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ABSTRACT One approach to therapy and training for the restoration of damaged muscles and motor 

systems is rehabilitation. EEG-assisted Brain-Computer Interface (BCI) may aid in restoring or enhancing 

the brain's lost motor abilities. Assisted by brain activity, BCI offers simple-to-use technology aids and 

robotic prosthetics. This systematic literature review (SLR) aims to explore the latest developments in BCI 

and motor control for rehabilitation. Additionally, typical EEG apparatuses available for BCI-driven 

rehabilitative purposes have been explored. Furthermore, a comparison of significant studies in 

rehabilitation assessment using machine learning techniques has been summarized. The results of this study 

may influence policymakers’ decisions regarding the use of EEG equipment, particularly wireless devices, 

to implement BCI technology. Moreover, the SLR results offer suggestions for further study. To identify 

the additional characteristics of each EEG equipment and determine which one is most suited for each 

industry, we plan on measuring the user experience based on various devices in future research. 

INDEX TERMS BCI, Brain-computer Interface, EEG, Electrocorticography, Electroencephalogram. 

I. INTRODUCTION 

Rehabilitation is an approach to therapy and training aimed 

at restoring damaged muscles and motor systems. A 

developing area of neurotechnology is the brain-computer 

interface (BCI). BCI applications have found usage in 

diverse areas by helping individuals suffering from 

neuromuscular problems like stroke, diseases in the spinal 

cord, Amyotrophic Lateral Sclerosis (ALS), and injuries in 

the spinal cord to improve their quality of life. Modern 

prosthetic technology, aid, and rehabilitation may be 

replaced by a system that combines neurology, robotics, 

machine learning, and BCI. BCI may also aid in restoring 

or enhancing the brain's lost motor abilities. Assisted by 

brain activity, BCI offers simple-to-use technology aids and 

robotic prosthetics. BCI converts user-triggered brain 

activity into the control output of suitable equipment to 

carry out any predetermined action [1]. Technology for 

rehabilitation relies on more sophisticated 

neurophysiologically inspired designs that help in operant 

conditioning and recovery. For instance, a robot-guided 

system may help the movement of an injured limb based on 

the operand’s neuromotor activity [2]. BCI facilitates 

neuromodulation and augmentation in neuromotor 

outcomes for stroke survivors [3].  

BCI applications are primarily intended to aid those with 

significant motor impairments in daily life. Several BCI-

enabled devices have been designed to support human 

activities and rehabilitation [4]. Moreover, numerous 

investigations have vouched for BCI to aid those with 

severe disabilities like paralysis. BCI offers direct 

communication between the brain and technology, which 

may help restore the capabilities of a disabled person 

suffering from musculoskeletal diseases. The distinction 

between invasive and non-invasive techniques for 

observing brain activity depends on where the electrodes 

are placed. In procedures involving invasive operations, 

neurosurgery is performed in which one or more BCI units 

are used for direct electrode implantation in the cavity of 

the brain to monitor the brain region [5]. The signals 

generated here are of excellent quality, but this procedure 

has a substantially detrimental effect since it causes the 

brain's scar tissue to increase [6]. Electrocorticography 
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(ECoG), which directly records brain activity from the 

brain surface, illustrates an invasive technique [7]. An 

alternative non-invasive electroencephalogram is more 

accurate, less expensive, yet uncomfortable than the 

invasive approach [4]. For instance, an EEG uses electrodes 

on the scalp to track and record brain electrical activity in 

the form of waves. These wave signals are sent to a 

computing system based on the obtained patterns in the 

generated waves. The three main signal-capturing 

techniques used in the EEG primary paradigm are motor 

imagery (MI), P300, and steady-state visual evoked 

potential (SSVEP) [8]. These three paradigms offer 

different potentials and approaches. In P300, a high positive 

peak is observed in the generated EEG waves after about 

300ms of a stimuli-inducing task involving tasks related to 

a human event, if the person is intensely focused on a task. 

On the other hand, motor imagery is focused on the 

psychological mechanism of any movements which do not 

involve any muscle activity [9]. BCI can visualize specific 

actions, like holding an object, and the brain directs the 

order towards the controlling device that controls these 

movements. Some strategies were presented to help patients 

regain impaired motor control [10]. The first technique 

involves teaching patients to send more motor brain 

impulses, while the second involves teaching patients to 

turn on tools that enhance motor performance. Even though 

people with acquired motor deficits frequently show issues 

with motor connections, the EEG approach reveals 

incredible gains and ongoing alterations. An evaluation of 

16 patients affected by chronic stroke who used a brain-

computer interface for feedback related to arm and hand 

orthotics was first published by [11]. Persons with physical 

disabilities are enabled by assistive technology in different 

situations, such as moving, playing, and conversing like 

regular people. The tension that caregivers experience when 

considering people with impairments can be lessened by 

this technology [12], [13][11]. 

Although the use of EEG signals has only been partially 

investigated thus far, it is abundantly evident from the 

literature that these methods provide essential and 

supplementary data regarding several neuromotor 

assessment-related topics [14]. Various research studies 

have demonstrated that the use of such technologies enables 

a more efficient understanding of disorders affecting the 

central nervous systems that result in motor impairments, 

especially from a neuromotor perspective. The EEG 

provides detailed insights that help customize and modify 

therapy by providing doctors with pertinent information on 

the motor organization. This topic has been investigated 

using EEG [15] in separate investigations, and it is in a 

setting that is progressing toward resource reduction, cost 

containment, and rehabilitation efficiency [16]. 

In light of the previously mentioned considerations, this 

systematic literature review seeks to review all available 

papers on a topic that has not been thoroughly explored. 

EEG is required to guide rehabilitation and study physio-

pathological motor function. Further, there is a need to 

promulgate state-of-the-art techniques and foreseeable 

patterns and directions for using EEG as a successful 

measure for neural rehabilitation. Adaptive technology is a 

generic term to describe improved versions of currently 

available technologies that provide additional features and 

interaction opportunities to assist individuals in carrying out 

particular tasks [17].  

The primary objective of the literature review is to locate 

pertinent material using BCI technology that can support 

rehabilitation. The rest of this manuscript is structured as 

follows; the subsequent section elaborates on the adopted 

methodology. Further, the findings from the systematic 

review were then compiled to conclude the findings. A 

discussion was presented, conclusions were established 

based on the results, and new research areas were suggested 

to maximize the impact of the outcome. As shown in Table 

1, various survey articles pertinent to BCI for brain 

rehabilitation have recently been proposed. 

 

Table 1: Comparison of this survey with existing survey 

Ref Type of article  Devices  Objective  Description  

[57] 

 

Survey  EEG, EMG  This review analyzed 55 articles from 
scientific databases after rigorous scrutiny 

of 213 articles. 

Analyzing EEG/EMG signals simultaneously 
is relatively rare since each signal is analyzed 

using gold-standard techniques in their 

respective fields 

[58] Survey EEG In total, 238 papers met the inclusion 

criteria. 

Different adaptive, and rehabilitation  

BCI were identified. 

 

[59] 

 

survey EEG Described how BCI and brain-controlled 

robotics have improved rehabilitation and 

assistance of upper and lower limb motor 
functions. 

BCI-controlled robotics are becoming more 

widely used in clinical settings, but there are 

challenges preventing their widespread use. 
This article discusses the upcoming trends in 

BCI-controlled robotics to expand its 

intervention capabilities and to overcome 
existing challenges.    
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[60] 

 

Survey Mi-EEG  In this study, DL-based approaches have 

been used in MI-EEG classification 

research for the last decade and they must 

be systematically reviewed.   

A summary of MI-EEG applications, an 

intensive exploration of public MI-EEG 

datasets, and a visual representation of the 

performance obtained for each dataset are 
presented in this work. 

 

[61] 

 

Review  EEG , EMG  A study was conducted to investigate 

electromyography (EMG) and 

electroencephalography (EEG) as possible 
control input signals to exoskeletons. 

  Compare two methods for controlling 

exoskeletons with a brain-machine interface. 

 

[62] 

 

Review  EEG  For the rehabilitation of upper limb stroke 

patients, electroencephalogram (EEG)-

based Neurofeedback has been used based 

on 14 studies 

According to the findings of this research, 

Neurofeedback training was superior to 

conventional therapy in terms of effectiveness, 

and it was much more beneficial when used in 

conjunction with EEG. 

[63] Experimental  EEG, EMG  The authors presented a brand-new 

method for real-time movement prediction 

utilising physiological data that is based 

on field programmable gate arrays 

(FPGA). 

Twelve healthy volunteers in total participate 

in an offline study and an online study to 

evaluate the system.  Demonstrated that it 

offers good computing performance and 

considerably less power usage than a typical 

PC.  

[64] 

 

Review EMG,  The authors focused on EMG signals to 

highlight applications in the context of 

rehabilitation. Instead of focusing on how 

sensors and biological applications are 

employed in business, this review 

examined how they are used in literature. 

This study focused on sensors and systems for 

physical rehabilitation and health monitoring, 

as well as (ii) the identification of the main 

commercial sensor types currently utilised in 

biomedical applications. The study looked at 

work that has been done between 2016 and up 

to the present. 

Our 

survey 

Systematic literature 

review 

BCI with neural 

rehabilitation 

A total number of 80 articles were 

extracted through search string. The 

search string has been made in research 

process. 

A survey's significant goal is to give a 

comprehensive and systematic assessment of 

current research at the interface of 

electroencephalography (EEG) and machine 

learning in the context of neurological 

rehabilitation. 

 
II. Role of EEG and computer vision techniques for 

neural rehabilitation: 

This section might examine at how these technologies are 

used to help individuals recover and improve their neural 

functions after suffering from neurological conditions or 

sickness.  

• Brain-computer interfaces (BCIs) based on EEG that 

allows people to control external equipment with their 

brain signals. EEG signals are used in motor imagery 

exercises to aid with motor function rehabilitation [11], 

[12]. EEG-guided tasks targeting memory, attention, 

and other cognitive processes are used in cognitive 

rehabilitation. Real-time EEG data is employed in 

feedback systems [18], [21] to alter and personalize 

rehabilitation methods. 

• Motion tracking and gesture recognition are used to 

evaluate and enhance motor function and coordination. 

Systems that use virtual reality (VR) and augmented 

reality (AR) to create immersive and interactive 

rehabilitation environments [23], [27], [31]. Visual 

feedback devices that provide real-time visual cues to 

patients to direct their movements and activities. Gaze 

tracking and eye movement analysis can help with 

vision rehabilitation and correct coulometer problems 

[36], [47], [51]. 

• Users can operate virtual environments or prosthetic 

equipment using a combination of brain signals and 

visual cues in hybrid EEG-computer vision systems 

[18], [32], [36]. 

• Multimodal feedback mechanisms involve the use of 

both EEG and visual data to provide real-time 

coaching and modification during rehabilitation 

exercises. Neurofeedback and visual feedback 

research and development aimed at improving brain 

plasticity and recovery outcomes [44], [56], [59], 

[67]. 

 
III. Background: 

BCIs are based on neuroplasticty principles, which refer to 

the brain's ability to reorganize it by creating new neural 

connections. Because this reorganization might occur as a 

result of neurological traumas or disorders [21], [22], [27], 

[29], [31], [47], [53], BCIs provide a viable option for 

brain rehabilitation. Machine learning is critical in 

improving the capabilities and efficacy of BCIs for brain 

rehabilitation: 

• Machine learning methods such as support vector 

machines (SVMs), deep neural networks (DNNs), and 

random forests are used to recognize patterns in brain 

signals that correspond to certain motor or cognitive 

objectives [43], [58], [62], [74]. 

• Machine learning allows BCIs to adapt to changes in a 

user's brain signals over time. Adaptive models 

constantly adjust their parameters in response to new 
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data, resulting in increased accuracy and robustness 

[53], [56], [59], [60].  

• Machine learning enables tailored rehabilitative 

interventions. Models can be trained to recognize a 

user's distinct brain patterns and alter rehabilitation 

methods as needed [7], [11], [19], [41], [47], [79]. 

• Machine learning algorithms process brain impulses in 

real-time, providing consumers with rapid feedback.  

• BCIs combined with machine learning can produce 

closed-loop systems that respond in real-time to a 

user's brain signals [13], [21], [29], [46], [53], [63]. A 

BCI-controlled robotic arm, for example, can adapt its 

movements based on the user's motor intentions, 

increasing motor relearning. 

• Using a user's brain signals, machine learning can 

forecast the likelihood of effective rehabilitation 

outcomes. This data assists clinicians in personalizing 

interventions for the best possible outcomes [53], [57], 

[64], [69], [71]. 

• Using machine learning techniques, BCIs may fuse 

data from several modalities, such as EEG, fMRI, and 

kinematic data, to provide a more comprehensive 

picture of brain activity and rehabilitation progress 

[23], [29], [53], [69]. 

The combination of BCIs and machine learning 

technologies has the potential to completely transform 

neurological rehabilitation by providing more accurate, 

adaptable, and personalized therapies. These technologies 

hold promise for people suffering from stroke, spinal cord 

injuries, traumatic brain injuries, and neurodegenerative 

disorders, with the goal of restoring lost functions and 

improving their quality of life. 

 
IV. Research Process 

This section details the chosen methodological approach for 

carrying out a systematic review of literature [13]. In light of 

the research questions mentioned earlier, the pertinent 

literature from 2010 to 2023 has been examined for this 

survey. Various scientific databases such as IEEE Xplore, 

ACM Digital Library, ScienceDirect, SpringerLink, Taylor 

& Francis Online, and Wiley Online Library were searched 

to obtain scientific material, using keywords like 

Electroencephalography + rehabilitation, EEG+ 

rehabilitation, EEG + Brain Computer Interface, 

Electroencephalography + BCI, EEG + BCI + rehabilitation, 

BCI + Motor control, BCI + rehabilitation. The obtained 

material underwent screening, validation, and inclusion. The 

exclusion before screening involved the removal of articles 

that occurred multiple times or were published in languages 

other than English. The information conveyed by the articles' 

title, abstract, and conclusion was used to decide on the 

relevancy of the article for the survey. A coherent library was 

built with the help of Mendeley, in which articles were 

aggregated, filtered, and excluded. 

The relevant articles that were chosen were rigorously 

evaluated and included in the study. The Mendeley reference 

management technology was used to create a consistent 

reference library. The collected papers were collated, 

categorized, and systematically organized inside this library 

depending on their thematic importance. To refine the 

collection, filtering procedures were used to ensure that 

publications were suitably organized based on their focus on 

EEG-based neurological rehabilitation. This methodological 

technique ensures the survey's completeness and validity, 

allowing for a thorough examination of the current literature. 

The survey captures a comprehensive overview of 

advancements in EEG-based brain rehabilitation throughout 

the selected timeframe by accessing a variety of sources and 

employing targeted search phrases. 

The research focuses on individuals using prosthetic arms, 

gait exoskeletons, and state-of-the-art stroke rehabilitation for 

Lower/Upper extremities (UE/LE)). In this study, we place 

particular emphasis on recent technological advancements in 

TABLE 2: 

SUMMARY OF EEG-DRIVEN BCI TECHNOLOGIES USED FOR REHABILITATION 

Application Domain Deployment Use case 

addiction disorders 
Real-time detection of cravings to provide live feedback 

to patients with addictions 

Eating disorders [5], obesity [8], [11], drug addiction 

[12], [15], [16], alcohol addiction [19], [21], [22] 

assistive technology 
To help the rehabilitation of persons with physical 

disabilities. 

Upper and lower extremities [7], [8], [11], persons with 
tetra- or quadriplegia [13], [18], [19], motor nerve 

control locked-in patients [11], [12], [13], [15], [61], 

[62], [36], [64] 

diagnosis To assist diagnosis through neurophysiological markers. 
Locked-in state, mild cognitive impairment [51], [52], 

[53], [55], vegetative state/coma [63], [65],[66] 

Testing and 

observing 

To instantly recognize and categorize different brain 

states 

Acute trauma [18], [19], [34], [39], Alzheimer's disease 

[23], [37], Parkinson's disease [36], [41], [52] 

prevention 
To slow down neurodegeneration through 

neurofeedback 

Alzheimer's disease [23], [37], [41], mild cognitive 

impairment in elderly persons [51], [52], [65], [67] 

therapy 
To initiate or accelerate brain plasticity in damaged or 

disordered cortical networks by providing 

neurofeedback 

ADHD [41], [53], autism [15], [18], epilepsy [11], [21], 

[39], cortical stroke [21], [37], [39], [49], Alzheimer's 
disease [23], [37], [41], schizophrenia [21], [37], [53], 

[56], depression [59], [63], [65], [66], psychopathy [56], 

[58], [70] 

wellness 
To trigger mental performance or emotional well-being. 

This is also known as cognitive enhancement 
all users 
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BCI robotics that have the potential to be used in therapeutic 

settings. Research trends include the adoption of decoding 

tools such as artificial neural networks using deep learning, 

portable and personal robot-wear such as soft robotics, the 

development and testing of procedures investigating the use 

of brain-computer interfaces for stimulation and the 

effectiveness of various feedback modalities, and the 

development of brain-computer systems that can handle 

heterogeneous data, augmented with inputs that are not 

directly related to the brain. Finally, the problems with 

existing BCI systems and rehabilitation robotics are 

discussed, along with potential future study routes. The 

following subsection elaborates on the use of fundamentals 

of EEG-driven neurotechnology used for rehabilitation. 

Based on the keywords, the search string has been generated 

to extract the relevant studies which have been used for 

survey purpose. The search string is: 

("EEG" OR "electroencephalography") AND ("machine 

learning" OR "computational intelligence") AND ("neural 

rehabilitation" OR "neurorehabilitation") AND ("survey" OR 

"review" OR "systematic review" OR "literature survey") 

AND ("methods" OR "approaches" OR "techniques"). 

 

Throughout the search string, a total number of 80 articles 

have been identified through ScienceDirect, SpringerLink, 

IEEE Xplore, ACM digital library and Scopus search 

databases. Several research questions have been built based 

on extracted studies. The research questions along with 

motivation have been presented in table 3.  
Table 3: Research questions and its motivation 

Research 

questions 

Description Motivation 

RQ1 What are the most current 

innovations and patterns in the 

integration of Brain-Computer 

Interfaces (BCIs) with various 

applications? 

To provide an 

overview of the field's 

current state of 

research and to identify 

major developments in 

the application of 

BCIs. 

RQ2 What types of neural 

rehabilitation activities are 

addressed by EEG and machine 

learning and deep learning? 

It focuses on 

categorizing the many 

rehabilitation tasks that 

have been targeted 

utilizing EEG and 

machine learning 

methodologies, such as 

motor recovery, 

cognitive 

rehabilitation, 

communication 

restoration, and so on. 

RQ3 What are the most prevalent EEG 

signal processing techniques used 

in neural rehabilitation research? 

To investigate EEG 

signal processing 

approaches such as 

preprocessing, feature 

extraction, 

dimensionality 

reduction, and noise 

reduction strategies. 

RQ4 What machine learning and deep 

learning methods have been used 

for EEG-based neural 

rehabilitation? 

To investigate the 

machine learning 

algorithms used in the 

context of brain 

rehabilitation for 

analyzing EEG data, 

such as classification, 

regression, clustering, 

and reinforcement 

learning techniques. 

RQ5 What performance indicators are 

utilized to assess the efficacy of 

EEG-based neural rehabilitation 

methods? 

This question focuses 

on the quantitative and 

qualitative evaluation 

measures used to 

analyze the success 

and impact of various 

EEG and machine 

learning-based 

rehabilitation 

treatments. 

RQ6 What are the present research 

limits and gaps in EEG-based 

neural rehabilitation utilizing 

machine learning and deep 

learning methods? 

This topic aims to 

bring out areas in 

which further study is 

needed, as well as the 

limitations and 

obstacles that present 

methodologies and 

studies confront. 

RQ7 What are the possible possibilities 

towards creating trends in 

neurological rehabilitation 

research based on EEG? 

To investigate 

potential advancement 

paths, such as advance 

technology, 

interdisciplinary 

collaborations, and 

undiscovered 

application areas. 

RQ8 What is the current state of 

research in machine learning-

based EEG-based neural 

rehabilitation? 

To overview the 

available extracted 

studies and identify the 

important trends, 

strategies, and 

approaches in the 

discipline. 

 

A. Sample view of research question in data extraction 
mode: 

Define abbreviations and acronyms the first time they are 

The EEG method uses the skull to track the brain's electrical 

activity. EEG is used to diagnose conditions that cause 

seizures and metabolic, viral, or inflammatory conditions that 
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alter brain activity. EEGs can be used to confirm brain death, 

assess sleep problems, and track brain activity in patients 

who have lost consciousness or are entirely sedated. This 

risk-free, painless test can be carried out in a testing facility, 

a hospital, or a controlled environment. The subject typically 

lies in a chair or bed during the exam. Several cup-shaped 

electrodes are placed on the scalp using a unique conducting 

material. The electrodes are connected to wires, often called 

leads, that transmit the brain's electrical signals to a machine. 

External stimuli may be used during an EEG recording 

session, including loud noises, bright or flashing lights, or 

even specific medicines. People can be instructed to alter 

their breathing patterns or to open and close their eyes. An 

EEG device or computer receives changes in brain wave 

patterns. Typically, an EEG test lasts about one hour. An 

EEG during sleep is necessary for testing disorders and takes 

several hours. Even, the researchers [56] suggest a unique 

method for distinguishing between EEG signals from 

alcoholics and healthy controls that includes phase space 

dynamic and geometrical properties. Geometrical features are 

also extracted from the phase space representation of the 

EEG signals, representing the underlying structures and 

complexity. 

The experimental findings shows that the suggested method 

provides the best classification performance for the twenty-

three features chosen by Henry gas solubility optimization 

using feedforward neural network (FFNN), with 99.16% 

accuracy, 100% sensitivity, and 98.36% specificity. The 

sample view of BCI in through machine learning and deep 

learning has been presented in table 3. 
Table 3: Usage of BCI in Machine learning/deep learning 

EEG usage in BCI Description 

EEG Data Acquisition Collection of EEG signals using electrodes 

EEG Preprocessing Filtering, noise reduction, artifact removal 

Feature Extraction Extracting relevant features from EEG data 

Classification Algorithm ML/DL algorithms (e.g., SVM, CNN, LSTM) 

Training and Testing Training on labeled data, testing on new data 

Performance Evaluation Metrics like accuracy, precision, recall 

Adaptive BCI Systems Adjusting models based on user responses 

Cognitive State 
Classification Identifying mental states (e.g., attention) 

Motor Imagery Control Controlling devices via imagined movements 

B. Neurotechnology based on EEG 

Any technology that communicates with the neurological 

system is referred to as neurotechnology. Monitoring brain 

activity is one of the critical components of many 

neurotechnological advancements. EEG monitoring enables 

us to measure various brain waves, also referred to as neural 

oscillations. Brain control of various devices is one of the 

most well-known and widely publicized uses of EEG-based 

neurotechnology. Examples include keyboards for 

individuals with locked-in syndrome [5] and controls for 

wheelchairs, drones, or robots [18][19]. One remarkable 

aspect of neurotechnology is its ability to alter our neural 

circuits' function by using the nervous system's plasticity. 

This indicates that the results will last for a while after using 

neurotechnology for a specific amount of time. Typically, 

this is carried out by monitoring brain waves and delivering 

tailored stimulation according to specific activity patterns 

decoded by the brain. We commonly refer to this as closed-

loop or brain state-dependent feedback. Electro/magnetic 

stimulators, robotic exoskeletons, and visual and auditory 

stimuli are some standard methods used to excite the nervous 

system and produce such changes. 

V. Results and discussions 

A. What are the most current innovations and patterns in 

the integration of Brain-Computer Interfaces (BCIs) 

with various applications? 

There are several applications that are integrated with BCI 

along with EEG integration. Here are some applications are 

BCI are: 

• BCI-ROBOTICS FOR REHABILITATING MOTOR 

PARADIGM: 

Millions of people worldwide live with motor disabilities 

brought on by spinal cord injuries or strokes. Many of them 

cannot execute simple tasks like picking up a glass or 

walking, and typical rehabilitation techniques frequently fall 

short in helping patients regain their crippled functionality of 

motor nerves.  

The foundation of neurotechnology-based rehabilitation of 

motor functionality is that the interdependent relationship 

between the electrical activity of the human brain when 

motion is attempted and the sensory feedback from outside 

the central nervous system enables restoration of the sensory 

circuits in motor nerve connections fosters recovery of motor 

circuitry [20]. This indicates that after using the technology 

for some time, the patient's motor function will improve due 

to the training's facilitation of restructuring their brain and/or 

motor pathways.  

 
TABLE 4:   

NON-INVASIVE EEG APPARATUSES ARE USED FOR ASSISTIVE, ADAPTIVE, AND REHABILITATIVE PURPOSES. 

Brand Model Wired Wireless 
Number of 

channels 

Additional 

sensors 

supported 

Intended Use 

Advanced Brain 
Monitoring 

B-Alert®  X10   9 channels  Neuromarketi+G2:G41ng, BCI, 
identify biomarkers 

B-Alert X24   20 channels 
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BIOPAC Systems Inc.  EEG100C   16 channels 

Epilepsy, tumor pathology, 

sleep studies, evoked responses, 

 Cognition studies. 

ANT Neuro eegosports   64 channels 

BCI, neurofeedback 

 neurorehabilitation, 
neurogaming 

Biosemi ActiveTwo ×   
16-256 

channels 
 Electrophysiology research 

Brain Products 

actiCAP system  

8-256 

channels 

 Neuroscience 

ACTi- Hamp     neurofeedback 

Brain -Amp   

 neurophysiological 
Brain -Vision   

V-amp    

MOVE system   

Cognionics Inc. 
HD-72 EEG   64 channels  Neurofeedback, 

Quick-20   21 channels    neurodiagnostic 

CompumedicsNeuroscan 

Grael  

 Up to 256 

channels 

 Clinical 

Nu-Amps     neuro-diagnostics, 

Syn-Amps     research 

Emotiv 

Emotiv EPOC  

5-14 
channels 



Research, personal use 

Emotiv Insight   

g. Tec 

g.BSamp  

Up to 256  
channels 



BCI, neuroscience, 
neurotechnology 

g.Hiamp   

g.USBamp   

g.MOBIlab+®    

g.Nautilus   

Unicorn Hybrid 

Black 
  

Neuroelectric 

Enobio 8   

8-32 

channels 


Neuroscience, BCI, 

neurogaming, 

Enobio 32    

 Neurofeedback 
StarSim 8    

StarSim R32   

NeuroBioLab NBL640   24 channels  Neurobiofeedback 

OpenBCI 

OpenBCI 32bit  

4-21 

channels 



BCI, biosensing, neurofeedback 

Open BCI Cyton   

OpenBCI 

Ganglion 
  

Ultracortex BCI   

Narosky 

Brainwave  

Single 

channel 


BCI, neurogaming, 

neurofeedback, 

Mind Flex   

 neuroscience, meditation 
Mind Wave   

ThinkGearAM 

(TGAM) 
  
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Medical Computer 

Systems  
NVX52   48 channels  Research 

 
One of the most extensively investigated application areas 

of non-invasive brain-computer interfaces utilizing EEG 

signals is motor rehabilitation. They usually function by 

recognizing when a patient is making an effort to move (e.g., 

by sensing the attempt of movement from EEG) and then 

assisting the sensed movement either with the aid of a 

prosthetic limb [21][22] or by electrically stimulating the 

muscles [23] [24].  

A prominent area where BCI solutions can be deployed for 

applications involving clinical procedures is post-stroke UE 

motor therapy because of the severe motor deficits brought 

on by stroke and how they affect the survivor's quality of life. 

The ground-breaking study in this area, published more than 

ten years ago, used magnetoencephalography as data input 

for their (MEG)-BCI-controlled hand orthosis for stroke 

rehabilitation [25]. Even though they could not experience a 

meaningful therapeutic benefit, it was found that the users 

attained control over orthosis by learning to alter the mu 

rhythm amplitude. Using numerous brain-computer 

interfaces non-invasively in conjunction with input provided 

by a robot or orthosis was then documented.  

The role of brain-computer interfaces in UE stroke 

rehabilitation has been studied and methodically analyzed in 

studies [26]. It was revealed in the study [27] that chronic 

stroke patients may train their fingers to extend using a BCI 

and a finger-individualized orthosis. The findings show that 

finger extension ability and functional outcomes were both 

improved in the participants with more robust sensorimotor 

rhythm (SMR) modulation. BCI-robotics can incorporate 

rehabilitation of both coarse and delicate hand movements. 

The previous BCI research employed heavy, hard-bodied 

robots that are frequently expensive, have intricate controls, 

and have a limited range of motion [28].  

Soft robots are a kind of wearable, lightweight robots with 

flexibly mounted actuators. It has been shown that using soft 

robots increases the effectiveness of hand rehabilitation [29]. 

Consequently, by combining soft robotics with brain-

computer interfaces, a nonrestrictive, intuitive, and real-life 

movement can be added to the feedback mechanism. Using a 

soft robotic glove controlled by EEG-BCI and task-specific 

visual feedback, a stroke rehabilitation system was described 

in the article [30] as pilot research in this area. The research 

revealed improvements as proof of a phenomenon known as 

a kinesthetic illusion in the test individuals. For the 

relationship between observed activity in motor circuitry and 

natural motor recovery, a substantial number of human 

clinical studies and neurological data are required to support 

these conclusions.  

A somewhat new BCI application is post-stroke LE 

rehabilitation. An effective BCI design includes robot control 

in real-time and closed-loop accurate deciphering of 

kinesthetic walking intention and visuals by the BCI (or 

exoskeleton). The performance of LE decoding, which has 

not yet been perfected, severely restricts the former while 

increasing safety issues in the latter. A few research studies 

have shown that it is possible to use BCI to decode lower 

limb joint kinematics and kinetics while in motion. In 

experiments [31], EEG was captured when the individual 

practiced walking with a robot. Moderate LE joint kinematics 

deciphering accuracy based on offline analyses was observed 

in research [31][32]. Following the gait training, functional 

ambulation capacity, functional connectivity, and 

sensorimotor plasticity all showed a substantial increase, 

according to a connectivity analysis in the study [33]. A 

study [34] has also looked into the modulations in 

sensorimotor rhythms and motion-related brain potentials 

connected to gait decoding performance. The spectral and 

temporal dynamics of the neuronal encoding of gait patterns 

are also controversial, as recently examined [35]. This makes 

the consistent and accurate decoding of gait using non-

invasive brain data an arduous task. Because of this, no 

studies have not been completed showing how successful 

BCI-robotics are at treating LE stroke. However, recent 

information on BCI gait decoder technology advancements 

promises high accuracy and the possibility of continuous gait 

decoding.  

Multiple EEG-based gait decoding techniques were 

recently rigorously compared to develop a viable online 

decoding system [36]. A variety of Machine Learning (ML) 

approaches are used to analyze EEG signals and analyze the 

effectiveness of Brain-Computer Interface (BCI) 

technologies for neural rehabilitation [35], [42], [47], [63]. 

These techniques are critical for decoding brain activity, 

comprehending cognitive processes, and enabling effective 

BCI-based rehabilitation solutions. EEG data is prepared for 

analysis using preprocessing procedures such as artifact 

removal [52] and feature extraction. Support Vector 

Machines [45], Random Forests [47], and deep learning 

architectures such as Convolutional Neural Networks [36], 

[38], [45] and Recurrent Neural Networks decode brain 

signals and allow for precise classification of cognitive states 

or motor intentions. In BCI applications, feature selection 

and dimensionality reduction strategies improve model 

performance [32], while domain adaptation and transfer 

learning handle inter-subject variability. Adaptive BCI 

paradigms, such as P300-based [52], motor imagery, and 

SSVEP-based BCIs [15], [67] provide a variety of 

neurorehabilitation techniques. By giving users with 

feedback for adaptive control, reinforcement learning can 

improve BCI systems. Cross-validation [68] and online 

assessment approaches are used to examine the 

generalization and real-time performance of BCI models. 

The study [56] extracts the graphical features from dynamic 

and geometric properties of EEG data. The geometric 
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features [69] have been fed to feed forward neural network 

(FFNN) model for classification of alcoholic and healthy 

control factors [70]. For precision control of BCI-based 

exoskeletons employing versions of recurrent neural 

networks (RNN) based on offline benchmarking and 

comparing approaches spanning various linear decoders as 

well as RNN. It is also important to point out that a deep 

neural network based on LSTM was also employed in the 

recent experiment, which focused on healthy volunteers to 

accomplish reliable gait reconstruction [37] assessed in both 

offline and online scenarios. 

• BCI-ROBOTICS FOR MOTOR ASSISTANCE 

The brain-computer interface (BCI) is a turning point device 

that expressly [62] uses cognitive function for interaction 

with external devices without the use of motors. Although 

BCI based on motor imaging has proven efficacy in stroke 

patient treatment, their usage in clinical practice has been 

limited due to poor performance, non-flexible properties, and 

extensive training periods. It has been demonstrated that BCI 

can provide neurological regulation of a robotic arm and 

exoskeleton of the lower limb using invasive intracortical 

recordings. The first case study describing invasive-BCI use 

to enable continual voluntary regulation over a robotic arm 

having multiple joints by an individual suffering from 

tetraplegia can be found in [38]. Additional research has 

documented tetraplegic patients' stroke-related paralysis 

using neuroprosthetic control of a prosthetic arm [39], [40]. 

The articles [41] thoroughly evaluated the use of BCI as a 

communication, control, and rehabilitation tool in paralysis. 

Since then, interest has risen in developing non-invasive BCI 

to manage more freedom robotic arms for potential motor 

assistance and rehabilitation. 

In contrast, traditional non-invasive BCIs exclusively use 

bidirectional as well as unidirectional control over motor 

circuitry. Some recent experiments have shown high-

dimension continual motor control using unique decoding 

algorithms and control methodologies to work effectively 

with a poor signal-to-noise ratio of non-invasive data. 

Healthy volunteers [42], paralyzed patients [43], [44], and 

quadriplegics [43],[44] have all been used in studies.  

A closed-loop prosthetics monitoring via BCI was 

described in papers [43][44] using EEG and MEG, 

respectively. Recently, it was demonstrated [42], [45] how to 

precisely combine two sequential low-dimensional 

controllers to operate a robotic arm with numerous degrees of 

freedom. Movement-related cortical potentials in the low 

frequency-time domain were used in the study [46] to show 

the simulation of brain-computer interface control of a virtual 

robot online.  

In addition to traditional collaborative tasks performed by 

BCI robots, getting control of the robotic arm simultaneously 

with the arm of the individual was described as an alternative 

[47]. Researchers developed a BCI-controlled robot control 

framework that produced a continual trajectory of robot 

movement out of discontinuous BCI signals. The outcomes 

of the experiments conducted on healthy participants suggest 

that BCI-based robotic control systems are a more efficient 

and realistic way to operate robotic devices.  

A robotic arm in a 3D environment is controlled by BCI 

[48], powered by machine learning. Machine learning using a 

multi-directional convolution neural network and a 

bidirectional LSTM network was reported in the study. With 

the mentioned advancements in technology, BCIs developed 

non-invasively, can manage a robotic assistance device 

continuously and expertly. 

The author describes [59] a unique method for Motor 

Imagery (MI) classification in Brain-Computer Interface 

(BCI) systems that employ two-dimensional modelling in 

empirical wavelet transform (EWT). Using EWT, a data-

driven time-frequency analysis method, the authors present a 

new technique for extracting features from MI EEG signals. 

The spatial and temporal dynamics of EEG signals during 

motor imagining tasks are captured using this method. A 

novel method for classifying Motor Imagery (MI) in Brain-

Computer Interface (BCI) systems based on multivariate 

variation mode decomposition (MVMD) has been employed 

[60]. By decomposing the data into intrinsic mode functions, 

the approach tries to extract discriminative features from MI 

EEG signals. MVMD enables multivariate analysis by taking 

into account the interdependencies across EEG channels 

during motor imagery tasks. The study [61] assesses the 

efficacy of this technique in decoding MI EEG patterns, with 

the goal of improving the accuracy and reliability of BCI 

devices. Machine learning classifiers are used to classify the 

retrieved features into several MI classes. The results provide 

promising results, demonstrating that the multivariate 

empirical wavelet transform paradigm improves the 

resilience of MI decoding in BCIs. Using empirical Fourier 

decomposition (EFD) and enhanced EFD (IEFD) 

approaches, the study [63] provides a unique automated 

computerized framework for proficient detection of motor 

and mental imagery (MeI) EEG activities. Specifically, 

MSPCA is used to denoising EEG data initially, and then 

EFD is used to divide nonstationary EEG into successive 

modes, while the IEFD criterion is provided for a single 

noticeable mode selection. Finally, the features in the time 

and frequency domains are retrieved and categorized using a 

feedforward neural network (FFNN) classifier. 

• USING EEG-BASED NEUROTECHNOLOGY TO 

ENHANCE AND REHAB COGNITIVE FUNCTION 

The enhancement of cognitive ability can be helpful for 

individuals, irrespective of whether they have any brain-

related neural disorder. However, improving motor function 

is explicitly focused on patients with movement impairment. 

Some mental and psychological illnesses, such as depressive 

disorders, attention-deficit disorders, mood disorders, and 

addictive disorders, can benefit from cognitive rehabilitation 

based on neurotechnology. A person with a healthy brain 
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would also be open to cognitive advancement (e.g., in 

memory or attention). Studies in neuroscience have 

pinpointed distinct brain activity markers linked to cognitive 

function, such as parieto-occipital alpha activity [49]. The 

goal of neurofeedback approaches is to help users self-

regulate such markers to improve their behavior.  

These strategies establish a causal relationship (operant 

conditioning) between patterns in the brain and positive or 

negative feedback, driving brain alterations. Techniques like 

neurofeedback or EEG biofeedback have been suggested to 

aid cognitive improvement in various populations. For 

instance, [50] studied healthy volunteers, patients with 

depression, and children with ADHD using Elevvo, a 

cognitive training tool created by Bit brain [51]. 

• THE USE OF EEG-BASED NEUROTECHNOLOGY 

TO IMPROVE MEMORY DURING SLEEP 

Sleeping takes up about a third of our lives. During sleep, 

our bodies enter a state where control over behavior and 

awareness ceases to exist. During the period of sleep, the 

human body does several tasks necessary for maintaining our 

vital systems. Because some of these processes occur in the 

brain, improving them via neurotechnology may enhance 

certain of our abilities. One crucial process when you sleep is 

consolidating recently acquired memories [52]. Since it is 

now possible to observe someone's EEG while they sleep, 

numerous studies have examined the precise brain correlates 

of memory processing and consolidation. Real-time 

identification of the correlations can be used to change the 

occurrence, increase the effectiveness, and give brain state-

dependent stimulation. Two well-researched neurotech-based 

methods were studied to enhance the consolidation of new 

memories. By delivering auditory or electrical stimulation in 

time with one of the slow-wave oscillation trains linked to 

information processing while you sleep, your memory will 

operate better [53][54]. When properly timed with the 

appearance of sleep spindles, reactivating previously learned 

events has been found to promote their consolidation [55]. 

Table II offers a summary of EEG-driven BCI technologies 

to assist various types of rehabilitation. 

• NON-INVASIVE EEG-BCI APPARATUS DESIGNS 

According to the studied literature, G. Tec, Compumedics 

Neuroscan, and Brain Products were the most popular EEG 

brands used by the research community. G. Tec's wired EEG 

equipment was mentioned in 41 research articles, with 26 

articles mentioning Compumedics Neuroscan and 15 articles 

mentioning Brain Products. Biosemi revealed as the fourth 

most popular wired equipment brand, with eight study papers 

mentioning it. Among from 42 research articles, a total of 40 

studies have been work on Emotiv's wireless technology. 

Notably, Brain Products and G. Tec were among the few 

brands that provided both wired and wireless EEG 

equipment, while other brands provided both wired and 

wireless BCI-based technologies. Wireless models are a 

developing method, but wired solutions continue to be the 

traditional answer. Table 3 summarizes the different non-

invasive wiring non-invasive wired and wireless EEG 

equipment that could be used for rehabilitation and BCI.  

 

B. What types of neural rehabilitation activities are 

addressed by EEG and machine learning and deep 

learning? 

Here are some types of neural rehabilitation activities that 

can be addressed using EEG. 

• Motor Rehabilitation: EEG signals captured during 

motor imagery tasks (e.g., imagining limb movements) 

can be decoded using machine learning algorithms to 

control external devices, such as robotic exoskeletons 

[13], [17]] or prosthetics, assisting individuals with 

motor impairments. EEG-based real-time feedback 

systems can guide users to perform specific motor tasks 

or exercises, aiding in motor skill relearning and 

neuroplasticty [21], [23], [47], [51]. 

• Cognitive Rehabilitation: EEG signals can be used to 

measure and enhance attention and concentration levels 

through Neurofeedback techniques [8], [11], [13], [14]. 

Machine learning can be applied to adapt training 

protocols based on individual cognitive states. EEG and 

deep learning can help design personalized memory 

training tasks by analyzing neural patterns associated 

with memory recall and encoding [7], [8], [13], [14]. 

• Neuropsychiatric Rehabilitation: EEG can be utilized to 

provide biofeedback for stress and anxiety management. 

Machine learning can identify stress-related patterns and 

trigger relaxation interventions [10], [16], [19], [20]. 

EEG-based Neurofeedback can help individuals with 

ADHD improve focus and attention control by 

rewarding desired brain activity patterns. 

• Gait Rehabilitation: EEG and machine learning can be 

integrated with motion capture systems to analyze gait 

patterns and provide real-time feedback during walking 

exercises [13], [14], [17]. 

• Visual and Auditory Rehabilitation: EEG-based 

protocols combined with machine learning can be used 

to design visual and auditory training tasks for 

individuals with impaired sensory perception [23], [26], 

[27]. 

• Multimodal Rehabilitation: Combining EEG with other 

technologies such as functional near-infrared 

spectroscopy or virtual reality can create multimodal 

rehabilitation approaches that target a wider range of 

neural functions [37], [38], [47], [51], [53]. 

The flexibility and adaptability of these technologies offer 

promising ways to enhance rehabilitation outcomes and 

improve quality of life for people with neurological 

disorders. 

C. What are the most prevalent EEG signal processing 

techniques used in neural rehabilitation research? 
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In neural rehabilitation research, various EEG 

(electroencephalography) signal processing techniques are 

used to analyze, interpret, and extract meaningful 

information from EEG data. 

• Filtering: EEG signals are often contaminated with 

noise and artifacts. Filtering techniques such as high 

pass, low pass and notch filters [18], [26] are used to 

remove unwanted frequency components and improve 

signal quality. 

• Artifact removal: Techniques such as Independent 

Component Analysis (ICA) and Principal Component 

Analysis (PCA) are used to separate and remove 

artifacts such as eye blinks, muscle activity and 

electrocardiogram (ECG) interference [28], [29], [31]. 

• Time Domain Features: Features such as mean 

amplitude, root mean square value, and signal variance 

are extracted to capture the temporal characteristics of 

EEG signals [47], [48], [51], [53]. 

• Frequency domain properties: Power spectral density, 

spectral entropy, and band power ratios provide insight 

into the frequency distribution of brain activity [11], 

[17], [18]. 

• Time-frequency characteristics: Techniques such as the 

wavelet transform and the short-time Fourier transform 

reveal how the characteristics of the EEG signal vary in 

time and frequency [23], [57], [61]. 

• Functional connectivity: Measures such as coherence, 

phase synchronization, and mutual information assess 

the functional relationships between different brain 

regions [51], [52], [54]. 

• Graph theory analysis: EEG data can be represented as 

networks, and graph theory metrics reveal organizational 

and communication patterns in the brain [64], [69]. 

• Pattern recognition and motor imagery: EEG signals 

captured during motor imagery tasks are processed to 

recognize specific patterns associated with imagined 

movements. These patterns can be used to control 

external devices [59], [60], [65]. 

 

D. What machine learning and deep learning methods have 

been used for EEG-based neural rehabilitation? 

In the context of EEG-based neural rehabilitation, various 

machine learning and deep learning methods have been 

applied to analyze EEG data and develop interventions aimed 

at enhancing neural function and facilitating recovery. 

• Machine learning techniques: SVMs have been used for 

tasks such as motor image classification, which uses 

EEG signals to distinguish between different motor tasks 

or targets. These methods are used to classify EEG 

patterns associated with specific cognitive states, motor 

goals, or rehabilitation tasks. LSTMs are popular for 

time series data such as EEG and are used for tasks such 

as learning motor sequences and predicting cognitive 

states. k-NN algorithms have been used in EEG data for 

tasks such as identifying brain activity patterns related to 

cognitive performance and mental states. 

• Deep learning techniques: In this section, we look at the 

various DL architectures used in BCI-EEG 

categorization studies. DL models are classified into 

four types based on their role [30]: discriminative, 

representative, generative, and hybrid DL models. 

➢ Discriminative models: Discriminative models are DL 

architectures that can learn different features from input 

signals using nonlinear transformations and classify 

them into pre-defined classes using probabilistic 

prediction. As a result, these techniques can be 

employed for feature extraction as well as 

categorization. CNN, RNNs (and their variants, GRU 

and LSTM), MLP, and ELM are examples of 

discriminative models [12], [16], [31], [37], [39], [43], 

[47], [51]. A CNN is a typical deep learning model that 

specializes in extracting local and spatial patterns. The 

CNN design is made up of a series of neural networks 

arranged in a specific order, each with a different size 

layer that performs a specific task. The deeper layers 

learn high-level features while the earlier layers learn 

low-level features. Convolutional layers (for feature 

extraction) [31], [36], pooling layers (for feature 

dimensionality reduction), and fully connected (FC) 

layers (for classification) are the three building blocks 

that make up CNNs. A convolutional layer is an 

important component of the CNN architecture for 

feature extraction. A pooling layer does conventional 

downsampling to reduce network processing. The 

pooling layer's output feature maps are typically 

flattened layers. 

➢ Generative models: Representative DL models are DL 

architectures that specialize in unsupervised feature 

extraction and can be utilized for a variety of 

applications such as clustering and classification. Deep 

AEs (D-AEs), deep RBMs (D-RBMs) [31], and DBN 

are examples of DL models. An autoencoders (AE) is a 

form of representative artificial neural network that 

uses efficient data coding to learn features 

unsupervised. AE is made up of three major 

components: an encoder, a code, and a decoder [51]. 

The encoder compresses the input into a latent-space 

representation called as the code, which is subsequently 

utilized to reconstruct the input by the decoder. 

➢ Generative models: Typically, generative DL models 

are used to supplement and improve training data. 

GAN and VAE are the most often used generative DL 

models. Several research in this study used non-DL 

data augmentation procedures, including as noise 

addition [11], sliding window [8], and amplitude 

perturbation [13], to enhance the quantity of training 

data. Two of the research evaluated [64],[67] used 

GAN and VAE networks for DL-based data 

augmentation. These studies found that utilizing GAN 

models for MI data augmentation considerably 

improved classification performance.  
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• Hybrid DL models: Hybrid deep learning models 

combine two or more deep learning models into a 

single network. In addition to the solo deep learning 

models discussed above, researchers have attempted to 

integrate several deep learning networks, with 

promising results for MI classification tasks [7], [63], 

[98-100], [115], [137], [138]. This analysis identifies 

five types of combinations: two discriminative models 

(for example, CNN/LSTM [56], [63], [68], [11], [17], 

[18], CNN/GRU [59], and CNN/MLP [55]), 

representative model combined with a discriminative 

model (e.g., CNN/SAE [60], [68]), generative model 

combined with a discriminative model (e.g., 

CNN/GAN [64], [68], and CNN/VAE [69]), 

discriminative model followed by SGAN.  

 

E. What performance indicators are utilized to assess the 

efficacy of EEG-based neural rehabilitation methods? 

Here is some common performance indicators used to 

evaluate the effectiveness of EEG-based neural rehabilitation 

methods: 

• Classification accuracy: In tasks such as motor imagery 

classification or cognitive state detection, classification 

accuracy measures how well an EEG-based model can 

distinguish between different classes or states [11], [13], 

[17], [21], [26], [27], [32], [47], [48]. 

• Receiver operating characteristic (ROC) curve and area 

under the curve (AUC): ROC curves and AUC values 

are used to evaluate the trade-off between sensitivity and 

specificity in classification tasks [26], [29], 33], [54]. 

• Mean Squared Error (MSE) or Root Mean Squared 

Error (RMSE): This metric measures the difference 

between the predicted and actual values, often used in 

regression functions to measure the accuracy of the 

prediction [13], [43], [46], [53], [63]. 

• R-squared (R2) or coefficient of determination: R2 

measures the amount of variation in the dependent 

variable that can be predicted from the independent 

variables. It shows how well the regression model fits 

the data [56], [57], [59], [61]. 

• Real-time performance metrics: For real-time 

applications, metrics such as response latency, response 

time, and overall system latency are evaluated [55], [59], 

[60], [61], [63], [65]. 

 

F. What are the present research limits and gaps in EEG-

based neural rehabilitation utilizing machine learning 

and deep learning methods? 

There are lots of gaps that are identified during study 

analyzing. The identified gaps are: 

• Noise and artifacts in EEG data might impair the 

accuracy of machine learning and deep learning 

models. To achieve trustworthy and consistent results, 

researchers must address concerns such as data quality, 

pre-processing methodologies [15], [18], [43], [44], and 

standardization of data gathering protocols. 

• Because of the difficulties in obtaining high-quality 

EEG data from patient populations, many EEG-based 

brain rehabilitation researches have small sample sizes. 

This can result in model overfitting and poor 

generalizability [18], [23], [24], [27]. To create robust 

models, additional efforts are needed to collect larger 

and more diverse information.  

• Monitoring progress in neural rehabilitation is 

frequently required. However, longitudinal EEG 

datasets that capture changes in brain activity while 

patients undertake rehabilitation are scarce. Long-term 

research is critical for determining the efficacy of 

various interventions and tailoring treatments 

accordingly [51], [59], [63], [74]. 

• Deep learning algorithms excel at learning patterns 

from data, but their black-box structure makes 

interpreting results difficult. To get a deeper knowledge 

of the underlying neurophysiologic mechanisms 

connected to brain rehabilitation, there is a need for 

research that integrates deep learning approaches with 

neuroscientific insights [15], [16], [17], [19], [26], [31]. 

As machine learning models get increasingly 

complicated, physicians and researchers must ensure 

that the judgments made by these models can be 

explained and evaluated. Creating tools to provide 

insights into why a model makes a particular decision 

can improve its clinical value [51], [53], [59], [64]. 

• Offline analysis is highlighted in several EEG-based 

brain rehabilitation techniques. Due to processing limits 

and the necessity for rapid and accurate reactions, real-

time applications [31], [32], [49], [59], in which EEG 

data is analyzed and acted upon in real-time, are 

hard.EEG data for rehabilitation poses ethical problems 

about patient consent, data ownership, and privacy. 

These issues must be addressed carefully to guarantee 

that patients' rights are honored.  

• While EEG-based neurological rehabilitation research 

is progressing, there may be a gap between academic 

research and clinical implementation [57], [61], [64], 

[66].  

G. What are the possible possibilities towards creating 

trends in neurological rehabilitation research based on 

EEG? 

Developing trends in EEG-based neurological rehabilitation 

research entails finding prospective directions that can affect 

the field's future. Here are some potential trends in EEG-

based neurological rehabilitation research that could 

influence future research: 

• Multimodal Approaches: By combining EEG data 

with additional modalities such as fMRI, fNIRS 

(functional near-infrared spectroscopy), or 

behavioural data, researchers [13], [17], [19], [20], 

[43], [49] can gain a more comprehensive 

understanding of brain activity and improve the 

efficacy of rehabilitation methods. Integrating 
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numerous data sources could result in more 

personalized and targeted treatments. 

• Closed-Loop Systems (CLS): The potential for 

developing closed-loop systems that alter 

rehabilitation interventions in real-time based on EEG 

input is enormous. These devices can optimize the 

rehabilitation process by automatically adjusting 

stimulation parameters or feedback mechanisms based 

on the patient's real-time brain activity. 

• Neurofeedback and Brain-Computer Interfaces 

(BCIs): Real-time Neurofeedback and BCIs use EEG 

signals to allow patients to operate external equipment 

directly using their brain activity [19], [21], [27]. This 

method can improve motor or cognitive training while 

also promoting neuroplasticty by strengthening brain 

networks. EEG can be used to interpret motor 

intentions and aid in the control of prosthetic devices 

like exoskeletons. Advances in decoding motor orders 

from EEG data have the potential to revolutionize 

rehabilitation for those with motor disabilities. 

• Adaptive Learning Algorithms: Using adaptive 

machine learning algorithms, rehabilitation treatments 

can be customized to each patient's development and 

needs. These algorithms [43], [49], [63], [65], [66], 

[79]  can analyze EEG data in real time and change 

the complexity or character of training exercises as 

needed. 

• Brain connection Analysis: Using EEG data to 

investigate functional and structural brain connection 

patterns can reveal how different brain regions interact 

throughout rehabilitation. This knowledge can be used 

to guide the development of focused therapies. 

• Individualized Biomarkers: Identifying EEG 

biomarkers that correlate with various neurological 

diseases and rehabilitation outcomes might help 

patients be differentiated and treated more effectively. 

Personalized therapies based on these biomarkers 

have the potential to improve rehabilitation success. 

• Real-World Applications and Telehealth: Research 

focusing on deploying EEG-based rehabilitation 

interventions outside of clinical settings, such as at 

home or via Telehealth platforms, can enhance patient 

compliance and increase access to treatments. 

 

H. What is the current state of research in machine 

learning-based EEG-based neural rehabilitation? 

Machine learning algorithms were used on EEG data for 

motor rehabilitation, with the goal of interpreting motor 

intents and giving real-time feedback to control prosthetic 

devices or exoskeletons. These treatments intended to restore 

motor function in people who had lost it due to a stroke. 

• Cognitive Rehabilitation: Using EEG data, researchers 

used machine learning to create personalized cognitive 

rehabilitation programmers [13], [17], [18], [43]. In 

neurodegenerative illnesses, these interventions 

targeted issues such as attention deficiencies, memory 

impairments, and cognitive decline. 

• Neurofeedback and BCI: Using machine learning 

algorithms, real-time Neurofeedback systems were 

developed, in which individuals receive instant 

feedback regarding their brain activity [6], [31], [33], 

[37], [56], [79. By allowing users to adjust their brain 

activity patterns, these systems attempted to improve 

neuroplasticty and cognitive skills. 

• BCI Biomarkers: Machine learning algorithms were 

used to find predictive biomarkers from EEG data, 

which indicated the likelihood of effective 

rehabilitation outcomes. This enabled personalized 

treatment planning and more precise intervention 

targeting [21], [36], [46], [61], [71]. 

• Closed-Loop Rehabilitation: Researchers were looking 

towards closed-loop devices that might change 

rehabilitation protocols in real time depending on EEG 

feedback [49], [53], [56], [77]. These technologies 

optimized the rehabilitation process by adapting 

training parameters to the user's continuous brain 

activity. 

• Generalization of transfer learning models: Researchers 

were focused on increasing the generalization of 

machine learning models trained on one dataset to other 

datasets or individuals [14], [21], [27], [53]. To address 

the heterogeneity in EEG data across different patients 

and circumstances, transfer learning techniques were 

being researched. 

 
VI. DISCUSSIONS AND CONCLUSION 

The field of BCI research shows promise in clinical 

applications and neurophysiologic evidence for BCI-induced 

neuroplastic adjustments. However, conclusive clinical 

investigations demonstrating the effectiveness of BCI 

interventions are limited, hindering its integration into 

accepted clinical procedures. 

BCI systems vary in design characteristics, and priming 

the brain before intervention has shown to improve 

functional outcomes in rehabilitation. Combining BCI-based 

robotic solutions with other approaches like BCI-

neuromuscular electrical stimulation has demonstrated 

favorable impacts. BCI-controlled soft robots have potential 

for effective stroke rehabilitation. 

BCIs and rehabilitation can help individuals become more 

independent, benefiting both those with cognitive issues and 

physical impairments. EEG equipment can be utilized by 

healthy individuals and those with disabilities in various 

daily life situations.  

To create non-invasive BCI applications, researchers 

should consider market needs and focus on end-user 

products. Wireless devices offer convenience and feasibility 

for long-term usage and outdoor applications. Ensuring data 

integrity and user experience assessments are essential for 

BCI technology adoption in different industries. 
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Additionally, for a favorable impact, intensive tactics 

combine BCI-based robotic solutions with other approaches 

like BCI-neuromuscular electrical stimulation [15]. 

According to user satisfaction and usability assessments [34], 

soft robots are reportedly appropriate in rehabilitation 

applications for people with neurological disabilities. Both 

those with cognitive issues and those with physical 

impairments can benefit from assistive technology. Overall, 

the EEG channel serves as a guide for modifying the 

technology depending on various levels of limitations and 

impairments. Even, the BCI system [57] uses Binary Particle 

Swarm Optimization (PSO) and geometrical features 

collected from the form of the Signal Order Difference 

Profile (SODP). The method shows promise in properly 

diagnosing depression from EEG data, which could help with 

depression diagnosis and management. To generating 

Poincaré plots [58] using EEG data, the Discrete Wavelet 

Transform (DWT) can extracting graphical features from 

them. The suggested technique shows promising results in 

reliably recognizing seizure occurrences by analyzing these 

aspects. The experimental results shows that study has 

important implications for seizure detection and may help 

improve the diagnosis and treatment of epilepsy and other 

seizure-related illnesses. 

To create non-invasive BCI applications, researchers 

might consult the market size to select the research studies 

that should be supported. When it comes to gaming 

applications, the BCI market is now big and well-liked. 

Game designers and different makers of consoles meant for 

gaming could explore the opportunity of integrating gaming 

systems with BCI solutions. When choosing the devices to 

utilize for an application, BCI investors (researchers) should 

be able to purchase them. 

Further, the focus should be on end-user products based on 

market needs. Wireless gadgets are more convenient to roam 

around due to day-to-day usage in the long term and the 

feasibility of use in outdoor applications. There is no need to 

wash the head after using an additional, dry EEG electrode 

because it is simple, doesn't require extra tools like syringes, 

and is easy to use. The selection of the devices must consider 

several variables, including the medical certificate, the dry, 

saline, and gel electrode types, the size and shape of the EEG 

cap, and the device type (wired/wireless). The wireless 

device type was suitable for underlying body mobility and 

cognitive processes in rehabilitation and sport science. With 

the goal of fulfilling end users' desires and requirements and 

safeguard the security of their sensitive information, more 

user experience assessments and data integrity policies are 

required.  

Data integrity and user experience assessments are critical 

for BCI technology adoption across sectors. Finally, while 

BCI technology shows promise in rehabilitation and other 

areas, more study and a user-centered strategy are required to 

maximize its effectiveness and impact. 
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