation processes do not allow for complete 
oxidation of the given compounds or portions of them. This process leads 
to the total conversion of organic carbon pollutants to CO2 (Carey, 
1992). As a result of the advanced oxidation process, changes in struc-
ture occur, which can lead to an increase in toxicity (Carey, 1992; 
Al-Asadi, 2018). 

1.3. Advance oxidation classification 

The AOP has been segmented into various categories. The most 
successful of these are those that involve an oxidizer, such as hydrogen 
peroxide, combined with a catalyst and ultraviolet (UV) light (Al-Asadi, 
2018; Lei et al., 2023). Studies have revealed that the most effective 
AOPs are those that combine titanium dioxide (TiO2) with UV light, 
Fenton’s reaction and hydrogen peroxide with UV light, which produce 
the hydroxyl radical (•OH) as a byproduct (Oller and Sánchez-Pérez, 
2011; Zhang et al., 2022). The AOPs are divided into two main cate-
gories: homogeneous and heterogeneous. The homogeneous AOPs 
(HOAOPs) and the heterogeneous AOPs (HTAOPs) are further sub-
divisions of these categories. HTAOPs use UV radiation to degrade 
organic contaminants, which absorb light within the given range of the 
spectrum. On the other hand, heterogeneous AOPs rely on catalysts to 
breakdown compounds (Oller and Sánchez-Pérez, 2011). The produc-
tion of photoelectrons and holes lead to the oxidation and reduction 
process, respectively. 

The hydroxyl radical is formed in H2O solution when water mole-
cules are oxidized by a catalyst, resulting in radioactivity yield that is 
dependent on the linear energy transfer (LET) and pH in the range of 
6–8.5, as depicted in the following reaction (Wasiewicz and Getoff, 
2006; Wang et al., 2023). 

H2O→HO•(2.8),H•(0.6), e−aq(2.7),H2(0.45),H2O2(0.72),Haq +(3.2),HO(0.5)−
aq 

The advance oxidation process had a direct impact on the types of 
chemicals and catalysts used in order to achieve the goal of oxidizing the 
target compounds. Fig. S1 demonstrates the various chemicals and 
techniques used in the degradation of organic pollutants (Gogate, 2021). 

Without the metal ions, the radiation shows lower potential in the 
degradation of the organic compounds. The have disproportion to 
hydrogen peroxide and oxygen at pH < is of importance as shown in Eqs. 
4–9 (Gogate, 2021; Kubesch et al., 2005). 

H⋅ +O2→HO•
2, k = 2.0x 1010M− 1s− 1 (4)  

eaq+O2→O⋅−
2 , k = 1.9x 1010 M− 1 s− 1 (5)  

H⋅
2 ↔ H+ +O⋅− pK = 4.8 (6)  

HO•
2 +O.−

2 →H2O2 +O2(pH < 7), k = 9.7x 107M (7)  

HO•
2 +HO2→H2O2 +O2, k = 8.3x10M− 1s− 1 (8)  

O.−
2 +O.−

2 →H2O2 +O2, k < 10M− 1s− 1 (9) 

During the advance chemical reaction the recombination of free 
radical, caused radical reaction (Wang et al., 2023; Basfar et al., 2007; 
Jay-Gerin, 1992). During this process the hydroxyl radical react with 
solvated electron e-

aq hydrogen radical, and hydroxyl radical to create 
negative hydroxyl, water and hydrogen peroxide as shown in Eqs. 
10–12, which caused to decrease in the effective radical concentration. 
The reactivity of reductive classes also occurs during this oxidation 
process, as shown in the Eqs. 10–15 (Jay-Gerin, 1992; Ashraf, 2009). 

HO⋅ + e−aq→HO− , k = 3.0x10M− 1s− 1 (10)  

HO⋅ +H⋅→H2O, k = 7.0x10910M− 1s− 1 (11)  

O⋅ +HO⋅→H2O2, k5.5x 109M− 1s− 1 (12)  

e−aq +H⋅→H2 +HO− , k = 2.5x10M− 1s− 1 (13)  

e−aq + e−aq→HO− +H2, k = 5.4x109M− 1s− 1 (14)  

H⋅ +H⋅→H2, k = 7.8x 109M− 1s− 1 (15) 

Hydrogen peroxide reacted with solvated electron (eaq) and •H, 
which caused the production of •OH radical (Ashraf, 2009; Raman and 
Daud, 2015). A solvated electron refers to an extra electron confined 
within a cavity created by surrounding solvent molecules (Lakhno, 
2007). This species, which appears temporarily, can be discovered in a 
wide range of biological and chemical systems where the transfer of 
electrical charge occurs within a medium. Its significance is evident in 
various applications, including cancer radiation therapy and the elimi-
nation of hazardous waste materials (Sun and Pittman, 2000). The hy-
droxyl radical react with hydrogen peroxide created in the solution and 
produced HO•

2 class as represented in Eqs. 16–19. In the presence of 
strong basic environmental/condition, the hydroxyl radical react as 
weak acid as shown in Eqs. 16–19. 

e−aq +H2O2→HO⋅ +OH− , k = 1.2x 1010 M− 1s− 1 (16)  

H⋅ +H2O2→OH⋅ +H2O, k = 9.0x 107 k = 1.2x 1010 M− 1s− 1 (17)  

HO⋅ +H2O2→H2O+HO⋅
2, k = 2.7x 107 M− 1s− 1 (18)  

HO⋅ +H2O2→O− +H2O, k = 1.2x 1010 M− 1s− 1 (19)  

1.4. H2O2 and UV-radiation 

During advance oxidation process, •OH radical are generated 
through photolysis of hydrogen peroxide and caused chain reaction 
which is corresponding to the process (Raman and Daud, 2015; Keskin 
and Özdemir, 2023). The hydroxyl radical is generated, when H2O2 
absorbs applied UV light, as shown in Eq. 20. 

H2O2 + hV→2HO⋅ (20) 

H2O2 is the primary source of OH radical generation, and these OH 
radicals play a significant role in the degradation mechanism. Deficiency 
of hydroxyl radicals •OH occurs due to insufficient H2O2 dosage 
resulting in declining the degradation efficacy. In contrast, for pollutants 
degradation excessive concentration of H2O2 is also not suitable (Keskin 
and Özdemir, 2023; Garoma and Gurol, 2004). According to the sub-
sequent given Eq. 21, the mandatory theoretical H2O2 dose value could 
be designed (Garoma and Gurol, 2004). 
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CaHbNcOd +(2a+
1
2b

+
5

2c − d)
H2O2→aCO2 +(2a+ b+ 2c − d)H2O+ cHNO2 (21) 

Theoretically, one mole of CaHbNcOd obliged (2a þ 1/2 b þ 5/2 c – 
d) moles of H2O2. As compared to the designed value, actual added 
amount of H2O2 must be higher according to the above chemical 
equation, and it can be scrutinized by way of the earliest experimenta-
tions. The literature showed that rate of photolysis of H2O is dependent 
and increases with the increase in alkaline environment (Raman and 
Daud, 2014)⋅H2O2 /UV combined system have the ability to degrade 
completely the organic pollutants to water and CO2. The procedure, is 
not usually necessary as the oxidative products is not a problem, because 
their degradation is easy (Raman and Daud, 2014). Addition of H2O2 to 
the reaction, either as multiple steps or single dose. To calculate the 
optimal dose of H2O2 need pilot-scale and bench testing (Raman and 
Daud, 2014). The main advantage of this process are that hydrogen 
peroxide is soluble and may added at high amount and the fact that 
hydrogen peroxide /UV are able to produced higher number of •OH 
radicals, compared to O3/UV under same environmental condition 
(Raman and Daud, 2014). This process is costly, expensive because of 
the additional cost of necessary devices and requirement of the energy 
consumed and the detail due to the remaining of H2O2 in the treated 
sewage leads biological re-growth in the dissemination (Leverenz and 
Tchobanoglous, 2007). The photolysis process directly encompasses the 
interaction of light with molecules, and caused the dissociation of the 
molecules into fragments why fragmentation pathway as shown Eqs. 
22–23. 

R+ hV→Intermediate (22)  

Intermediates+ hV→CO2 +H2O+R− (23) 

This method is less operative when compared with other protocol in 
which UV radiation is combined with O3 or H2O2 (Raman and Daud, 
2015). 

1.5. Catalytic ozonation (CO) 

Catalytic Ozonation is an ecofriendly process in wastewater treat-
ment (Raman and Daud, 2015; Xu et al., 2023). O3 and organic mole-
cules reacted either through electrophilic reaction or through radical 
chain reactions. The literature showed that catalytic behavior of O3 is 
much slower as compared of hydroxyl radical, which showed, that the 
treatment of hydroxyl radical with organic pollutants is the main 
mechanistic pathway in UV/O3 environment (Raman and Daud, 2015; 
Garoma and Gurol, 2004; Wang et al., 2019b). During photolysis 
(λ < 300 nm) decomposition of ozone occur into oxygen molecules and 
atom as shown in equation (Wang et al., 2019b; Javed et al., 2023). 
Nascent oxygen [O] atom is very energetic, reactive and practically re-
acts with all possible available substrates, inclusion H2O. It is confirmed 
that, the nascent oxygen reacts predominately through insertion into the 
C-H and O-H bond (Wang et al., 2019b; Kusic and Bozic, 2006). The 
additional energy of hydrogen peroxide, so caused the fragments of O-O 
as represented in Eqs. 24–30 (Garoma and Gurol, 2004; Kusic and Bozic, 
2006). 

O3 + hv→O2 +O(1D),∅O ≈ 0.9 (24)  

O(1D)+H2O→H2O2 (hot), k = 1.8x 1010M− 1s− 1 (25)  

H2O2 (hot)→2HO⋅ (26) 

The O3 is degraded in short chain reaction, which initiated through 
•OH radicals (Garoma and Gurol, 2004). 

O3 +HO⋅→HO⋅
2 +O2, k = 1.1x 108 M− 1s− 1 (27)  

HO⋅
2 ↔ H+ +O.−

2 , pK = 4.8 (28)  

O3 +O.−
2 →O3 +O2, k = 1.6x 109 M− 1s− 1 (29)  

O3 +HO⋅
2→HO⋅ + 2O2, k = 1.2x 106M− 1s− 1 (30) 

An assortment of refractory biological chemicals oxidize by ozone by 
means of 2.07 V oxidation potential and organic pollutants ruined 
directly by ozone particles (Garoma and Gurol, 2004). Moreover, ozone 
forms hydroxyl radicals •OH with help of catalyst when it undergoes 
reaction with water and hydroxyl radical has stronger oxidation capa-
bility as depicted in Eqs. 31–35. 

O3 +H2O→2OH⋅ +O2 (31)  

O3 +HO− →O−
2 +HO2 (32)  

O3 +HO2→2O2 +HO⋅ (33)  

O3 +HO⋅→O2 +HO⋅
2 (34)  

2HO⋅
2→O2 +H2O2 (35) 

The rate of removal /deprivation of organic contaminants increases 
through the of H2O2 with UV/O3 combination because the generation of 
hydroxyl radical production increases (Kusic and Bozic, 2006). In both 
homogeneous catalytic (HOC) and heterogeneous catalytic (HTC) 
Ozonation methods, degradation efficiency of organic toxic waste can be 
enhanced. Ozone molecule excites by using these catalysts and generate 
hydroxyl radicals •OH which improvise proficiency of degradation 
(Yang et al., 2023). Solid catalysts like metal oxides, activated carbon, 
permeable materials and their complex materials are supplementary 
into reaction elucidation in heterogeneous catalytic Ozonation methods 
(Kusic and Bozic, 2006). The mechanistic routs for the creation of hy-
droxyl radical for O3/MnII are proposed in reaction (Kusic and Bozic, 
2006; Bautista et al., 2008). In the reaction O3/Fe2+ & O3/Fe3+, the 
decomposition of O3 occur and generation of radicals ions are observed 
as shown in reaction 36–41 (Bautista et al., 2008; Ji et al., 2023). 

Mn2+ +O3 +H+→Mn3+ +HO⋅ +O2 (36)  

Fe2+ +O3→Fe3+ +O.−
3 (37)  

O.−
3 +H+→O2 +HO⋅ (38)  

Fe2+ +O3→FeO2+ +O2, k = 8.2x 105 M− 1s− 1 (39)  

FeO2+ +H2O→HO⋅ +OH, k = 1.3x 10− 2M− 1s− 1 (40)  

Fe3+ O3 +H2O→FeO2+ +H+ +HO⋅ +O2 (41)  

1.6. Fenton & Fenton-like reaction 

Reaction of ferrous salt with hydrogen peroxide is named as Fenton 
reagent (Fenton, 1894) used mostly in the various processes of waste-
water treatment plants and when it is combined with wastewater 
(Fenton reagent (Fe2+ and H2O2) it undergoes a fast reaction and 
generate •OH which can oxidize and degrade the water contaminants as 
described in Eqs. 42–45. Fenton reaction defined the power of H2O2 to 
the degradation of several of various organic compounds in which hy-
droxyl radical are produced by the reaction of H2O2 and FeII as the 
catalyst (Bautista et al., 2008; Brillas and Oturan, 2009; Meyerstein, 
2021). 

Fe2+ +H2O2→Fe3+ +HO⋅ +HO− (42)  

HO⋅ +H2O2→HO⋅
2 +H2O (43)  
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2OH⋅→H2O2 (44)  

H2O→HO⋅ +H⋅ (45) 

The homogeneous catalytic Fenton reaction, originated through the 
production of •OH radical in acidic solution. During homogeneous 
process, number of cyclic reaction are generated that utilized the Ferric 
ion as catalyst and course decomposition of H2O2 (Brillas and Oturan, 
2009). The Ferric ion (Fe2+) is generated in the first type of Fenton type 
reaction called propagation, which caused reduction Fe3+ with 
hydrogen peroxide (H2O2) from, HO•

2, alkyl radical R•, or O•
2 from re-

actions. The reaction related with two step revolution, in which Fe 
(III)-complex generated in equilibrium (Brillas and Oturan, 2009). The 
organic contaminants degradation through hydroxyls radical, by 
abstracting H from CH or NH or •OH bond and the addition of -C––C- or 
aromatic rings mainly depend upon the ionization potential of the 
organic contaminants (De Laat et al., 1999). The organic radical/-
intermediate generated during the process may reacted with Fe3+ and 
hydrogen peroxide, generated R+ and ROH shown in equation, which 
can be oxidized further (De Laat et al., 1999). Further in the presence of 
alkyl radical (R•) maybe reacted with O2 to produced HO•

2, peroxyl 
radical (ROO•) or Oxyl radical, which eventual converted into CO2 and 
H2O and moiety of organic acid (Brillas and Oturan, 2009). The degra-
dation process is shown in Eqs. 46–62. 

Fe2+ +H2O2→Fe3+ +HO⋅ +HO− , k = 63M− 1s− 1 (46)  

Fe3+ +H2O2→Fe3+ +HO⋅
2 +H+ k = 0.002 − 001M− 1s− 1 (47)  

Fe3+ +H2O2→Fe(OOH)
2+

+H+ k = 3.1x 10− 3M− 1s− 1 (48)  

Fe(OOH)
2+→Fe2+ +HO⋅

2 +H+, k = 2.7x 10− 3M− 1s− 1 (49)  

Fe3+ +HO⋅
2→Fe2+ +O2 +H+, k = 2.0x 103M− 1s− 1 (50)  

Fe3+ +R⋅→Fe2+ +R+ (51)  

Fe3+ +O.−
2 →Fe2+ +O2 +H+ k = 2.0x 103M− 1s− 1 (50)  

HO⋅ +RH→H2O+R, k = 107 − 109M− 1s− 1 (52)  

R⋅ +Fe3+→R+ +Fe2+ (53)  

R+ +HO− →RO (54)  

R⋅ +H2O2→ROH +HO⋅ (55)  

R⋅ +O2→R(− H+)+H⋅
2O (56)  

R⋅ +O2→ROO⋅→→RO⋅ (57)  

HO⋅ +Fe2+→HO− +Fe3+, k3.2x 108 M− 1s− 1 (58)  

HO⋅ +H2H2→H2O+H.−
2O, k = 2.7x 107M− 1s− 1 (59)  

HO⋅ +H2H2→H2O+H2O.− , k = 2.7x M− 1s− 1 (60)  

HO⋅ +HO⋅→H2O2, k = 4.2x 109M− 1s− 1 (61) 

Fenton oxidation technique proves more beneficial due to its easy 
operation as well as sophisticated degradation efficacies. More influence 
on the usage efficacy take place owing to the pH value, Fe2+ and 
hydrogen peroxide concentration as well as temperature (Brillas and 
Oturan, 2009; Wang, 2018c; Bai, 2017). 

1.7. Photo-Fenton type reaction (PFR) 

The Fenton reaction aided through ultraviolet visible light irradia-

tion, called photo-Fenton process, which leads to the increase of 
degradation (Brillas and Oturan, 2009; Bai, 2017). The photolysis of 
H2O2 occur using UV light because hydrogen peroxide has maximum 
absorbance under range of 210–230 nm Eq. 62. 

H2O2 + hv→2HO⋅,∅OH = 0.5 (62) 

By visible UV light radioactivity, dilapidation of different dyes has 
been perceived in to PFR because of transfer of electron from the visible 
light, Fe3+ clause the catalytic cycling of Fe3+/Fe2+ as shown in Eqs. 
63–64 (Brillas and Oturan, 2009; Ma et al., 2005). 

Dye+ hv→Dye∗ (63)  

Dye ∗ +Fe3+→Fe2+ +Dye+ (64) 

In Fenton process, an important factor is catalytic dosage, which put 
crucial impact on the organic pollutants degradation. Due to overdose of 
hydroxyl radical (catalyst), organic pollutant degradation may be 
inhibited and excessive catalyst dosage may raise the cost and practical 
applications might be affected (Wang, 2018c; Ma et al., 2005). Cipro-
floxacin degradation by aqueous solution studied by diao et al. and 
FeS2/SiO2 microspheres as a heterogeneous Fenton catalyst used by the 
diao et al. to activate H2O for degradation purpose. By FeS2/SiO2, mi-
crospheres activated H2O2 degradation reach almost 100% within 
60 min only. Due to the attachment of SiO2 microspheres on the surface 
of FeS2 resulting in the smooth reaction between Fe2+ and H2O2 by 
controlling the aqueous Fe2+ release from FeS2 (Wang, 2018c; Ma et al., 
2005). By increasing the catalytic dosage from 0.005 to 0.1 g/L, 
degradation efficiency also enhanced from 40.96% to 84.29% just 
because of the huge active sites, which cause the production of •OH by 
the breakup of H2O2. Table 1 show antibiotic removal by Fenton type’s 

Table 1 
Representation the antibiotics removal by Fenton like Oxidation Process.  

Antibiotics Catalyst (dosage); pH 
range 

Removal 
efficiency 
(%) 

References  

[Fe3O4 (1.0–2.5 g/L)]; 
[pH = 3 – 11] 

89 (%) (El-Temsah et al., 
2016)  

[CNTs/FeS (5–35 mg)]; 
[pH = 1–12] 

91.03 (%) (Mitra and Varshney, 
2013; Shoiful et al., 
2016)  

[H2O2/Fe2+ =

1.75 mM]; [pH = 3] 
95 (%) (Shoiful et al., 2016)  

[(SBC)] = [pH= 4] > 80 (%) (Lopes et al., 2008)  
FeS2/SiO2 microspheres 
activated H2O2 

100 (%) (Affam et al., 2016b) 

Ciprofloxacin Fe3O4/MWCNTs 
(30–200 mg/l), H2O2 

(5–25 μmol/l); 
pH= 4–10 

95% (Ghisi, 2014)  

Fe2O3/RGO-ATP, H2O2 

(2.9724 mmol/l) pH= 5 
88.27% (Iqbal et al., 2021a)  

FeCu/ABC (1 g/L), 
pH= 5.8 

92% (Sun and Pittman, 
2000)  

0.03TiO2/γ-Fe2O3/GO 99% (Focazio et al., 2008)  
[Fe(II)] (0.8–3 mM)  (Wasiewicz and 

Getoff, 2006) 
Norfloxacin Alg/Fe (0.2–1.4 g/L); pH 

= 3 
100 (Macwan and 

Chaturvedi, 2011)  
[Alg/CDTA/Fe 
(0.01–0.09 g)]; [pH = 3] 

100 (Macwan and 
Chaturvedi, 2011) 

Ofloxacin [CQDs/Cu-MIO 
(0.1–0.25 g/L)]; [pH 
= 3.6 – 10] 

100 (Oller and 
Sánchez-Pérez, 2011)  

[Fe-Cu@MPSi (0.5–1 g/ 
L)]; [pH = 3 – 9] 

100 (Oller and 
Sánchez-Pérez, 2011) 

CNTs (Cabon Nano Tubes), (SBC), Sesbania bispinosa biochar (MWCNTs), 
Multiwall Carbon Nano Tubes), RGO-ATP (Reduced Graphene Oxide- 
Attapulgite), ABC (Activated Biochar), Alg/CDTA, (Alginate cyclohexane dini-
trilo tetraacetic acid), CQDs, (carbon quantum dots), 
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oxidation. 

1.8. Photo-Fenton types of reaction through chloride ion 

Because of the presence of Cl- ion, the amount of mineralization in 
(PFR), compare to that detected in the equivalent thermal Fenton re-
action which proceed in dark environment both in the presence and 
absence of Cl-1 ion as shown in Fig. S3. However, this had attributed 
(Maciel and Dezotti, 2004; Devi et al., 2013), that the inhibition to the 
special generation of less reactive Cl2·- radical ion instead •OH. The 
nanosecond laser lash was used in order to examine the effect of the 
added Cl ‾ ion at the photocatalytic step which caused back conversion 
of iron (III) to iron (II). However, finding of •OH directly through 
spectroscopic has showed intangible, the chloride radical anion, that 
absorb at the range 340 nm, can be detected at the excitation of aqueous 
solution of Fe(III), at acidic media along with NaCl at 355 nm and third 
harmonic of a Nd-YAG laser. Because of differential absorption spectra 
and kinetic traces as shown in Fig. S3, exhibited the formation of chlo-
ride radical anion, within life time of the laser pulse. The absorption 
decrease for long time comparative of the laser pulse, returns the 
adaptation of Fe (III) to Fe (II) which does not absorbed in the spectral 
rang. The consequent reaction why Photo-Fenton type of reaction in 
summarized in Table S3. 

1.9. Catalytic behavior of photo-Fenton (CPF) type reaction with 
complexation of Iron (III) 

The proficiency of the CPF can be improved by the combination of 
CH3CO2H with Fe (III) (Pignatello and MacKay, 2006). The oxalic acid is 
the best example for the self-explanation of CPF. Consequently, thermal 
Fenton Reaction (TFR), oxalic acid is intractable intermediate, act as 
catalyst in the PFR. The [Fe (C2O4)3]3- absorbed light up to 750 nm. 
Furthermore, due to radioactivity the decay proficiency to iron (II) and 
carbon dioxide. The results show that the CPFR rate effected and in-
crease because in the presence of C2O4

2− . The literature reported (Kim 
and Vogelpohl, 1998), that with UV radiation the PFR was at least 30% 
is much better due to the presence of oxalate than in the absence of 
oxalate. The Ferrioxale-catalyzed PFR is more sensitive to UV and 
UV/visible light, particularly sun light is more attractive sources (Silva 
et al., 2010; Nogueira, 2005). Sulfate ion frequently present in PFR due 

to which addition of Fe in the form of eagerly accessible sulfate salts 
(Nogueira, 2005). Sulfate ion strongly complexes with iron (III) at 
different pH range as shown in Fig. 1. and the quantum yield creation of 
iron (II2+) and SO4

2- radical from photolysis of Fe(SO4) +. Iron phosphate 
is even more photo inert than the iron Sulphate complex and more 
influential inhibiter of the PFR (Lee et al., 2003). 

1.10. Electrochemical advanced oxidation processes 

EAOPs used widely as an effectual and effective wastewater treat-
ment techniques. During this techniques different types of reactive 
species are generated that responsible the oxidative removal of organic 
contaminants (Chaplin, 2014). The main benefit of Electro oxidation 
(EO) of the environmental compatibility, flexibility, energy effective-
ness seeming as a procedure for eradicating contaminants from waste-
water (Liu et al., 2009). The improvement and solicitation of the ECT 
(electrochemical technologies) in wastewater conduct have been stud-
ied and the oxidation mechanism of pollutants at anode have been 
reviewed (Song et al., 2010). At anodic oxidation, H2O molecules de-
composes into radical, whereas, H2 gas is produced and not participate 
in the oxidation of organic toxins. The EC process used for the treatment 
of waste water mainly focus on the anodic oxidation. During EC reaction 
the electrode materials play significant rule in electrochemical oxidation 
through the prompting the efficiency of the oxidation, dilapidation and 
mechanistic pathway (Zhu et al., 2008). On the basis of mechanistic 
pathway of the organic pollutants oxidation, the materials are classified 
into two main categories, which is active anode like Pt, IrO2 & RuO2, 
while inactive anode including PbO2 and SnO2 (Brillas and Oturan, 
2009; Zhu et al., 2008). The initiated reaction in both kind of anodes 
(which is generally recognized as M), corresponds to the oxidation of 
H2O and created active O2, absorbed OH (M) radical Eq. 65 (Brillas and 
Oturan, 2009). 

M +HO⋅→MO+H+ + e− (65) 

The hydroxyl radical is strongly interacted through the surface of the 
active anode which caused transformation into higher oxide (MO) Eq. 
66 (Ferro, 2006). When superoxide sate are available for metallic anode, 
the standard potential for oxygen evaluation (E◦ = 1.23 vs SHE), the 
adsorbed OH may form chemisorbed active oxygen (Ferro, 2006). 

Fig. 1. 1.0 mM Iron III b/w pH one & four at room temperature at 0.2 ionic strength with 1.8 mM Sulphate.  
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M +HO•→MO+H+ + e− (66) 

The MO show weaker oxidizing capability as compared to OH 
radical, which involve in the oxidation of organic pollutants (R), and 
MOM, ( redox couple) acts as a mediator as shown in reaction 67, 
whereas, competition, reaction take by the evaluation of O2 through 
chemical decomposition of MO shown in 68 (Ferro, 2006). 

MO+R→M +RO (67)  

MO→M +

(
1
2

)

O2 (68) 

Weaker oxidant O3 can be produced from H2O discharge at anodic 
surface (E = − 1.51 V vs SHE) as shown in reaction 69. During the 
process, small amount of hydrogen peroxide also generated as shown in 
reaction 70. The other reactive oxygen species like hydrogen peroxide 
are produced in the electrochemical oxidation. 

3H2O→O3 + 6H+ + 6e− (69)  

3H2O→H2O2 + 2H+ + 2e− (70) 

The mechanistic oxidation of the organic contaminants at the surface 
of nonnative anode are elucidated in Fig. S5. Table S5 showed the role of 
different AOPs in the removing the CEC from wastewater. 

It has been reported that electrochemical oxidation of Tetracycline at 
anode surface (Ti/Ti4O7) an intermediate is created in the tetracycline 
deprivation pathway having different toxicities and the toxicity delayed 
the degradation process. The Table S6 show the summaries of the most 
of the antibiotic treatment with heterogeneous /electro-Fenton 
reactions. 

The main advantage of the electrochemical system is the lower 
effective cost, ecofriendly and lower labor are required and most safety 
risk that is useful in the degradation of drugs and other organic pollut-
ants. The literature reported that dual anode and Pd/CeO2 Nano catalyst 
for the degradation and removal of sulfadiazine antibiotic while using 
electro-Fenton system. Table 1 show the summaries more antibiotic 
treatment with EFR (Zhang et al., 2020). 

1.11. Characterization of •OH at anodic surface 

The distinctive target of concert for electrochemical advance 
oxidation process, anode materials is comparative production of hy-
droxyl radical. Two different method are involved in the production of 
•OH radicals and have distinct disadvantage which can be lead to the 
misinterpretation of Hydroxyl ion production. The first one is related to 
electron spin resonance [ESR] with spin trap compound which reacted 
with hydroxyl radical to form an adduct species or involve the genera-
tion of •OH radical is conditional by the disappearance of the probe 
constituents. It is clear that both the method has deficiency, when used 
to characterize EC produced •OH radical. Both type of molecules react 
with on the surface of electrode either by transfer of en followed by 
Nucleophilic substation reaction through H2O to form adduct which give 
false positive •OH radical (Leinisch et al., 2011; Mason, 2011). The 
process is called inverted trapping as shown in Eq. 71. 

R →e− R•+→OH− R − OH (71) 

Another reaction mechanism result in false positive detection, which 
is known as the Forrester-Hepburn mechanism and the reverse o 
inverted spin trapping. During this proceed the Nu attack of the spin trap 
by water followed by the direct en transfer oxidation reaction as shown 
Eq. 72 (Chaplin, 2018). 

R→OH−

ROH− e→e− ROH (72) 

The results of the both the method show the same results, the 
generating of radical adduct (R-OH) that is same to that prepare by the 
hydroxyl radical attack on the original spin trap. 

2. Mineralization of pollutants 

Usually, antibiotics are completely mineralized by Ozonation process 
and during mineralization process carbonate (CO3

2-) and bicarbonate 
(HCO3

- ) are formed which act as hydroxyl radical scavengers and result 
in inhibition of antibiotics removal. On the other hand, decreased so-
lution pH during Ozonation reaction is proceeding oppose the genera-
tion of hydroxyl radicals (•OH). Complete norfloxacin degradation 
observed by kuang (De Laat et al., 1999) after Ozonation process 
without any mineralization. Total Organic Compounds removal effi-
ciency of Ofloxacin was 33.5% after 180 min Ozonation of Ofloxacin 
solution as described by Goncalves (Nidheesh, 2015). 

Ciprofloxacin, norfloxacin and Ofloxacin evaluated by Fenton 
oxidation method (Liu et al., 2012). Impact of pH on ciprofloxacin 
degradation studied by Wan and Wang (2016) employed Ce◦/Fe◦-RGO 
composites as Fenton catalyst (Liu et al., 2012). By increasing pH value 
from 6.0 to 8.3, ciprofloxacin removal declined because as pH changes, 
adsorption efficacy of ciprofloxacin on catalyst surface also effected. On 
ciprofloxacin surface negative charged catalyst would repel its anionic 
form because 7.42 pH value is pKa2 of ciprofloxacin which not only 
declining the adsorption efficiency but also effect the oxidation method 
(Wang et al., 2015; Xu et al., 2013). Norfloxacin degradation investi-
gated (Wang et al., 2015) and as a Fenton catalyst zero-valent iron and 
Fe◦/CeO2 employed. The results showed that as pH increased from 3.0 to 
5.8 the degradation efficiency of Norfloxacin decreased from 93% to 
about 50% and nZVC alone employed as a catalyst. Combine use of 
Fe◦/CeO2 at pH 3.0–5.8 value resulting maximum degradation of Nor-
floxacin and exhibit extreme reactivity at various pH values (Xu et al., 
2013). 

2.1. Biodegradability improvement of pollutants 

To differentiate biodegradability of a waste product or wastewater 
typically BOD/COD ratio is employed. Generation of biodegradable and 
low molecular weight intermediates by Ozonation method is used to 
improvise the biodegradability of antibiotics containing wastewater. 
After Ozonation, biodegradability of discarded water is increased as 
confirmed by Balcioglu and Otker (Kakavandi et al., 2019). The oxida-
tion of one electron of aromatic compounds created a reactive species 
cation, which is followed by •OH-cyclohexadienyl radical through hy-
drolysis (Rayaroth et al., 2022). At least hydroxylated product formation 
take place by the addition of O2 which caused eliminating of water 
molecule (Rayaroth et al., 2022). Meanwhile the nitro-products is 
generated by the de-nitration and re-nitration process. In the initial re-
action nitrite NO2- release in de-nitration reaction. The newly generated 
NO2- again reacted with another reactive species SO4•- and hydroxyl 
radical to produce a strong nitrating agent NO•2. The rate of nitration of 
reaction and rate constant is shown in Eqs. 73–74 (Neta et al., 1988). 
One electron oxidation of mono nitro phenol created a nitro hydroxyl 
cyclohexadienyl radical and successive nitration yield di-nitro phenol as 
shown in Fig. S5. The main di-nitro phenol seen during reactions is 2, 
4-DNP, that generated from both 2-NP and 4-NP, as 2, 6-DNP produced 
only from 2-NP. Other conversion reaction on di-nitro products from 
tri-nitro products while other products shown in Fig. S5 (Rayaroth et al., 
2022). 

NO−
2 + SO•−

4 →NO•
2, k = 8.8x 108M− 1s− 1 (73)  

NO−
2 +HO•→NO•

2, k8.8x 108 M− 1s− 1 (74) 

During nitration reaction in the presence of nitrate and nitrite is a 
common process in the degradation of organic pollutants in H2O, which 
contains both the nitrite and nitrate ions (Neta et al., 1988; Goldstein, 
2007). Both the species generated during the nitration process have 
capacity to absorbed maximum wavelength of λ 300–350 nm (Attri 
et al., 2015; Marussi and Vione, 2021). The reactive nitrates and oxygen 
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species are generated depending upon the wavelength of radioactivity as 
shown in Fig. S7. 

2.2. Degradation of pharmaceuticals by zero valent metals 

Continuously pharmaceutical products introduced into the environ-
ment from different sources like hospitals (Yamaguchi et al., 2018; Chen 
et al., 2019), personal care products (Yamaguchi et al., 2018; Chen et al., 
2019), pharmaceutical industry waste (Kakavandi et al., 2019; Yama-
guchi et al., 2018; Chen et al., 2019), and inappropriate discarding of 
drugs (Alheety et al., 2019). Small amount of toxic pollutants is 
considered possibly injurious to ecosystems. Enormous public health 
problems arise due to the traces of xenobiotic elements as well as nar-
cotics, which are present in drinkable water and polluted food (Alheety 
et al., 2019; Yang et al., 2020). Adsorption, reduction and oxidation 
mechanism followed by the Fe◦ and oxidants are considered reasonable 
in degradation of different hazardous pharmaceuticals and these drugs 
removal mediated by the Fe◦ surface. Active points blocked by the FeO 
or Fe(OH)2 and electron transfer also inhibit by the surface that are 
responsible for antibiotics reductive degradation at same time, when the 
electrostatic collaboration among iron oxide/Fe◦ improvements its ab-
sorption as well as intermediates also and vital role played by antibiotics 
in elimination method (Pan et al., 2019). Greater or lesser interaction 
developed due to the drugs, which depends on charge and iron surface. 
Best transfer of electron promoted in acidic pH and ROS formation 
occurred, which involves in oxidative degradation (Pan et al., 2019; 
Lumbaque et al., 2019). The 17 α-ethinylestradiol as an ideal steroidal 
estrogen reported by karim and via viably sourced n-Fe◦ its degradation 
studied under diverse oxygen conditions and among many pH values 
3–5 and 7 •OH was main radical at pH 3 as well as O2 

– at pH 5 (Pan et al., 
2019). From unlike usual waters Fe◦ could be working to powerfully 
remove chloramphenicol within few minutes (Liu et al., 2018a, 2018b), 
representing that to lessen antibiotic selection compression, n-Fe◦ is an 
favorable solid that can be exploited in the atmosphere. Deduction of 
amoxicillin described and its degradation based on the incorporation of 
adsorption and reductive process. In AOPs, fabrication of extremely 
reactive species (HO•, O•, H•, and H2O2) allowed by the usage of ul-
trasonic radiation and by thermal fragmentation of H2O particles as well 
as biological solutes and it involve development and successive frag-
mentation of bubbles through acoustic cavitation (Ghosh et al., 2012; 
Hameed, 2010). Fig. S8 represents the diagram of the antibiotics 
degradation using Fe◦/H2O2 system and degradation pathways of anti-
biotic ibuprofen using Fe◦/H2O2 is represented in Scheme S1. 

Scheme S1 represents the degradation pathways of antibiotic 
ibuprofen using Fe◦/H2O2 system as given below. 

Table S7 show the analysis of the usage of Fe◦ as a catalyst in dis-
similar systems and in latest studies regarding the removal of pharma-
ceuticals by Fe◦, that transports indications about matrix performance 
and about the identification of TPs (Shah et al., 2020a). The primary 
gatherings of pharmaceuticals in distilled or deionized H2O were anti-
biotics and anti-inflammatory mixtures working in different studied 
including methods with Fe◦. Exclusion percentages of parent mixtures in 
the majority of situations exhausted 70% but the toxicities and TPs 
identification are still focus of exploration. According to the utilized 
substance amount, the reaction time can vary not only the nature of the 
matrix but physicochemical structures of the antibiotics as well. In 
acidic pH, prospered degradation efficiency values was higher, but some 
researches also confirmed the more than 60% removal at pH at 7 (Iqbal 
et al., 2021a; Sayed et al., 2019; Khan et al., 2017). 

Zero valent manganese (nZVMn) used first time for Ciprofloxacin 
degradation due to its nano dimension, crystalline as well as highly 
stable nature by addition with S2O8

2-. When Mn◦ applied alone than CIP 
degradation was not much higher but CIP degradation reach up to 95% 
with S2O8

2− . When Mn◦ applied alone, and reaction conditions set ac-
cording to the following manner i.e., [CIP]0 = 10 mg/L and [Mn◦]0 
= 1.0 g/L than obtained mortification of CIP was 63% within 80 min of 

reaction. But as S2O8
2− combined with Mn◦ than reaction conditions set 

in such manner as given here i.e., [CIP]◦ = 10 mg/L, [Mn◦]0 = 1.0 g/L, 
and [S2O8

2− ]0 = 50 mg/L than degradation proficiency reached up to 
95% within 80 min (Iqbal et al., 2020; Shah et al., 2020b). Due to the 
•OH and SO4

.− radicals, faster kinetics exhibited by the ciprofloxacin but 
CIP removal repressed to some amount in presence of •OH and SO4

.¡

scavengers. CIP removal directly linked with the •OH and SO4
.¡ forma-

tion. As [S2O8
2− ]0 and [Mn◦]◦ amount enhanced in reaction conditions, 

degradation level also increased and CIP degradation pathway by means 
of •OH and SO4

.-described in Scheme S2. Proposed CIP degradation 
mechanism was expectable when •OH and SO4.− was undergo 
H-abstraction, electron abstraction as well as double bod addition to 
convert CIP into its DPs that also undergo investigation resulting same 
pathway. It was found that •OH and SO4

.¡ were also comprised DPs 
degradation as well and it shows that TPs with CIP undergo opposition 
for •OH and SO4.− (Shah et al., 2019). Shah et al. applied same pattern 
for CIP degradation by means of Cu◦ mediated H2O2 based Fenton-like 
reaction. The use of Cu◦ led to 63% removal of CIP, which was just 
because of extraordinary surface area and therefore cause great accu-
mulating of CIP particles (Iqbal et al., 2020; Shah et al., 2019). The 
addition of H2O2 to Cu promoted CIP removal and caused 85% removal 
at 105 min using [H2O2]0 = 40 ppm, [Cu◦]0 = 0.5 g/L, and [CIP]0 
= 10 ppm. CIP removal by Cu◦/H2O2 was found due to •OH and •OH 
showed extraordinary reactivity with CIP. CIP removal was promoted at 
high [H2O2]0 and [Cu◦]0 while declined at high [CIP]◦ (Shah et al., 
2020b, 2018; Murtaza et al., 2019). Proposed ciprofloxacin degradation 
pathways via •OH-mediated processes given in Scheme S2. 

2.3. Removal of pesticide through advance oxidation process 

Due to high reactivity of the •OH radical show high unitability and 
must generated during Fenton type reaction in AOP at 25 ◦C (Murtaza 
et al., 2019; Pham et al., 2020). Due to high reactivity, the •OH reacted 
with unsaturated more frequently as compared to saturated hydrocar-
bon like organic acid, which are oxidant products. Mostly, the •OH 
attack at the Ortho and pera position of the aromatic hydrocarbon. The 
inorganic compounds showed lower kinetic constant value as compared 
to organic compounds. The inductive donor can have stabilized the •OH 
generated during the reaction. It is observed that the compounds defi-
cient hydrogen atoms and unsaturation are protected to reaction by the 
•OH radicals. 

3. Pesticides degradation by nano-zero valent materials 

Many classes of pesticides are classified on basis of their target use as 
well as their chemical composition (Iglesias et al., 2015). Pesticides can 
contaminate the natural water sources as a highly soluble material after 
using the field. In natural sources, a significant increase for agrochem-
icals observed due to this case. Some essential ecological adverse effects 
continued due to these compounds on aquatic biomes and collected in 
the human body and wildlife. In addition, associated to agrochemical 
contagion of marine atmosphere bad financial and communal impacts 
are observed. Remediation of carbon-based pollutants becomes a 
growing concern owing to their hydrophobic nature. Recently, focus of 
investigators was to evaluate the harms caused by pesticides and her-
bicides to the earth’s bio-network and human health (Njoku and 
Hameed, 2015; Zhang et al., 2014). In latest papers pesticide removal 
via zero-valent iron (ZVI) has been explored and reported and in this 
direction conducted researches assumed on DDT, triallate, nitro aro-
matic pesticides as well as triazines herbicides and organophosphorus 
insecticides, benzoic acid and benzimidazole pesticides and carbamate 
pesticide also (Yu et al., 2007). These pesticides are organo-chlorinated 
compounds frequently, which means in their arrangement one or more 
chlorine atoms are present in addition to nitrous and/or carboxylic 
groups (Marussi and Vione, 2021; Yang et al., 2019b). In the start of the 
1990 s, early research carried out and for an massive number of 
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ecological scientists attractive material continuous to be a ZVI due to its 
non-poisonous, inexpensive, and influential reducing features (O’Han-
nesin, 1994; Matheson, 1994). nZVI used as an effective substitute for 
the specific remediation of chlorinated derivatives that put difficulties 
towards the atmosphere by their venomousness and harmful effects in 
soil and water. Chemical oxidation method, photocatalytic oxidation 
techniques, filtration, adsorption onto activated carbon are different 
techniques that working to treat classical excesses and underground 
water but these above technical ways required too much cost (Iqbal 
et al., 2020). More freshly, inoculation of nano-scale ZVI openly in the 
aquifers technology employed for eco-friendly remediation. Cost effec-
tive solutions represented by this technique by avoiding vast excavation 
recognition, lessening cost installation as well as reaching deeper 
polluted areas. 

3.1. Carbamate pesticides 

Specifically Dichlorvos are absolutely mineralized in the appearance 
of ZnO and TiO2 and used in variety of field crops. Apart from nano-
particles, to degrade insecticides there are various information on the 
use of nanotubes and nanostructures as well as thin films. TiO2 nano-
tubes and TiO2 (Matheson, 1994; Midik Ertosun et al., 2019) thin films 
were utilized for atrazine degradation and of organochlorine pesticides 
degradation respectively (Marussi and Vione, 2021; Yang et al., 2019b). 
Titania changed graphite anode by electro-oxidation management was 
efficaciously employed for the degradation of 2,4-dichlorophenol (Midik 
Ertosun et al., 2019; Rojas et al., 2015). Carbon built nanomaterials at 
the nano-scale bonds the sp2 hybridized carbon bonds properties with 
the characteristics of physics and chemistry. Over the arrangement and 
conformation of a material, molecular handling implies mechanism for 
carbonaceous nanomaterials counting size, dimension, chirality and the 
number of layers (Rojas et al., 2015). Organochlorine pesticides morti-
fication by photocatalytic degradation of nano-TiO2 film studied (Rojas 
et al., 2015). They specified that on TiO2 surface, attraction of peroxide 
or hydroxyl radicle and transmission of electron qualifies the photolytic 
degradation of insecticides (Rojas et al., 2015; Vukčević et al., 2015). . 

Table 3 represents the degradation of various types of pesticides by 
using different kind of nanomaterials. 

3.2. Flutriafol 

Extremely persistent water/soil triazole pest killer is termed as Flu-
triafol and it contain high fungicidal actions and after its successful 
synthesis, it is broadly used since 1981 by the British Imperial Chemical 
Industries. In the international fungicide market, after its introduction 
an imperative position accomplished by this complex where Flutriafol 
products used to control massive diseases that upsets an extensive range 
of crops (Carmona et al., 2020). Flutriafol degradation via an oxidation 
method happened with micro scale nZVI, so this can connect the results 
gotten with nanoscale nZVI in a higher or a lower amount of oxygen, 
which noticeably expands the applicability of ZVI as a theoretically 
useful reagent for the water and wastewaters pollutants mortification 
(Krebsz, 2020). 

3.3. Nitro aromatic pesticides 

This types of pesticide were quickly condensed with ZVFe to the 
subsequent amines as major reduction byproducts. The nitro interme-
diate were initiate with very little amount in some reactions (Affam 
et al., 2016a; Esteve-Núñez and Ramos, 2001). Quinone, a Dichlone, 

neutralized the inhibitory effect C9H9NO (humic Acid, HA) on the 
catalyst proficiency of ZVFe for reduction process of C13H19N3O4, 
(pendimethalin PD) which recommends that some neutral quinone, be 
relevant to pollutant contamination via ZVFe (Keum, 2004). Though the 
use of ZVFe for organic pollutants degradation is inexpensive and 
reasonable. it is very to develop pathway for the enhancement, catalytic 
stability and recovery the oxidized iron (Krebsz, 2020). The H2 gas 
elimination rapidly improved the catalyst stability and ability of 
air-exposed iron and cause PD reduction, which suggests H2 elimination 
as possible mean to continue a reactive ZVFe barrier for the related 
remediation technology (Ghauch, 2008; Galdames et al., 2020). It is 
reported that the ZVFe can be used in combination with microbial ap-
proaches which may provide H2 and quinine for the removal of oxidized 
organic contaminations. Fenton oxidation with Fe o removed 99% of 
MTBE at pH 4–7 along with hydrogen peroxide MTBE molar ratio 220:1. 
The C3H6O (acetone) concentration generated by this process was 
approximately 400 mg/L (Thies, 2004). When hydrogen peroxide and 
MTBE was used in molar ratio 440:1, an effective reduction of MTBE 
take place with and final C3H6O reduced to approximately 60 mg/L 
(Thies, 2004). The 2nd order MTBE removal were found to be 1.9 × 108 

M-1 s-1 and 4.4 × 108 M-1 s-1 at pH 7.0 and pH 4.0 respectively while 
second order rate constant for hydrogen peroxide degradation to be 
0.44 M-1 s-1 and 0.23 M-1 s-1 at pH 7.0 and pH 4.0 respectively. 

3.4. Endosulfan (ES) pesticides 

Endosulfan (ES) is most broadly utilized organochloride pesticides 
and is acutely neurotoxic to fishes and other marine creatures (Jayaraj 
et al., 2016; Esfahani et al., 2023). Endosulfan became contentious, 
when its acute toxicity and role as an endocrine disruptor were brought 
to light. According to existing confirmations all recognized natural 
attenuation of ES residues i.e., ES-metabolites are very much cancerous 
and they retain the original chlorinated ES skeleton (Ford et al., 2007). 
The mass spectra of the mortified products were reliable with the loss of 
single, double and triple chlorine atoms from the parental compounds 
through dechlorinating by nZVFe (Yang et al., 2016). Further, by 
aggregating the intensity of the reducing environments the extent of 
dechlorinating could be enhanced. To conclude that the impact of the 
current investigation lies in the statement that partially or fully dech-
lorinated degraded products of ES and ES-metabolites may be least 
noxious and more responsive to consequent biodegradation and defin-
itive mineralization in the natural surroundings (Nowak et al., 2021). 
For stepwise reductive dechlorination of ES-isomers and their metabo-
lites is degradation mechanism proposed in a pathway as shown in 
Fig. S9 (Bose, 2017). 

3.5. 2, 4-Dichlorophenoxyacetic acid 

The 2, 4-dichlorophenoxyacetic acid (2, 4-D) acts as the herbicide, its 
broadly utilized in gardening agricultural practices due to its low cost 
(Yang et al., 2019b; Islam et al., 2018). It more efficiently attacks 
broad-leaf weeds. 2, 4-D shows extraordinary soluble nature and un-
fortunately non-biodegradable as well as its free acid exhibit has little 
soil adsorption coefficient (Yang et al., 2019b). The 2, 4-D can easily 
transfer by soil to ground water by leakage (Meftaul et al., 2020). Ac-
cording to WHO, 100 ppb is its acceptable maximum concentration and 
it considered as a moderately lethal (Tolgyessy, 1993; Bao et al., 2019). 
By n ZVI, reductive dechlorination in 2,4-D destruction was main tech-
nique and on basis of outcomes main factors for removal are dosage of n 
ZVI and initial pH of resolution as shown in Figures S10 and S11. 

Table 2 
Constant value for OH radical reaction with inorganic and organic compounds.  

Compounds CO2
+ HSO4

2- H2O2 Fe2+ Cu2+ Ag+ ClO- Cl Benzene Chloro-benzene Trichlor-ethylene 

k(105 xmol/L/s)  8 3.5–17  270  3200  3500  120000  8800  43000  78000  40000  40000  
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Momentous influence played by these variables on the degradation rate 
(Zhao et al., 2020). As ZVI nanoparticles dosage enhanced, exclusion 
productivity of 2,4-D also enhanced but its removal efficacy slightly 
raised after certain levels (Chen and Shih, 2008). nZVFe shows very 
effective in water as well as polluted soil remediation with 2,4-D. n ZVFe 
is not only a source of Fe(II) but at same time it provides active sites and 
extreme surface area. Under higher conditions, nZVI is an appropriate 
applicant for 2,4-D remediation because mortification by nZVI is more 
operative than Fenton and Photo-Fenton processes (FPRP). In removing 
chlorinated insecticides from discarded water, nZVI is suggested, as a 
innovative proficiency and capable handling possibilities in wastewater 
management skills (Castaño et al., 2021). A mechanistic proposal 
deprivation pathway of lindane with N-doped TiO2 is shown in Scheme 
S3 (Philip, 2010; Sayed et al., 2016). 

4. Trends observed in removal of pesticides 

In the literature, agricultural waste carbonaceous materials, acti-
vated carbon clay minerals such as zeolite are wide range of adsorbents 
for the removal of various reported pesticides (Saleh and Al-Ghouti, 
2020; Bish, 2013). In addition, chitosan and alginate like biopolymers 
(Sabbagh and Sharif, 2021), were also employed in pesticides adsorp-
tion. For the heterogeneous degradation of insecticides, diverse nano-
materials containing silver (Benelli, 2018), titanium dioxide 
(Abdennouri et al., 2016), ZnO and even nanocomposites were 
employed as a photocatalysis. N ZVI as such or in bimetallic form owing 
to its unique properties was used for the redox degradation of these toxic 
compounds (Bruckmann et al., 2022). Reactive sorbents like mono-
crystalline metal oxide were practical for the demolition of hazardous 
industrial mixtures plus extremely toxic OPs. Recently, the trend of 
removal of pesticide is following the use of nanocomposite and nano 
bio-composites via photo catalysis and adsorption mechanism (Bruck-
mann et al., 2022). For pesticide, removal reports are revealing on usage 
of nano bio-composites (Özmal, 2023). The PFR (Photo-Fenton reaction) 
is effective process for the oxidation of organic pollutants. Due the 

generation of •OH radical from hydrogen peroxide and UV light along 
with Fe2+ and Fe3+ ions which increase increases the rate of decompo-
sition of organic pollutants (Özmal, 2023; Sheikhi and Aslani, 2021). 
The degradation through Fenton reaction is better in acidic media. The 
literature reported that Photo-Fenton reaction is more significant as 
compared to Fenton process (Ameta and Ameta, 2018). The 
photo-degradation of chlorpyrifos (CPF) under photo-Fenton process are 
summarized in Table 4, the results showed that PFR reaction is more 
significant and about 50% CP removed through this process (Gandhi 
et al., 2016). 

The degradation of organophosphorus pesticides through AOPs take 
place at the surface of catalyst during the chemical reaction produced 
between oxidant species and pesticide in wastewater (Murillo et al., 
2010). During this process reactive oxidative species are generated and 
initiated the removal process of pesticide (Flint, 1991). The degradation 
process is may effected by different factors like pH, catalyst, light, 
subtract and oxidant concentration (Murillo et al., 2010). The photo 
advance oxidation process is summarized in Table S11. 

4.1. Effect of pH at photo-Fenton types of reaction 

An imperative parameter is pH in Fenton-like practices for effective 
handling (Hussain et al., 2021; Wang et al., 2016; Vermilyea and 
Voelker, 2009). Suitable pH value in customary homogeneous Fenton 
methods is about to 3.0, while the optimal pH in the Fenton-like pro-
cedures be determined by on the reaction system exclusively and reac-
tion tools mostly rely on the performance of catalysts (He et al., 2016). 
Most of the report show that the optimal pH is 3. The main reason of this 
pH for Photo-Fenton types reaction become perfect at the investigation 
of the FeIII as function of pH as shown in Fig. 2a, absorption spectra of 
the relevant Fe (III) species as shown in Fig. 2b, pH < 2, main kind is Fe 
(H2O)6

3+ showed weak absorption in the UV range above 300 nm. Su-
persaturated Fe (III) solution is prepared at pH > 3 with reverence to 
preparation of colloidal Fe(OH)3, precipitated of hydrated iron oxides 
stand for long time. However at pH 3, the most abundant Fe (III) present 

Table 3 
Degradation of pesticides by different nanomaterials.  

Pesticides Nanomaterial Brief summery Mechanism References 

Thiamethoxam, imidacloprid Zero-valent metals (Fe, Sn, 
Zn) 

Degradation [90% after a reaction time of 30 min via 
initial NO2-[NH2 reduction 

Ultra-sonication (Abdeen and Mohammad, 
2014) 

Thiamethoxam, imidacloprid Fe0/Fe3O4 with/or H2O2 Highly efficient in acidic conditions Redox degradation (Carneiro et al., 2015) 
Terbufos TiO2 99% degradation within 90 min Photocatalysis (Manimegalai et al., 2014) 
Monocrotophos, dichlorvos TiO2–zeolite 100% degraded Photocatalysis (Rani and Shanker, 2018; 

Pius, 2015) 
Malathion Fe◦ Quantitative oxidation in soil within 8 min Oxidation (Konrad et al., 1969) 
DDT Fe◦ Effective degradation in water (92%) than soil (22.4%) Reductive 

degradation 
(El-Temsah et al., 2016) 

Endosulfan Cu◦ Completely annihilates in solution Degradation (Mitra and Varshney, 2013) 
Lindane, DDT and aldrin Fe◦ and Fe3O4 100%, 81% and 79%, respectively, after 12 h reaction Redox degradation (Shoiful et al., 2016) 
Thiamethoxam, imidacloprid Fe◦/Fe3O4 with/or H2O2 Highly efficient in acidic conditions Redox degradation (Lopes et al., 2008) 
Chlorpyrifos, cypermethrin, 

chlorothalonil 
Coating of Fe–granular 
activated carbon 

With H2O2, complete degradation Oxidation (Affam et al., 2016b)  

Table 4 
Removal/Degradation of CPF through Photo-Fenton process in aqueous solution.  

Initial concentration AOP features Kinetic data Detection Methods Ref 

CPF = 1 mg/L UV Photo-Fenton 
Fe2 + ; H2O2 ratio = 0.05 

Removal efficiency (30 min UV expose) 
CPF = 50.30% 
K= 3.3 × 10–4 min-1 

GC-MS [244] 

CPF= 100 mg/L 
COD= 1130 mg/L 

UV Photo-Fenton 
H2O2: COD= (2:1) 
H2O2:Fe2+= (25:1) 
pH= 3 

complete degradation of the pesticides in 1 min 
Removal efficiency (60 min) 
COD= 78.56% 
TOC= 63.76% 

HPLC (Ameta and Ameta, 2018) 

CPF= 30 mg/L solar Photo-Fenton 
H2O2 = 0.01 M 
Fe3+=10 mg/L 
pH= 3.5 

complete degradation of CPF in 15 min GC-MS [245]  
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is Fe (H2O)5(OH)2+ which have the capability to absorbed more of the 
UV spectral region (Martyanov and Parmon, 1997; Xiao et al., 2020). 

4.2. Reusability of catalyst 

At industrial level the reusability of the catalyst plays an important 
rule index beside activity (Kapil et al., 2021). The deactivation of the 
catalyst is seen with the increase of reaction time because of sintering 
and change of the valance states (Kapil et al., 2021). The deactivation of 
the catalyst is estimated but in depth investigation on the causes of the 
catalyst deactivation can successfully recover the deactivation or sen-
sitive the catalysts (Otor et al., 2020; Yuan et al., 2021). An essential 
application of catalyst processes involves the capability to isolate the 
catalyst from the reaction mixture, subsequently recovering and using it 
again for succeeding reactions within a heterogeneous system is per-
formed with filtration, centrifugation and work up procedure (Kamal-
zare, 2022; Huang et al., 2023). The industry requirements the usage of 
catalysts for many reactions and the capability to improve and reuse the 
catalysts, making the catalyst process carefully reasonable for ascending 
up in industrial applications. Magnetic catalysts, which can be easily and 
rapidly separated from the reaction mixture using magnets, have 
recently garnered significant attention in both scientific and industrial 
research (Bayramoğlu and Ergan, 2021). 

5. Conclusion 

The advance oxidation process has developed as promising tech-
nologies for water decontamination remaining to their wide applicable, 
complete removal of organic toxic substances. The photolysis, electro- 
photocatalytic, cavitation, and electrochemical process organize some 
of the common AOP active for water decontamination. Advanced 
oxidation processes are highly effective techniques for breaking down 
organic contaminants in wastewater. These processes are capable of 
eliminating pesticides, drugs, dyes, plasticizers, and toxic heavy metals. 
These processes involve the production of free radicals, which react with 
the target contaminants, resulting in decomposition. Photo catalysis is 

the most significant of these processes due to its reliance on sustainable 
solar energy for the purification of wastewater. The Ultra violet/ sulfite 
process is recognized as the major advance discount procedure working 
in water decontamination. The AOP could be stated to a development 
based on the oxidation of the target toxic contaminants. The AOP is the 
most highly efficient technology and process in the degradation and 
removal of micro-pollutants from wastewater. All types of organic toxic 
pollutants including, organic dyes, plasticizers, toxic metal, drugs are 
successfully eliminated from water through advance oxidation process. 
The advance oxidation process, which uses O3 for disinfection, in water 
worth, the removal of color and degradation of the organic materials. 
The AOP is alterative to the conventional treatment method for dyes 
removal. During AOP the OH radical initiated the reduction and removal 
of organic pollutants. Ionizing radiation and cavitation are also impor-
tant processes due to their free radical nature. Ionizing radiation is 
deemed one of the most versatile advanced oxidation/reduction tech-
nologies because of its ability to simultaneously produce oxidizing and 
reducing species. These processes have shown great potential as a future 
alternative due to their high efficiency and versatility. Practical appli-
cations of these processes take into account various factors, such as 
initial pH concentrations, organic pollutant concentrations, concentra-
tions of catalysts, the wavelength and intensity of light. 
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