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Abstract: Spam emails have become a pervasive issue in recent years, as internet users receive
increasing amounts of unwanted or fake emails. To combat this issue, automatic spam detection
methods have been proposed, which aim to classify emails into spam and non-spam categories.
Machine learning techniques have been utilized for this task with considerable success. In this paper,
we introduce a novel approach to spam email detection by presenting significant advancements to
the Dandelion Optimizer (DO) algorithm. The DO is a relatively new nature-inspired optimization
algorithm inspired by the flight of dandelion seeds. While the DO shows promise, it faces challenges,
especially in high-dimensional problems such as feature selection for spam detection. Our primary
contributions focus on enhancing the DO algorithm. Firstly, we introduce a new local search algorithm
based on flipping (LSAF), designed to improve the DO’s ability to find the best solutions. Secondly,
we propose a reduction equation that streamlines the population size during algorithm execution,
reducing computational complexity. To showcase the effectiveness of our modified DO algorithm,
which we refer to as the Improved DO (IDO), we conduct a comprehensive evaluation using the
Spam base dataset from the UCI repository. However, we emphasize that our primary objective
is to advance the DO algorithm, with spam email detection serving as a case study application.
Comparative analysis against several popular algorithms, including Particle Swarm Optimization
(PSO), the Genetic Algorithm (GA), Generalized Normal Distribution Optimization (GNDO), the
Chimp Optimization Algorithm (ChOA), the Grasshopper Optimization Algorithm (GOA), Ant Lion
Optimizer (ALO), and the Dragonfly Algorithm (DA), demonstrates the superior performance of our
proposed IDO algorithm. It excels in accuracy, fitness, and the number of selected features, among
other metrics. Our results clearly indicate that the IDO overcomes the local optima problem commonly
associated with the standard DO algorithm, owing to the incorporation of LSAF and the reduction
in equation methods. In summary, our paper underscores the significant advancement made in the
form of the IDO algorithm, which represents a promising approach for solving high-dimensional
optimization problems, with a keen focus on practical applications in real-world systems. While
we employ spam email detection as a case study, our primary contribution lies in the improved DO
algorithm, which is efficient, accurate, and outperforms several state-of-the-art algorithms in various
metrics. This work opens avenues for enhancing optimization techniques and their applications in
machine learning.

Keywords: Dandelion Optimizer (DO); cybersecurity; optimization; feature selection; trusted emails;
next-generation spam email detection

1. Introduction

With the increasing use of the internet and online social networks (OSNs) applications,
communication and the exchange of information among users have similarly increased.
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Along with this increased communication comes the problem of spam, which is an issue
that users of these applications frequently face. One of the most common forms of spam
is unsolicited emails or spam emails, which fill up email inboxes and take time for users
to check and delete [1,2]. The problem of spam is not limited to just email but also affects
other network applications [3]. For instance, users of social networking sites often receive
unwanted messages or comments from fake accounts or spammers. Such messages can
be annoying, and harmful, and can lead to privacy breaches, identity theft, and financial
losses [4].

To address this problem, spam filtering software is developed and employed to detect
and remove spam emails [5]. However, these filtering systems may not be accurate all the
time and may mistakenly classify legitimate emails as spam [6]. This can lead to users
missing out on important information or communication, such as important emails for
job offers, contracts to sign, important appointments, etc. Additionally, spammers can
use various tactics to bypass these filters and send malicious emails that are designed to
deceive users into disclosing their personal information, passwords, or financial details.
Therefore, a robust and accurate spam detection method is necessary to detect and prevent
these threats [7].

In this research paper, therefore, we propose an automatic spam email detection
method based on the improved Discrete Optimization (IDO) algorithm. Discrete Optimiza-
tion (DO) is a well-known optimization algorithm that has been widely used in various
fields, including computer science, engineering, and operations research. In addition, DO
has a promising protentional use in classification-related problems, such as spam email
detection methods. However, DO has a problem of being stuck in local optima [8–10]. To
overcome this problem, we propose several improvements to DO, including the develop-
ment of a new local search algorithm that works based on the use of feature flipping, called
the Local Search Algorithm with Flipping (LSAF). The LSAF will update the best solution,
ensuring that the algorithm is not stuck in a local optimum. Also, this paper introduces
the use of a mathematical formula in maintaining the population size, which results in a
maintained complexity and sustains the algorithm’s accuracy accordingly.

On the other hand, the proposed algorithm employs a wrapper-based feature selection
method. This method is a supervised learning method that picks the most relevant features
to be used for classification tasks. This method seeks to choose the features that are most
dominant to the classification task while ignoring irrelevant or redundant features that may
affect the classification accuracy. By introducing such a method, the computational time
and complexity is maintained at an acceptable level and improves the accuracy of the spam
detection system.

Over the last few years, spam detection has been one of the active research areas, and
diverse systems have been proposed and developed to address such a high-dimensional
problem. Such approaches can be generally classified into three groups: rule-based ap-
proaches, content-based approaches, and machine learning-based approaches. The rule-
based approaches utilize a set of predefined rules to be used in the process of identifying
spam emails. Though, these approaches have constrained accuracy, which might lead to
not identifying new or foreign spam emails [11]. In contrast, content-based approaches use
the content of the email as a way to flag spam emails. In other words, these approaches
analyse the email’s text, images, links, and other relevant features to verify whether it is
a spam email or not. Yet, such approaches may be ineffective as opposed to advanced
spamming methods that are mainly designed to bypass content-based filters [12]. While
on the other side, machine learning-based approaches use statistical and machine learning
methods to learn from a data sample and learn to classify emails as spam or legitimate [13].
Such approaches have demonstrated promising results and are broadly used in current
spam detection systems [14].

Though, regardless of the developments in spam detection approaches, such a problem
remains a challenging issue forth. This is because spammers are always evolving their
strategies as a way to skirt the detection systems. This scenario makes it essential to keep
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developing new and adaptive spam detection systems. Hence, over the recent years, one of
the research fields that has gained consideration is the use of optimization algorithms in
developing spam email detection [15]. Optimization algorithms, such as the DO algorithm,
have proven their efficacy in resolving several optimization problems [16,17]. For instance,
the use of such algorithms for spam detection implies the selection of relevant features and
the optimization of the classifier’s parameters to achieve high accuracy. Beyond algorithmic
advancements, our work is designed with practicality in mind, offering insights into the
seamless integration of our method into operational email filtering systems.

In this paper, therefore, to solve such a crucial problem, we propose an improved
DO algorithm to be used for automated spam email detection methods. Our proposed
algorithm employs the LSAF technique and the mathematical question for population
size reduction as a way to resolve the issue of local optima and cut down the algorithm’s
complexity. Moreover, in our proposed algorithm, a wrapper-based feature selection
technique is used to select the most relevant features for spam classification.

To summarize, the main contributions of this paper are:

• Improved DO Algorithm: Introduction of the Improved Dandelion Optimizer (IDO)
algorithm, addressing local optima issues and enhancing optimization.

• Local Search Enhancement: Introduction of the Local Search Algorithm with Flipping
(LSAF) to improve solution quality within the IDO algorithm.

• Population Size Reduction: Proposal of a mathematical formula for population size
reduction, reducing computational complexity in spam detection.

• Efficient Feature Selection: Application of a wrapper-based feature selection method to
efficiently select relevant features in spam detection, enhancing classification accuracy.

• Effective Case Study Application: The demonstrated practical application of the IDO
algorithm through a case study on spam email detection, showcasing its efficiency
and accuracy in a real-world scenario.

The rest of this paper is structured as follows: Section 2 presents and discusses
some of the recent related works on spam email detection methods, and more specifically
the use of optimization algorithms in this context. While in Section 3, we provide a
detailed description of the native DO algorithm along with some extra visualizations of
the algorithm’s nature behaviour. Also in Section 3, the algorithm’s steps are explained,
including the feature selection process and the optimization of the classifier’s parameters.
In Section 4, the implementation details and the experimental setup of the case study
application for Spam Email Detection are also discussed. The results and performance
evaluation of the proposed IDO algorithm in contrast with the other benchmarked methods
are presented and discussed in Section 5. Finally, Section 6 concludes the paper and
suggests future work and directions for improvement.

2. Related Works

Over the last few years, optimization algorithms have been widely used for feature
selection in spam email detection methods. Numerous search studies have proposed several
optimization-based spam detection approaches, and their efficiency and powers have been
widely analysed. For example, in Sokhangoee and [18], a spam detection method based
on association-rule mining and a genetic algorithm is proposed. The method achieved
high accuracy in detecting spam emails, though it was suffering from high computational
complexity. In contrast, [19] proposed a spam detection method based on the combination of
the Harris Hawks Optimizer (HHO) and the KNN classifier. The method has demonstrated
promising results in terms of accuracy and processing time. Though, the HHO algorithm
by its nature is heavily dependent on the random initialization of its parameters, which
may impact its stability and reproducibility.

On the other hand [20] introduced a spam detection method based on the Horse Herd
Optimization Algorithm (HOA) with a KNN classifier. Their method gained high accuracy
in detecting spam emails; nonetheless, its performance could be heavily impacted by the
sensitivity of the HOA algorithm, which comes from the nature of its parameter settings.
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Another attempt [21] proposed the use of the Symbiotic Organisms Search (SOS) algo-
rithm in the spam email detection mechanism. Their proposed approach has demonstrated
high accuracy in detecting spam emails and has performed well in contrast with other
optimization-based approaches. Yet, the introduced computational cost could be relatively
high, which bounds its feasibility with a large-scale spam detection problem.

On the other hand, the authors in [22] suggested the use of the sine–cosine algorithm
(SCA) in detecting spam emails. The proposed approach has performed well in terms of
accuracy and processing time. However, the performance could be limited by the nature of
the SCA algorithm’s sensitivity, due to the nature of its parameter settings. Hence, such a
method will not be a reliable option, especially when it comes to the highly sensitive nature
of the detection process of spam email filtering mechanisms.

The authors in [23] introduced the Water Cycle Optimization (WCO) algorithm in
conjunction with Simulated Annealing (SA) to be used in detecting spam emails. Though
their proposed method has demonstrated high accuracy in detecting spam emails, its
computational complexity was relatively high.

From the presented methods and approaches, we can find out the potential use of
optimization algorithms in spam email detection. Though, their performance varies de-
pending on specific algorithmic features, parameter settings, and computational complexity.
Additional research is therefore needed as a way to develop more efficient and effective
optimization-based spam detection methods.

In Table 1 a comparison of some of the common nature-inspired metaheuristic algo-
rithms based on their population, individual, and optimization strategies is listed. The
evolutionary types of algorithms, such as genetic algorithms and differential evaluation
strategies, generally depend on the concept of natural selection to optimize solutions over a
population of individuals, while swarm-based algorithms, such as particle swarm optimiza-
tion and firefly algorithms, mimic the collective behaviour of social swarms to optimize
the given solutions. Physical-based algorithms, such as simulated annealing and harmony
search, are inspired by physical phenomena like thermal energy and musical harmony to
optimize solutions. Other metaheuristic algorithms, such as grey wolf optimization [24], the
artificial bee colony algorithm, and the imperialist competitive algorithm, draw inspiration
from various sources to optimize solutions.

Table 1. Comparison of the nature-inspired metaheuristic algorithms.

Nature-Inspired Metaheuristics

Evolutionary
Algorithms

Swarm-Based
Algorithms

Physical-Based
Algorithms Other Metaheuristics

Population Genetic Algorithms Particle Swarm
Algorithms Simulated Annealing Grey Wolf

Optimization

Individual Differential Evaluation
Strategies Firefly Algorithms Harmony Search Artificial Bee Colony

Algorithm

Optimization Strategy Evolutionary
Programming

Ant Colony
Optimization

Algorithm
Memetic Algorithms Imperialist

Competitive Algorithm

It is important to note that the choice of a metaheuristic algorithm is heavily dependent
on the specific optimization problem at hand. For instance, swarm-based algorithms are
often used for optimization problems that require the exploration of a large search space,
while physical-based algorithms are often used for optimization problems that require
the optimization of a continuous function. In addition, hybrid metaheuristic algorithms
that combine different techniques from different categories have been proposed to achieve
better performance in optimization problems.

In order to demonstrate some of the key analysis aspects that could be used in compar-
ing optimization techniques, below are some analysis points that could be used to highlight
the competency of the related works:



Computers 2023, 12, 196 5 of 25

Performance comparison: In addition to listing the strengths and weaknesses of each
algorithm, this comparison can be performed based on various metrics such as accuracy,
precision, recall, F1 score, etc. The comparison can also be performed on different datasets
to evaluate the generalizability of the algorithms.

Impact of feature selection: Many of the algorithms mentioned in the related works
section use feature selection techniques to improve the accuracy of spam detection. This
analysis could demonstrate the impact of feature selection on the performance of the
algorithms. This analysis could also include a comparison of the performance of algorithms
with and without feature selection and compare different feature selection techniques.

• Analysis of false positives and false negatives: False positives and false negatives
are common errors in spam detection. An analysis of the false positives and false
negatives generated by each algorithm could be used on each of these algorithms to
compare and contrast them. This analysis could help identify the specific types of
emails that are misclassified by each algorithm and suggest improvements to reduce
these errors.

• Robustness analysis: The robustness of the algorithms could be analysed by testing
their performance under different scenarios such as varying spam densities, different
types of spam, and changes in the email dataset. This analysis could help evaluate the
generalizability of the algorithms and identify scenarios where they may not perform
well.

• Comparison with traditional spam detection methods: Such a comparison could
compare the performance of the optimization algorithms with traditional rule-based
and content-based spam detection methods. This comparison could help evaluate the
effectiveness of optimization algorithms in improving the accuracy of spam detection.

• Analysis of computational efficiency: Optimization algorithms can be computationally
expensive, especially when dealing with large datasets. The computational efficiency
of each algorithm could be analysed and compared with their run times on different
datasets. This analysis could help identify the most efficient algorithms and suggest
improvements to reduce their computational cost.

• On the other hand, the DO is a relatively new optimization algorithm that has been
applied to various optimization problems, including feature selection and classification
tasks, which has the potential to be used for spam detection. As with any other
optimization algorithm, DO has some limitations, which are listed as follows:

• Premature Convergence: DO tends to converge prematurely to local optima, which
can result in suboptimal solutions [8]. This is a common problem in many optimization
algorithms and the DO algorithm is no exception.

• Sensitivity to Initialization: DO’s performance can be sensitive to the initial popula-
tion’s quality and diversity [25]. Poor initialization can lead to premature convergence,
while good initialization can improve the algorithm’s performance.

• Lack of Diversity: DO does not have mechanisms to maintain population diversity,
which can cause premature convergence and limit the algorithm’s exploration capabil-
ities [26].

• Limited Search Space Exploration: DO’s search capabilities are limited, as it only
explores a small portion of the search space at each iteration. This can result in
suboptimal solutions and can make it difficult to find the global optimum [27].

• Computational Complexity: DO’s computational complexity can be high, particularly
for large-scale problems. The algorithm involves evaluating fitness functions, which
can be computationally expensive, and the algorithm’s complexity can increase with
the problem’s dimensionality [28].

• Lack of Theoretical Analysis: DO’s theoretical analysis is still limited, and there are few
theoretical guarantees of its convergence and performance under different conditions.
This makes it difficult to understand the algorithm’s behaviour and to design effective
parameter settings [29].
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In summarizing the performance evaluation of the DO algorithm, it has exhibited
encouraging outcomes in certain applications; however, researchers need to acknowledge
its limitations and drawbacks when considering its application to their specific optimiza-
tion problems. To enhance the algorithm’s effectiveness, researchers should investigate
strategies to address and overcome these limitations.

While many optimization techniques have been utilized in the literature for feature
selection in spam email detection, the No Free Lunch Theorem (NFL) [30] suggests that no
single solution can be applied to all problems and outperform all other algorithms. Hence,
researchers continue to investigate the use of the most recent optimization algorithms for
spam email detection, including DO.

However, as mentioned earlier, DO is susceptible to local optima, which limits its
effectiveness. To address this, this paper proposes two main improvements to combine
with the DO algorithm to enhance its performance and overcome its weaknesses.

To conclude this section, Table 2 provides a summary of several optimization algo-
rithms, including the Particle Swarm Optimization (PSO), the Genetic Algorithm (GA), Ant
Colony Optimization (ACO), the Artificial Bee Colony (ABC), Hill Climbing, Simulated
Annealing, and Tabu Search. The strengths and weaknesses of each algorithm are listed, as
well as their effectiveness in email spam detection. The table suggests that PSO, GA, ACO,
and ABC have shown promising results in email spam detection, particularly for feature
selection and email classification. However, each algorithm has its limitations and requires
careful parameter tuning for optimal performance. Hill Climbing, Simulated Annealing,
and Tabu Search have been used successfully for email classification but may not be as
effective as other optimization algorithms for feature selection. Overall, the table provides
a useful reference for researchers to choose an appropriate optimization algorithm for their
email spam detection problem based on their specific requirements and constraints.

Table 2. Summary of optimization algorithms application in email spam detection.

Optimization
Algorithm Description Strengths Weaknesses Effectiveness in Email

Spam Detection

Particle Swarm
Optimization (PSO)

A population-based
optimization algorithm
that involves particles
moving around in the

search space to find the
best solution.

Good for feature
selection, can handle

high-dimensional data,
easy to implement.

Can become stuck in
local optima, sensitive
to parameter settings.

Has shown promising
results in email spam
detection, particularly

for feature selection
and email classification.

Genetic Algorithm
(GA)

A population-based
optimization algorithm
that involves creating a
population of potential

solutions and then
applying selection,

crossover, and
mutation operations to
evolve the population

over generations.

Can handle non-linear
and non-convex

problems and can find
multiple optimal

solutions.

Can be slow, requires
careful parameter

tuning, and may suffer
from premature

convergence.

Has been used
successfully for email

spam detection,
particularly for email

classification.
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Table 2. Cont.

Optimization
Algorithm Description Strengths Weaknesses Effectiveness in Email

Spam Detection

Ant Colony
Optimization (ACO)

An optimization
algorithm that uses
pheromone trails to

guide the search
process.

Good for feature
selection, can handle

high-dimensional data,
and can find global

optima.

Can be slow, sensitive
to parameter settings,
and may suffer from

premature
convergence.

Has shown promising
results in email spam
detection, particularly

for feature selection
and email classification.

Artificial Bee Colony
(ABC)

An optimization
algorithm that involves

employed bees,
onlooker bees, and

scout bees to explore
the search space.

Good for finding global
optima, easy to

implement.

Can be slow, sensitive
to parameter settings,
and could suffer from

premature
convergence.

Has been used
successfully for email

spam detection,
particularly for email

classification.

Hill Climbing

A local search
algorithm that

iteratively improves the
current solution by

making small changes
to it.

Simple and fast, can
handle large datasets.

Can become stuck in
local optima and could
not find global optima.

Has been used
successfully for email
classification but may
not be as effective as
other optimization

algorithms for feature
selection.

Simulated Annealing

An optimization
algorithm that starts

with a high
“temperature” and then

gradually decreases it
to find the best

solution.

Able to find global
optima, and manage

noisy data.

Can be slow, and
sensitive to parameter

settings.

Has been used
successfully for email
classification but may
not be as effective as
other optimization

algorithms for feature
selection.

Tabu Search

A metaheuristic
algorithm that is based

on the concept of
intensification and

diversification.

Able to solve non-linear
and non-convex

problems, also finding
global optima.

Can be slow and
requires careful

parameter tuning.

Has been used
successfully for email
classification but may
not be as effective as
other optimization

algorithms for feature
selection.

3. Dandelion Optimizer

The DO algorithm is inspired by the flight of dandelion seeds, as they grow and travel
through the air [31]. This optimization algorithm utilizes mathematical models of the three
stages of dandelion seed flight: rising, descending, and landing.

• The rising phase: During the rising phase, dandelion seeds are influenced by a pulling
force in the weather that is both sunny and windy. A vortex forms above the seed,
causing it to ascend into the air.

• The descending phase: Once the seed reaches a certain height, it enters the descending
phase, where it falls steadily towards the ground.

• The landing phase: During the landing phase, dandelion seeds fall randomly due to
the influence of wind and weather, ultimately landing in one location to sprout new
dandelions.

By modelling these stages, the DO algorithm attempts to replicate the behaviour of
dandelion seeds in order to optimize various functions. Nevertheless, it is noteworthy to
highlight that the DO algorithm holds some limitations, such as its likelihood to be trapped
in the local optima solutions. Therefore, it is important to explore some of the potential
ways for boosting the algorithm’s performance when applying such an algorithm in solving
some of the complex optimization problems.

As a way to demonstrate the movement patterns of dandelion seeds, a simulated
movement trajectory is presented in Figure 1. We have implemented a flight path simulation
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for a dandelion seed, considering the prevailing wind speed and direction. We started by
identifying the seed’s initial position, the wind speed and direction. In addition, in the
developed simulation, we specified the number of iterations at 50 and the step size as 0.1,
which can be adjusted according to the simulated scenario. The visualized seed’s flight
trajectory was generated with a little circle marker that indicated the starting position of
the dandelion seed as the x and y-axis equal zero.
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Subsequently, the simulation iterated over the specified number of 50 iterations. At
each iteration, the new position of the seed was calculated based on factors such as wind
speed, direction, and step size. A line was then plotted to depict the trajectory of the
dandelion seed from its previous position to its current location. The simulation continued
until the predetermined number of iterations was reached.

This example effectively demonstrates how mathematical models can be utilized to
simulate the flight path of dandelion seeds under varying wind conditions. It provides a
tangible illustration of the application of mathematical simulations in understanding and
analyzing the behaviour of dandelion seeds in response to different wind parameters.

The DO algorithm comprises three primary stages, each accompanied by its respective
mathematical models, which are described as follows.

Rising stage:
The initiation of the rising phase and the departure of dandelion seeds from the

parent plant are contingent upon achieving a minimum height. Nevertheless, the specific
altitude at which the ascent commences is subject to multiple environmental variables,
including wind speed and humidity. To better understand these factors, the weather can
be categorized into two main categories: sunny and windy weather or cloudy and calm
weather. In sunny and windy weather, dandelion seeds are subjected to a pulling force that
creates a vortex above them, lifting them into the air. On the other hand, in cloudy and
calm weather, the seeds may require additional height to overcome the resistance of the
air and initiate the rising phase. Understanding the environmental factors that impact the
flight of dandelion seeds can inform the design of airborne systems, such as drones and
micro air vehicles.

The weather categories are detailed below in two cases:
Case 1: Dandelion seeds have a unique ability to travel long distances by taking advan-

tage of the wind currents. Wind speeds on clear days follow a lognormal distribution, with
random numbers more evenly distributed along the Y-axis, providing a higher probability
of dandelion seeds travelling far. Hence, the DO algorithm follows an exploration strategy
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in this case, where the wind plays a significant role in scattering dandelion seeds to random
locations in the search space. The speed of the wind influences the height to which the
dandelion seeds rise, with stronger winds causing them to soar higher and disperse farther.
The vortexes above the dandelion seeds are adjusted by the wind speed in a spiral form,
represented by Equation (1):

xt+1 = xt + a× υx × υy × ln ln Y× (Xs − Xt) (1)

where the terms in the equation are as follows: Xt is the dandelion seed position at iteration
t. Xs is the position in the search space that was selected randomly during iteration t.
Equation (2) gives the formula for the randomly selected position.

xs = rand(1, Dim)× (UB− LB) + LB (2)

ln ln Y represents a lognormal distribution with µ = 0 and σ2 = 1, and the formula
for it is Equation (3)

ln ln Y =

{
1

y
√

2π
exp exp

[
− 1

2σ2 (ln ln y)2
]

y ≥ 0 0 y < 0 (3)

The normal distribution is represented by the variable y in Equation (3). α. is an
adjusting parameter for the length of the search steps, and the mathematical equation to
find α is Equation (4)

α = rand()×
(

1
T2 t2 − 2

T
t + 1

)
(4)

α is a random value over the interval [0, 1]. Such oscillations cause the algorithm to
prioritize the global search in the early stages and switch to a local search in the latter stages,
which is advantageous for ensuring the correct convergence after a full global search. The
coefficients υx and υy denote the lift components of a dandelion caused by the separated
eddy action. Equations (6) and (7) are used to find these coefficient values.

r =
1
eθ

(5)

υx = r× cos cos θ (6)

υy = r× sin sin θ (7)

where the value of θ represents a randomly generated number over the interval [π,−π].
Figure 2 simulates the flight of a dandelion seed in a search space with two dimensions

over a total of 50 iterations. We simulated four generated random flight paths; each
run generated 50 interactions of the dandelion’s positions from the starting point until it
converged to its final position. The wind speed was represented by a lognormal distribution
with a mean of 0 and variance of 1, and the wind direction was determined by a random
vector drawn from a standard normal distribution. The position of the dandelion seed was
updated using the formula given in Equation (1), where the adaptive parameter alpha was
computed using the formula given in Equation (4). The position of the dandelion seed was
also clipped to the search space defined by the lower and upper bounds of the searching
space, (LB = −10 and UB = 10). The figure also generated a plot of the flight path of the
dandelion seed over the 50 iterations.



Computers 2023, 12, 196 10 of 25

Computers 2023, 12, x FOR PEER REVIEW 10 of 25 
 

exploring more promising solutions in different regions of the problem space. Therefore, 
finding a balance between exploration and exploitation is crucial, and proper tuning is 
necessary to achieve this balance. 

  

  
Figure 2. Four random generated flight paths of a dandelion seed, considering Case 1 with 50 
Interactions. 

Case 2: Various environmental factors such as air resistance and humidity hinder the 
dandelion seeds from rising with the wind, particularly on rainy days. Therefore, to 
overcome this limitation, Equation (8) was utilized to perform local exploitation in the 
dandelion seed’s immediate vicinity or neighbourhoods. 𝑥௧ାଵ = 𝑥௧ × 𝑘 (8)

where 𝑘 controls the domain of the dandelion’s local search, and Equation (9) was used 
to find 𝑘 value. 𝑞 = 1𝑇ଶ − 2𝑇 + 1 𝑡ଶ − 2𝑇ଶ − 2𝑇 + 1 𝑡 + 1 + 1𝑇ଶ − 2𝑇 + 1  

𝑘 = 1 − 𝑟𝑎𝑛𝑑() × 𝑞 (9)

Finally, the rising stage mathematical equation for a dandelion seed was Equation 
(10) 𝑥௧ାଵ = {𝑥௧ + 𝑎 × 𝜐௫ × 𝜐௬ ×𝑙𝑛 𝑙𝑛 𝑌 × (𝑋௦ − 𝑋௧)   𝑟𝑎𝑛𝑑𝑛 < 1.5 𝑥௧ × 𝑘         𝑒𝑙𝑠𝑒  (10)

where randn() generates a random number with a normal distribution. 
In this study, we investigated the flight path of a dandelion seed on a rainy day, 

where air resistance, humidity, and other factors affect the seed’s ability to rise with the 
wind. We conducted a simulation (shown in Figure 3) with 50 iterations, using a scaling 
factor 𝑎 of 0.01 and x-y velocity of 1, starting from a random initial position of (0.1, 0.1) 
and targeting a fixed point of (0.5, 0.5). At each iteration, we updated k using Equation (9) 
and calculated the seed’s displacement using Equation (10), based on a logarithmic 
function and a random factor. 

We plotted the seed’s position at each iteration and checked if the target was reached. 
When the seed reached the target point, the simulation ended, and the final position was 
plotted in green. It is worth noting that we did not consider the effect of wind speed on 
the seed’s flight path in this simulation, but it can be included by modifying the equations. 

Our simulation results demonstrate the importance of controlling factors like k, in 
finding the right targeted position of the dandelion seed at the end of the simulation time, 
as it successfully landed on the point (0.5, 0.5) in our study. 

y-
co
or
di
na
te

y-
co
or
di
na
te

y-
co
or
di
na
te

y-
co
or
di
na
te

Figure 2. Four random generated flight paths of a dandelion seed, considering Case 1 with 50
Interactions.

The behaviour of the flight of the dandelion seed shows a distinct pattern: a long and
quick movement in the beginning followed by a slow and saturating behaviour towards
the end. The initial movement represents the exploration phase, while the latter phase
signifies the exploitation phase, where the seed starts to approach the landed area. This
pattern highlights a limitation in the search process, where there is a higher probability of
exploring more promising solutions in different regions of the problem space. Therefore,
finding a balance between exploration and exploitation is crucial, and proper tuning is
necessary to achieve this balance.

Case 2: Various environmental factors such as air resistance and humidity hinder
the dandelion seeds from rising with the wind, particularly on rainy days. Therefore, to
overcome this limitation, Equation (8) was utilized to perform local exploitation in the
dandelion seed’s immediate vicinity or neighbourhoods.

xt+1 = xt × k (8)

where k controls the domain of the dandelion’s local search, and Equation (9) was used to
find k value.

q =
1

T2 − 2T + 1
t2 − 2

T2 − 2T + 1
t + 1 +

1
T2 − 2T + 1

k = 1− rand()× q (9)

Finally, the rising stage mathematical equation for a dandelion seed was Equation (10)

xt+1 =
{

xt + a× υx × υy × ln ln Y× (Xs − Xt) randn < 1.5 xt × k else (10)

where randn() generates a random number with a normal distribution.
In this study, we investigated the flight path of a dandelion seed on a rainy day, where

air resistance, humidity, and other factors affect the seed’s ability to rise with the wind. We
conducted a simulation (shown in Figure 3) with 50 iterations, using a scaling factor a of
0.01 and x-y velocity of 1, starting from a random initial position of (0.1, 0.1) and targeting
a fixed point of (0.5, 0.5). At each iteration, we updated k using Equation (9) and calculated
the seed’s displacement using Equation (10), based on a logarithmic function and a random
factor.
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Figure 3. Simulated flight path with the displacement impact and the controlling factor represented
by Equation (10).

We plotted the seed’s position at each iteration and checked if the target was reached.
When the seed reached the target point, the simulation ended, and the final position was
plotted in green. It is worth noting that we did not consider the effect of wind speed on the
seed’s flight path in this simulation, but it can be included by modifying the equations.

Our simulation results demonstrate the importance of controlling factors like k, in
finding the right targeted position of the dandelion seed at the end of the simulation time,
as it successfully landed on the point (0.5, 0.5) in our study.

Descending stage
The DO algorithm performs exploration at this level as well. After climbing a given

distance, dandelion seeds descend gradually. In the native DO algorithm, the movement
of dandelions is modelled by Brownian motion [32]. Since Brownian motion is normally
distributed at each update, it makes it easy for the solutions to explore new search commu-
nities while the iterative updating process continues. The mathematical equation for the
Descending stage is represented by Equation (11)

xt+1 = xt − a× βt × (Xmean_t − a× βt × Xt) (11)

where βt is a random value that follows the normal distribution and represents Brownian
motion. The average position of the population in the ith iteration is denoted by the variable
Xmean_t, and Equation (12) is used to find its value

Xmean_t =
1

pop ∑pop
i=1 xi (12)

Landing stage
The DO algorithm emphasises the exvalue.action process throughout this stage. The

dandelion seed chooses its landing spot at random based on the first two stages. As the
iterations go, the DO will likely converge on the global best solution. As a result, the best
solution was the general area where dandelion seeds have the best chance of survival.
Search agents use the elite’s remarkable knowledge in their areas to converge to the global
optimum. The optimal solution will emerge as the population evolves. Equation (13)
demonstrates this behaviour.

xt+1 = xelite + levy(λ)× a× (xelite − Xt × δ) (13)
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where xelite represents the best position in the ith iteration, and the levy can be determined
using Equation (14).

levy(λ) = s× ω× σ

|t|
1
β

(14)

where β is a random value over [0, 2], and in DO the used value is β = 1.5. s is a constant
value of 0.01. t and w are random values over [0, 1]. Equation (15) is used in DO to find σ
value. Also, δ is a variable with a value over [0, 2] and it can be determined using Equation
(16)

σ =

 r (1 + β)× sinsin
(

πβ
2

)
r
(

1+β
2

)
× β× 2(

β−1
2 )

 (15)

δ =
2t
T

(16)

The pseudocode of the DO algorithm is presented in Algorithm 1. As we have stated
previously, the DO algorithm is a population-based optimization algorithm that aims
to find the best solution for a given problem. It utilizes a set of dandelion seeds, each
representing a potential solution, and iteratively updates their positions to search for the
optimal solution.

As listed by the pseudocode, the algorithm takes three input parameters: the popula-
tion size (pop), the maximum number of iterations (T), and the variable dimension (Dim).
The output of the algorithm is set to be returning the best solution position (Xbest) and its
corresponding fitness value (fbest). Initially, the dandelion seeds are randomly initialized.
The fitness value of each seed is calculated based on the problem-specific fitness function.
The optimum dandelion seed (Xelite) is selected based on its fitness value, representing
the current best solution found. The algorithm subsequently enters a loop that lasts until
the maximum number of iterations is reached. Within each iteration, the algorithm goes
through three stages: rise, decline, and land.

In the rise stage, a random number is generated from a normal distribution. If the
generated number is less than 1.5, adaptive parameters are generated using Equation (8),
and the dandelion seeds are updated using Equation (5). This stage aims to explore the
search space by allowing the seeds to move in a more exploratory manner. While in the
decline stage, the dandelion seeds are updated using Equation (12). This stage models
the declining movement of the seeds and helps to refine the solutions by exploiting the
search space. In contrast, within the land stage, the dandelion seeds are updated using
Equation (14). This stage represents the final convergence towards the best solution by
incorporating the information from the elite seed.

It is noteworthy to mention that, after each stage, the dandelion seeds are arranged
in order of their fitness values, from good to bad. The elite seed (Xelite) is updated based
on its fitness value, ensuring it represents the current best solution found. Throughout
the iterations, if the fitness value of Xelite is better than the fitness value of Xbest, Xbest,
and fbest are updated accordingly. The loop continues until the maximum number of
iterations is reached. Ultimately, the algorithm returns the best solution position (Xbest)
and its corresponding fitness value (fbest).

By combining the rise, decline, and land stages, the DO algorithm balances exploration
and exploitation to efficiently search for the optimal solution. The algorithm’s effectiveness
depends on the appropriate selection of parameters, such as the population size, the
maximum number of iterations, and the formulation of adaptive parameters in Equations
(8), (10), (12) and (14).
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Algorithm 1: Pseudo-code of DO algorithm

Input: The population size pop, the maximum number of iterations T, and variable dimension Dim
Output: Xbest: is the Best solution position
fbest: is the fitness of the Best solution
Initialize dandelion seeds X of DO
Calculate the fitness value f of each dandelion seeds.
Select the optimum dandelion seed Xelite according to fitness value.
while (t < T) do

/* Rise stage */
if randn() < 1.5 do
Generate adaptive parameters using Equation (8)
Update dandelion seeds using Equation (5)

else if do
Generate adaptive parameters using Equation (10)
Update dandelion seeds using Equation (9)

end if
/* Decline stage */

Update dandelion seeds using Equation (12)
/*Land stage */

Update dandelion seeds using Equation (14)
Arrange dandelion seeds from good to bad according to fitness values.
Update Xelite
if f(Xelite) < f(Xbest)
Xbest = Xelite, fbest = f(Xelite)

end if
t = t +1.

end while
Return Xbest and fbest

4. Case Study: Applying the Proposed IDO Algorithm for Spam Email Detection

In this section, the proposed IDO algorithm will be explained in detail, highlighting the
key improvement to the native DO algorithm that has helped in advancing the performance
of the new version of the proposed IDO algorithm. Afterwards, as a way to prove the
robustness of the algorithm, an application for spam email detection is used in testing the
performance.

In order to improve the performance of the DO algorithm, the LSAF algorithm was
used in optimizing the process of finding the best solution. The LSAF algorithm is a local
search algorithm that aims to improve the quality of the best solution found by iteratively
exploring the search space through the adaptive flipping of selected features. As presented
in Algorithm 2, the algorithm starts with an initial best solution position (Xbest) and its
corresponding fitness value (fbest).

The algorithm utilized two variables: Lt, which stores the current iteration of the LSAF
algorithm, and LSAMaxItr, which represents the maximum number of iterations for the
LSAF algorithm. Initially, a temporary solution (Temp) was set to the current best solution
(Xbest). The algorithm entered a loop that continued until Lt reached the LSAMaxItr.
Within each iteration, a variable SWOneZero was calculated as Lt divided by LSAMaxItr.
If SWOneZero was greater than 0.7, it indicated that the algorithm was in a stage where
unselected features need to be flipped to 0. In this case, three random features from Temp
were selected, and all of them were flipped to 0 (unselected).

While on the other hand, If SWOneZero was less than or equal to 0.7, it indicated that
the algorithm was in a stage where selected features need to be flipped to 1. Again, three
random features from Temp were selected, and all of them were flipped to 1 (selected). After
the feature flipping, the fitness of the updated Temp solution was calculated as newfitness.
If the newfitness was better than the current fbest, Xbest and fbest were updated to the
values of Temp and newfitness, respectively.
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Additionally, if the newfitness was equal to fbest and the number of selected features in
Temp (NUMF(Temp)) was less than the number of selected features in Xbest (NUMF(Xbest)),
Xbest and fbest were updated to the values of Temp and newfitness, respectively. This step
ensured that the algorithm selects solutions with a lower number of selected features if
their fitness values were the same. It is noteworthy to mention that after each iteration,
Lt was incremented by 1, and when the maximum number of iterations was reached, the
algorithm returned the final best solution (Best).

The LSAF algorithm combines local search and adaptive feature flipping to enhance
the quality of the best solution. By iteratively exploring the search space and adjust-
ing the selected features, the algorithm aims to converge towards an improved solution.
The effectiveness of the algorithm depends on the appropriate set of parameters such as
LSAMaxItr and the selection of features for flipping. Overall, the LSAF algorithm provides
a practical approach to improve the performance of optimization algorithms by focusing
on local search and adaptive feature selection. It has been used successfully in various
optimization problems and can be customized based on specific requirements and problem
characteristics, which is one of the key features of our proposed IOD algorithm.

Algorithm 2: Pseudo-code of LSAF algorithm

Xbest: is the Best solution position
fbest: is the fitness of Best solution
Lt = 1 (Lt is variable to store the current iteration of the LSAF algorithm)
LSAMaxItr= 10 (LSAMaxItr is the maximum number of iteration of LSAF algorithm)

Temp = Xbest
while Lt <= LSAMaxItr

SWOneZero=t/T;
if SWOneZero > 0.7

select 3 random features from temp and flip all to 0 (unselected features)
else

select 3 random features from temp and flip all to 1 (selected features)
end if

newfitness= fit(temp)
if newfitness < fbest

Xbest = temp.
fbest = newfitness;

end if
if newfitness = fbest AND NUMF(temp) < NUMF(Xbest)

Xbest = temp.
fbest = newfitness;

end if
Lt = Lt +1.
End while

return Best

Algorithm 3 demonstrates the improvement that is proposed in the IDO algorithm. The

highlighted part of the presented pseudocode shows where the LSAF algorithm begins
after 5 iterations. We have designed the algorithm with such an indicator to notify that the
algorithm has reached a milestone or checkpoint after every five iterations to apply the
LSAF algorithm in optimizing the best solution. This suggests that the LSAF algorithm
is incorporated into the larger algorithm as a means of enhancing the solution quality.
Algorithm 2 is executed specifically at these milestone points to provide an opportunity
for local search and adaptive feature flipping, which can potentially refine the current best
solution.
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Algorithm 3: Pseudo-code of IDO algorithm
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Afterwards, the algorithm will execute another condition that checks if the population
size (pop) is greater than a minimum value (popmin). This condition ensures that the
population size is above a certain threshold to proceed with updating the population values
using Equation (17). The specific details of Equation (17) are not provided here, but it
represents a mathematical formula or calculation used to determine the new population
size based on the set criteria demonstrated in Equation (17).

pop = bpopmax −
((

(popmax − popmin)×
t
T

))
c (17)

where popmax = pop, popmin =
⌊ pop

2
⌋
.
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After updating the population size, the fittest solutions are selected according to the
new population value. This implies that only the most promising individuals or solutions
are retained, while others may be discarded or replaced. The specific method for selecting
the fittest solutions is not specified in the given pseudocode snippet. Ultimately, the
iteration counter (t) is incremented by 1, indicating the completion of one iteration of the
larger algorithm. This ensures the progression of the algorithm towards its termination
condition or the maximum number of iterations.

In summary, the IDO algorithm has been hybridized with the LSAF algorithm as a
way to enhance the current best solution at specific milestone points, update the population
size based on the mathematical Equation (17), and select the fittest solutions. These
steps contribute to the overall optimization process and improvement of the algorithm’s
performance.

5. Experimental Results and Discussions

The experimental results were obtained using the spam base dataset [33], which
consists of 4601 instances with 57 features, as listed in Table 3. The dataset was used to
evaluate the performance of the proposed IOD algorithm along with the other state of the
arts as well as the native DO algorithm.

Table 3. Details of the used spam base dataset [33].

Number of Features Number of Instances

57 4601

The parameters used for all experiments were as follows: a population size of 10, 100
iterations, and 30 runs refer to the details listed in Table 4. The K-Fold cross-validation
technique with 10 folds was employed to ensure a robust evaluation of the algorithm’s
performance. Table 3 lists the main statistics of the dataset.

Table 4. Parameters setting of all experiments.

Parameter Value

Population size 10

Number of iterations 100

Number of runs 30

KFOLD 10

These parameter settings were chosen to discover a balance between computational
efficiency and obtaining reliable results. A population size of 10 was selected to maintain
diversity within the population while keeping the computational overhead manageable.
The number of iterations was set to 100 as a way to allow sufficient time for the algorithm to
converge and explore the search space effectively. By conducting 30 runs, the study aimed
to account for the inherent randomness of the algorithm and obtain statistically significant
results. Table 4 lists the main parameter settings of the experimental setup that was used in
testing our proposed IDO algorithm along with the benchmarked methods.

Also, it is important to highlight that, in our experimental setup, we have taken
specific measures to address potential overfitting concerns and promote the generalization
performance of the proposed IDO algorithm. One crucial aspect was the utilization of
k-fold cross-validation with 10 folds. This technique plays a pivotal role in mitigating
overfitting by systematically dividing the dataset into 10 subsets. During each iteration,
nine of these subsets are utilized for training, while the remaining one serves as the test set.
This process is iterated 10 times, ensuring that each subset functions as the test set once.
By doing so, we obtain a more realistic estimation of the algorithm’s ability to generalize
beyond the training data, reducing the risk of overfitting.
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Furthermore, our choice of parameter settings, such as a population size of 10, 100
iterations, and 30 runs, was made with a keen focus on striking a balance between compu-
tational efficiency and obtaining reliable results. A population size of 10 was deliberately
chosen to maintain diversity within the population while keeping the computational over-
head manageable. The 100 iterations allowed ample time for the algorithm to converge and
explore the search space effectively, while conducting 30 runs accounted for the inherent
randomness of the algorithm, leading to statistically significant results. These parameter
settings and evaluation techniques were meticulously selected to ensure a comprehensive
and robust analysis of the proposed IDO algorithm’s performance on the spam base dataset,
all while addressing potential overfitting concerns.

Overall, these parameter settings and evaluation techniques were carefully chosen to
ensure a comprehensive and robust analysis of the proposed approach’s performance on
the spam base dataset.

Optimization algorithms, in general, rely on various parameters that control their be-
haviour and guide the search for optimal solutions. Table 5 outlines the parameter settings
for each optimization algorithm considered in our study to benchmark our proposed IDO
algorithm. These parameters play a crucial role in determining the algorithm’s convergence,
exploration–exploitation balance, and overall performance.

Table 5. Parameter settings for optimization algorithms.

Algorithm Parameter

IDO
K [0, 1]
α [0, 1]

LSAMaxItr = 10

DO K [0, 1]
α [0, 1] As in [31]

GNDO β random number over [0, 1] [31]

ChOA As [34]

PSO Inertia Weights (W1 = 0.9, W2 = 0.4)
Acceleration constants (C1 = 2, C2 = 2) [35–37]

GA Crossover_ratio = 0.9
Mutation_ratio = 0.1 [36,38,39]

GOA c_Max = 1
c_Min = 0.00004 [40]

ALO I = 1 [41]

DA As in [42]

As the main use case that has been adopted in this paper to demonstrate a real-world
application for measuring the performance of our proposed IDO algorithm, the spam
email detection system’s architecture is presented in Figure 4. The figure demonstrates the
potential use of the proposed algorithm by the email server in classifying authentic/spam
emails in an automated fashion based on its mechanism of feature selection and its efficiency
in finding the best fit in classifying the type of such emails.
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Figure 4. The proposed Spam Email Detection System Architecture is based on the IDO Algorithm.

Figure 5 illustrates the convergence behaviour for each of the experimented algorithms
along with our proposed IDO. It is very obvious that our proposed IDO algorithm was
very efficient in quickly converging its fitness straight after five iterations from the start
of the simulation’s run. It is worth noting that the reason behind that was the introduced
feature of tuning with the help of the hybrid solution of LSAF, which takes place after every
five iterations as described in pseudocode in Algorithm 3.
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Table 6 presents a comparison of the IDO algorithm with several other optimization
algorithms based on their average classification accuracy in 30 runs. Among the algorithms
evaluated, our proposed IDO algorithm achieved the highest average classification accu-
racy of 0.9468. This indicates that IDO performed exceptionally well in optimizing the
classification of the spam emails task compared to the other algorithms.

Table 6. Comparison of IDO with other algorithms based on average classification accuracy in 30
runs.

Algorithm Accuracy

IDO 0.9468

DO 0.9355

GNDO 0.9148

ChOA 0.9020

PSO 0.9137

GA 0.9259

GOA 0.8986

ALO 0.8982

DA 0.9148
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The second-best algorithm in terms of accuracy was the native DO algorithm, with an
average classification accuracy of 0.9355. Although DO falls slightly behind IDO, it still
demonstrates strong performance in optimizing the classification task. Hence, the effec-
tiveness of the proposed improvement using the LSAF algorithm has been demonstrated,
showcasing its ability to enhance the quality of the best final solution. By incorporating
the LSAF algorithm into the optimization process, significant improvements in the overall
optimization performance were achieved. This highlights the importance of incorporating
advanced mechanisms, such as the LSAF algorithm, to enhance the accuracy and reliability
of the final solution.

Following DO, GNDO obtained an average classification accuracy of 0.9148, position-
ing it as the third-best performing algorithm in this comparison, while ChOA, PSO, and
GA achieved average classification accuracies of 0.9020, 0.9137, and 0.9259, respectively,
which are relatively close to each other. These algorithms demonstrate a moderate level of
performance in comparison to the top-performing IDO and DO algorithms.

GOA, ALO, and DA obtained average classification accuracies of 0.8986, 0.8982, and
0.9148, respectively. While these algorithms achieved lower accuracy compared to the
top-performing algorithms, they still show potential in optimizing the classification task.

Overall, the results indicate that IDO outperformed the other optimization algorithms
in terms of average classification accuracy. This suggests that IDO is a promising algorithm
for tackling classification problems, specifically problems such as email spam detection.
However, further analysis and experimentation may be required to validate the statistical
significance of these results and to understand the strengths and weaknesses of each
algorithm in more detail.

Hence, the fitness performance of each algorithm has been measured and reported for
each algorithm as presented in Table 7. Table 7 presents the comparison of IDO with other
algorithms based on the average fitness value obtained from 30 runs. The lower the fitness
value, the better the performance of the algorithm.

Table 7. Comparison of IDO with other algorithms based on average fitness value in 30 runs.

Algorithm Fitness

IDO 0.0565

DO 0.0675

GNDO 0.0927

ChOA 0.1026

PSO 0.0926

GA 0.0784

GOA 0.1055

ALO 0.1058

DA 0.0911

From the results, it is evident that IDO achieves the lowest average fitness value of
0.0565, indicating its superiority in optimizing the objective function compared to the other
algorithms. This demonstrates the effectiveness of the proposed IDO algorithm in finding
high-quality solutions that minimize the fitness value.

Among the other algorithms, DO and GA exhibit relatively good performance with
average fitness values of 0.0675 and 0.0784, respectively. This suggests that these algorithms
are capable of converging towards favourable solutions, although they are slightly less
effective than IDO.

On the other hand, algorithms such as GNDO, ChOA, PSO, GOA, ALO, and DA
exhibit relatively higher average fitness values ranging from 0.0911 to 0.1058. These results
indicate that these algorithms might struggle to converge to optimal solutions or might be
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more sensitive to the optimization problem at hand, as was also witnessed by the presented
convergence behaviour in Figure 5.

Overall, the comparison highlights the competitiveness of IDO in terms of achieving
lower average fitness values, indicating its effectiveness in optimization tasks. These
results provide valuable insights into the performance of various algorithms and can guide
researchers and practitioners in selecting the most suitable algorithm for their specific
optimization needs.

Table 8 provides a comparison of IDO with other algorithms based on the average
number of selected features obtained from 30 runs out of the supplied dataset of email
classification (Spam/Non-spam). The number of selected features is an important aspect of
feature selection tasks, where a lower number indicates a more concise and relevant feature
subset.

Table 8. Comparison of IDO with the other algorithms based on the average number of selected
features in 30 runs.

Algorithm Number of Selected Features

IDO 20.4
DO 22.7

GNDO 48.2
ChOA 32.1
PSO 41.1
GA 28.7

GOA 29.5
ALO 28.9
DA 38.9

From the results, it is evident that IDO achieves the lowest average number of selected
features, with a value of 20.4. This indicates that IDO is capable of identifying a compact
and informative subset of features that contribute significantly to the optimization problem.
The ability to select a smaller number of features can lead to improved efficiency, reduced
complexity, and enhanced interpretability of the developing model.

Among the other algorithms, DO and GA also demonstrate relatively good perfor-
mance with average numbers of selected features of 22.7 and 28.7, respectively. This
suggests that these algorithms are effective in identifying relevant features while maintain-
ing a reasonably low feature subset size, but not as concise as our proposed IDO algorithm,
especially with such a critical email spam detection application.

On the other hand, algorithms such as GNDO, ChOA, PSO, GOA, ALO, and DA
exhibit higher average numbers of selected features ranging from 29.5 to 48.2. These results
indicate that these algorithms may tend to select a larger number of features, which can
potentially lead to increased complexity and reduced interpretability of the resulting model.

Generally speaking, the comparison highlights the superior performance of IDO
in achieving a lower average number of selected features, indicating its effectiveness in
feature selection tasks. These results provide valuable insights into the capability of various
algorithms in identifying relevant features and can assist researchers and practitioners in
selecting the most appropriate algorithm for their specific feature selection needs.

In another attempt to analyse the performance of our proposed IDO algorithm and
the benchmarked algorithms, Table 9 shows a comparison of IDO with other algorithms
based on the average execution time obtained from 30 runs. The duration of execution is
a crucial aspect to consider when evaluating optimization algorithms as it reflects their
computational efficiency and scalability. Hence, the obtained results demonstrate that IDO
achieves the shortest average execution time, with a value of 30.36. This signifies that
IDO exhibits high computational efficiency and converges to a solution in less time, as
evidenced by the results depicted in Figure 5. The efficient execution time of IDO renders
it suitable for applications requiring real-time or prompt outcomes, such as email spam
filtering.
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Table 9. Comparison of IDO with other algorithms based on average execution time in seconds out
of 30 runs.

Algorithm Time

IDO 30.36
DO 31.45

GNDO 119.66
ChOA 60.97
PSO 55.11
GA 39.72

GOA 41.46
ALO 36.19
DA 49.38

Among the other algorithms examined, DO, GA, GOA, and ALO also exhibit relatively
low average execution times, ranging from 31.45 to 39.72. These algorithms showcase
commendable computational efficiency, delivering reasonably fast results. Conversely,
algorithms such as GNDO, ChOA, PSO, and DA exhibit higher average execution times,
ranging from 55.11 to 119.66. These findings indicate that these algorithms demand more
computational resources and time to converge to a solution. While they may still be suitable
for certain applications that can accommodate longer execution times, they may not be as
efficient as IDO, DO, GA, GOA, and ALO in terms of speed.

This comparison emphasizes the computational efficiency of IDO, which outperforms
other algorithms in terms of average execution time. These results are valuable for selecting
the most appropriate algorithm based on the desired trade-off between accuracy and
computational efficiency. It is also important to mention that researchers and practitioners
can consider these results when choosing an algorithm for optimization tasks that require
fast results or have constraints on execution time.

In Table 10, the statistical comparison of the proposed IDO algorithm with the bench-
marked algorithms is presented. The statistical results are obtained based on p-values
utilizing the Wilcoxon test. It is good to note that the p-value here is indicating the sig-
nificance level of the difference between the performance of our proposed IDO and the
benchmarked algorithms. The p-values less than 0.05 represent a statistically significant
difference.

Table 10. Statistical comparison of IDO with other algorithms based on p-values using the Wilcoxon
test (p ≥ 0.05 are bold underlined).

Algorithm p-Values

DO 2.12 × 10−5

GNDO 1.10 × 10−10

ChOA 2.89 × 10−11

PSO 1.34 × 10−10

GA 1.76 × 10−8

GOA 2.89 × 10−11

ALO 2.88 × 10−11

DA 1.09 × 10−10

From the statistical results, it can be noted that IDO demonstrates significantly differ-
ent performance compared to all the other benchmarked algorithms. The p-values for the
other algorithms are extremely low (p < 0.05). This indicates a significant difference in per-
formance compared to our proposed IDO algorithm. This suggests that IDO outperforms
these algorithms in terms of the evaluated criteria.

On the other hand, the p-values for DO, GNDO, ChOA, PSO, GA, GOA, ALO, and DA
are all bold and underlined, indicating that the difference in performance between these
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algorithms and IDO is not statistically significant (p ≥ 0.05). This implies that there is no
significant difference in performance between IDO and these algorithms.

We can summarise from this statistical analysis that the results from the Wilcoxon
test suggest that IDO performs significantly better than several algorithms and shows
comparable performance to others. These findings demonstrate the effectiveness of IDO in
addressing the optimization problem and highlight its potential as a competitive algorithm
in the given context.

As another statistical analysis of the performance, Table 11 presents the comparison
of IDO with other algorithms based on the standard deviation of accuracy in 30 runs.
The standard deviation measures the dispersion or variability in the accuracy values
obtained from multiple runs for each algorithm. A smaller standard deviation indicates
less variability and greater consistency in the algorithm’s performance.

Table 11. Comparison of IDO with other algorithms based on the standard deviation of accuracy in
30 runs.

Algorithm The Standard Deviation of Accuracy

IDO 0.0074
DO 0.0104

GNDO 0.0146
ChOA 0.0139
PSO 0.0152
GA 0.0118

GOA 0.0122
ALO 0.0133
DA 0.0136

From the presented results in this table, it can be observed that IDO has the smallest
standard deviation of accuracy compared to all the other algorithms. This indicates that
IDO consistently produces accurate results across multiple runs, with minimal variabil-
ity in its performance. On the other hand, the other algorithms, including DO, GNDO,
ChOA, PSO, GA, GOA, ALO, and DA, have slightly higher standard deviations, indicating
comparatively higher variability in their performance.

The lower standard deviation of accuracy for IDO suggests that it is a robust and
stable algorithm, consistently providing accurate solutions across different runs. This
stability is an important characteristic, as it indicates that the algorithm is less sensitive
to variations and fluctuations in the optimization process. Hence, the achieved statistical
results presented in Table 11 illustrate that IDO beats the other algorithms not only in
getting high accuracy but also in demonstrating remarkable consistency and stability out of
its overall performance. Such findings highlight the reliability and efficacy of our proposed
IDO as an optimization algorithm for solving a wide range of highly sensitive optimization
problems.

Table 12 lists the comparison of IDO with other algorithms, it is provided based on
the standard deviation of the obtained fitness values out of 30 runs. We have employed
the standard deviation of the obtained fitness values for each algorithm to provide us
with a measure of the variability or dispersion of fitness values obtained from multiple
runs for each of the implemented algorithms. It is noteworthy to mention that the smaller
the standard deviation is, the less variability and greater consistency in the fitness values
produced by the algorithm.
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Table 12. Comparison of IDO with other algorithms based on the standard deviation of fitness in 30
runs.

Algorithm The Standard Deviation of Accuracy

IDO 0.0073
DO 0.0102

GNDO 0.0145
ChOA 0.0134
PSO 0.0148
GA 0.0118

GOA 0.0120
ALO 0.0130
DA 0.0132

Upon examining the results, it is evident that IDO exhibits the smallest standard
deviation of fitness compared to all other algorithms. This implies that IDO consistently
generates fitness values with minimal variability across multiple runs. In contrast, the other
algorithms, including DO, GNDO, ChOA, PSO, GA, GOA, ALO, and DA, exhibit slightly
higher standard deviations, indicating relatively greater variability in their fitness values.

The lower standard deviation of fitness for IDO signifies its stability and consistency
in optimizing the fitness function. This stability is crucial as it indicates that IDO is less
sensitive to variations and fluctuations in the optimization process, consistently converging
towards optimal or near-optimal solutions.

To summarize, the results from Table 12 indicate that IDO not only achieves competi-
tive fitness values but also demonstrates superior consistency and stability compared to the
other algorithms. This highlights the robustness and reliability of IDO as an optimization
algorithm for the given problem. It is also worth noting that while IDO shows the lowest
standard deviation of fitness, the differences among the algorithms’ standard deviations
are relatively small. This suggests that all the algorithms perform reasonably well in terms
of stability, but IDO stands out as the most consistent among them.

6. Conclusions and Future Works

In this paper, we propose and evaluate the Improved Dandelion Optimization (IDO)
algorithm for solving the optimization problem, especially in spam email detection ap-
plications. Through extensive experiments and comparisons with several state-of-the-art
algorithms, we have demonstrated the effectiveness and superiority of IDO in terms of
classification accuracy, fitness value, number of selected features, execution time, and
statistical significance. The experimental results clearly show that IDO consistently outper-
forms other algorithms in terms of classification accuracy, achieving an average accuracy of
94.68%. Furthermore, IDO exhibits superior fitness values, with an average fitness of 0.0565,
indicating its ability to converge towards optimal or near-optimal solutions. Moreover,
IDO selects a reasonable number of features, achieving an average of 20.4 selected features,
striking a good balance between accuracy and feature subset size. In addition, IDO proves
competitive execution times, with an average time of 30.36 s, making it computationally ef-
ficient for practical applications. The statistical comparison using the Wilcoxon test further
validates the significance of IDO’s performance improvements over other algorithms.

As for future works, though IDO has displayed promising results, there are several
avenues for future research to explore, such as parameter tuning. Investigating the impact
of different parameter settings on IDO’s performance and exploring automated methods
for parameter selection and adaptation could be a potential avenue to be investigated. The
IDO algorithm could be explored to solve some other real-world applications. Applying
IDO to real-world optimization problems in various domains such as healthcare, finance,
engineering, and logistics would allow for the assessment of its performance and scalability
with high constraints and noisy data.
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