
Zayed University Zayed University

ZU Scholars ZU Scholars

All Works

1-1-2023

Overhead Based Cluster Scheduling of Mixed Criticality Systems Overhead Based Cluster Scheduling of Mixed Criticality Systems

on Multicore Platform on Multicore Platform

Amjad Ali
University of Swat

Asad Masood Khattak
Zayed University, asad.khattak@zu.ac.ae

Shahid Iqbal
University of Swat

Omar Alfandi
Zayed University

Bashir Hayat
Institute of Management Sciences

See next page for additional authors

Follow this and additional works at: https://zuscholars.zu.ac.ae/works

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ali, Amjad; Khattak, Asad Masood; Iqbal, Shahid; Alfandi, Omar; Hayat, Bashir; Siddiqi, Muhammad
Hameed; and Khan, Adil, "Overhead Based Cluster Scheduling of Mixed Criticality Systems on Multicore
Platform" (2023). All Works. 6202.
https://zuscholars.zu.ac.ae/works/6202

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All
Works by an authorized administrator of ZU Scholars. For more information, please contact scholars@zu.ac.ae.

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F6202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F6202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/6202?utm_source=zuscholars.zu.ac.ae%2Fworks%2F6202&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholars@zu.ac.ae

Author First name, Last name, Institution Author First name, Last name, Institution
Amjad Ali, Asad Masood Khattak, Shahid Iqbal, Omar Alfandi, Bashir Hayat, Muhammad Hameed Siddiqi,
and Adil Khan

This article is available at ZU Scholars: https://zuscholars.zu.ac.ae/works/6202

https://zuscholars.zu.ac.ae/works/6202

1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Overhead Based Cluster Scheduling of
Mixed Criticality Systems on Multicore
Platform
Amjad Ali1, Asad Masood Khattak2, Shahid Iqbal1, Omar Alfandi2, Bashir Hayat3,
Muhammad Hameed Siddiqi4 and Adil Khan5
1Department of Computer and Software Technology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
2College of Technological Innovation, Zayed University UAE
3Center of Excellence in IT, Institute of Management Sciences Peshawar, Pakistan
4Department of Computer science, Jouf University, Sakaka, Aljouf, Kingdom of Saudi Arabia
5School of Computer Science, University of Hull, HU6 7RX, United Kingdom

amjad@uswat.edu.pk

asad.khattak@zu.ac.ae

shahidiqbal2553@gmail.com

omar.alfandi@zu.ac.ae

bashir.hayat@imsciences.edu.pk

mhsiddiqi@ju.edu.sa

a.m.khan@hull.ac.uk

ABSTRACT The cluster-based technique is gaining focus for scheduling tasks of mixed-criticality (MC)

real-time multicore systems. In this technique, the cores of the MC system are distributed in groups known

as clusters. When all cores are distributed in clusters, the tasks are partitioned into clusters, which are

scheduled on the cores within each cluster using a global approach. In this study, a cluster-based technique

is adopted for scheduling tasks of real-time mixed-criticality systems (MCS). The Decreasing Criticality

Decreasing Utilization with the worst-fit (DCDU-WF) technique is used for partitioning of tasks to clusters,

whereas a novel mixed-criticality cluster-based boundary fair (MC-Bfair) scheduling approach is used for

scheduling tasks on cores within clusters. The MC-Bfair scheduling algorithm reduces the number context

switches and migration of tasks, which minimizes the overhead of mixed-criticality tasks. The migration and

context switch overhead time is added at the time of each migration and context switch respectively for a

task. In low critical mode, the low mode context switch and migration overhead time is added to task

execution time, while the high mode overhead time of migration and context switch is added to the execution

time of a task in high critical mode. The results obtained from experiments show the better schedulablity

performance of proposed cluster-based technique as compared to cluster-based fixed priority (CB-FP), MC-

EKG-VD-1, global and partitioned scheduling techniques e.g., for target utilization U=0.6, the proposed

technique schedule 66.7% task sets while MC-EKG-VD-1, CB-FP, partitioned and global techniques

schedule 50%, 33.3%, 16.7% and 0% task sets respectively.

INDEX TERMS Mixed-criticality systems, Real-time systems, Cluster-based approach, Mixed-criticality

Boundary fair, Context switches, Tasks migration.

I. INTRODUCTION

The integration of multiple functionalities i.e., high critical

(safety-critical) and low critical functionalities (mission

critical) on a common executing platform is a recent trend in

real-time systems and is commonly employed on different

platforms such as ARINAC [1]for aerospace, and AUTOSAR

[2] for automotive industries. For integrating these different

multiple functionalities on a common execution platform, the

idea of mixed-criticality (MC) was adopted by such platforms.

The high critical functionalities have very high importance

while the importance of low critical functionalities is low.

Such a real-time system having different functionalities is

known as mixed-criticality system (MCS). Baruah et.al, noted

that task execution time bounds tend to be larger and more

conservative as confidence requirements increase. For

example the largest execution time observed during tests of

normal operating mode scenarios can be specified as the

WCET at a low level of assurance; the largest execution time

observed during more exhaustive “code-coverage” tests are

more appropriate as the WCET at a higher level of assurance

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:amjad@uswat.edu.pk
mailto:asad.khattak@zu.ac.ae
mailto:shahidiqbal2553@gmail.com
mailto:omar.alfandi@zu.ac.ae
mailto:bashir.hayat@imsciences.edu.pk
mailto:mhsiddiqi@ju.edu.sa
mailto:mhsiddiqi@ju.edu.sa

2

[3]. The high critical functionalities need certification to

ensure their correctness. For certification, the certification

authorities (CA) make certain assumptions e.g line of code for

estimating the WCET (worst-case execution Time) of these

high critical functionalities. The WCET estimated by CA is

too large than the WCET specified by designer of the system

i.e., the WCET acquired through experiments. The

certification authorities only concern with the correction of

functionalities having high criticality while the designer of the

system requires the correctness of both functionalities.

The evolution of embedded systems from single core to

multicore platforms is in trending from the recent past and

receiving more attention. There are three basic scheduling

techniques for scheduling tasks of real-time multicore systems

i.e., partitioned, global, and cluster-based approaches. In

partitioned technique, each task is allocated to a particular core

and the core executes those tasks only which are allocated to

it. Tasks can be scheduled on each core using the EDF or RM

scheduling algorithms. Partitioning tasks and assigning each

partition to one core has the advantages of using the safety

verification formula to make sure no task overruns occurs, and

task migration between cores is not possible hence execution

overhead is also reduced [4]. The problem in partitioned

scheduling approach is the allocation of tasks to cores i.e., a

task is not allocated to any core when the utilization of a task

is less than the total amount of unused utilization of all cores

but there is not a single core with unused capacity greater or

equal to the utilization of that task. In this case, the task set is

not schedulable, which reduces the schedulable workload

utilization. Similarly, when the mode is switched from low

(LO) to high (HI) mode on any processor, and if the execution

time of tasks become higher than the unused space of

processor, the MC task set is also not schedulable. Because

task migration to another processor is prohibited which have

enough capacity for executing the tasks, this causes a

reduction of schedulable workload utilization. In semi-

partitioned approach, few tasks are splitted into sub tasks,

which can utilize the unused capacity of processors to increase

the utilization of processors [5]. But this approach increases

the number of preemptions and preemption overhead of tasks,

and decrease the schedulable utilization of a task set.

 In contrast, the global technique consists of a single shared

queue containing all tasks to be executed on multicore

platform. A task having higher priority is allocated from the

global queue to an idle core for execution. The global

approach allows migration of tasks among the cores during

runtime i.e. a task can execute on any core, which overcomes

the limitation of tasks allocation of the partitioned scheduling

technique [6]. But this tasks migrations among cores can lead

to high run-time overhead in the global scheduling approach.

Moreover, neither partitioned technique nor global

technique take over each other, because some task sets are

schedulable by partitioned technique but not schedulable by

global technique, and vice versa. The number of context

switches in both techniques and the number of migrations in

global technique causes high overhead, which can’t be

neglected. Recently, Cluster based scheduling technique is

gaining focus for scheduling the tasks of multicore real-time

systems. Cluster-based technique overcomes the tasks

allocation problem of partitioned technique and high

migration overhead of global technique. In cluster-based

technique, all cores are divided in clusters and the tasks of

system are allocated to these clusters. The cluster-based

approach affectively utilizes the unused capacity on all cores

i.e., a task is allocated to a cluster when the utilization of a task

does not exceed the total amount of unused utilization of the

cluster. When the tasks are assigned to clusters, different

global scheduling algorithms are used within clusters to

schedule the task sets. The cluster-based technique can

convert into partitioned technique when every cluster has only

one core and can also change to global technique when all the

cores are putted in one cluster. Clustering reduces the number

of migrations as compared to global approach which leads to

reduce the overhead and also overcome the task allocation

problem in partitioned technique. Calandrino et.al presented a

new hybrid technique for real-time multicore systems named

H-EDF, to minimize the problems of G-EDF and P-EDF

scheduling approaches. The authors divides cores in various

clusters which share a cache and allocate tasks to these

clusters. The tasks are scheduled in clusters by a global

scheduling algorithm named preemptive global EDF [7].

In this research work, the overhead caused by tasks

migration and context switches is reduced in cluster-based

technique for multicore mixed-criticality systems. We used an

efficient task allocation technique for tasks allocation to

clusters. After tasks allocation to the clusters, the tasks are

scheduled on the cores within the cluster using a novel global

scheduling technique. This research work is one of the initial

research works that reduces the overhead caused by context

switches and migrations of tasks in cluster-based MC systems.

This research work performs better as compared to cluster-

based fixed priority (CB-FP) [8], MC-EKG-VD-1 [9] global

and partitioned scheduling approaches.

II. RELATED WORK

Initially, Vestal [10] used the notion of mixed-criticality

(MC) for scheduling tasks on the unicore platform, but now

multicore or multiprocessor platform is gaining focus to adopt

the idea of MC scheduling. For multicore MC real-time

systems, the partitioned scheduling approach is initially used

for scheduling MC tasks. For partitioned scheduling, Kelly et

al. discussed different techniques for task ordering and

partitioning of tasks among cores. The authors used

Decreasing Criticality and Decreasing Utilization techniques

for tasks ordering and partitioning of tasks among the cores.

They discussed different tasks partitioning heuristic

approaches i.e., first-fit, best-fit, and worst-fit. In first-fit, the

order of cores is fixed and a task is given to the first core on

which it fits, otherwise it is allocated to the next core on which

it fits, and so on. In best-fit, the task is allocated to that core

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

3

having minimum unused capacity among cores. In worst-fit,

each task is assigned to that core having maximum unused

capacity among the cores. The authors also used the fixed-

priority RM and Audslay’s approach for tasks scheduling on

each core [11]. Later, Gu et al. extended EY (Ekberg and Yi)

[12] virtual deadline MC unicore scheduling algorithm, and

proposed a new algorithm named Mixed-criticality

Partitioning with Virtual Deadline (MPVD) for scheduling

the MC task set of multicore systems. The MPVD algorithm

first allocates high-criticality tasks through worst-fit and then

allocates low critical tasks using first-fit approaches [13].

Nagalakshmi et al. proposed a partitioned-based scheduling

approach named C-PEDF [14] that groups the MC tasks in

clusters. Each cluster contains one executive task i.e. high

critical task, and a group of member tasks i.e. low critical

tasks. These clusters are then partitioned among cores, which

schedule these clusters of tasks using partitioned approach. It

should be noted that if the execution budget of tasks exists in

two clusters, then these clusters should be allocated to one core

to avoid the concurrent execution of the task. As a task may

allocated to more than one clusters, therefore the overhead of

context switches is increases [14].

After the partitioned approach, the global approach is used

for scheduling tasks of MC multicore real-time systems.

Initially, Pathan applied fixed-priority response time analysis

for the global scheduling of MC sporadic tasks on multicore

[15]. Andersson et al. considered utilization bounds for

periodic task sets with implicit deadlines. They showed that

the maximum utilization bound for any global fixed job

priority algorithm is (m+1)/2 on m cores [16]. Baruah derived

a sufficient schedulability test for global EDF scheduling of

sporadic task sets with constrained deadlines [17]. Li and

Baruah [6] extend a uni-core scheduling algorithm EDF-VD

(EDF with Virtual Deadline) [18] to multicore and proposed a

novel global algorithm named GLOBAL, by applying fpEDF

[19] for MC tasks scheduling. EDF-VD is a unicore MC

systems scheduling algorithm and fpEDF is a scheduling

approach for traditional real-time multicore systems. Lee et al.

proposed a fluid model based scheduling algorithm for

multiprocessor MC system MC-Fluid. MC-Fluid algorithm

executes each tasks in proportion to its criticality-dependent

rate. They also propose an exact schedulability condition for

MC-Fluid and an optimal assignment algorithm for criticality-

dependent execution rates. The authors showed that MC-Fluid

has a speedup factor of (1 + √ 5) /2 (~ 1.618), which is best

known in multiprocessor MC scheduling [20].

In the domain of real-time scheduling for heterogeneous

multicore platforms, various heuristic cluster-based and semi-

partitioned scheduling approaches have been proposed to

optimize energy efficiency, temperature management, and

task allocation. Sharma et.al introduced a heuristic approach

called RT-SEAT for hybrid scheduling approach. The

proposed RT-SEAT scheduler operates across four distinct

layers. It begins by segmenting the timeline into intervals in

the outermost layer. In the subsequent layer, the scheduler

handles task-to-core assignments and generates a provisional

task schedule for each core. Transitioning to the third layer,

the scheduler reorganizes the sequence of task execution on

individual cores to effectively manage core temperatures.

Finally, in the last layer, it incorporates DVFS to ensure the

scheduler's energy awareness. In the following sections, a

more detailed exploration of the scheduler's functioning will

be presented [21].

Moulik et.al introduced an efficient and low overhead

cluster-oriented scheduling technique referred to as

SEAMERS. This approach focuses on the allocation of tasks

in a heterogeneous multicore environment while minimizing

unnecessary computational burdens. SEAMERS implements

dynamic voltage and frequency scaling (DVFS) on a per-core

basis, enabling optimized task scheduling at the core level

[22]. Sharma et.al presented a cluster based heuristic

scheduling strategy named CETAS which stands for A Cluster

based Energy and Temperature Efficient Real-time Scheduler

for heterogeneous platforms, which performs energy as well

as temperature aware task scheduling on heterogeneous

multicore platforms. This approach efficiently schedule a set

of real-time periodic tasks on a DVFS-enabled heterogeneous

platform with a focus on energy and temperature

considerations [23]. Moulik et.al introduce a heuristic Cluster

based Energy Aware Scheduler for Real-Time Heterogeneous

Systems referred to as CEAT, aimed at energy-aware

scheduling of a set of real-time periodic tasks on a

heterogeneous multicore platform with DVFS capabilities.

This approach involves three sequential phases: Deadline

Segmentation, Allocation of Tasks to Cores, and scheduling

that Prioritizes Energy Efficiency [24].

Sharma et.al develop a heuristic scheduling approach

named FATS-2TC, addressing the simultaneous control of

energy and peak temperature levels. This is achieved through

the standby-sparing mechanism on systems with two types of

cores, such as the big. LITTLE architecture, enhancing

resilience against transient faults [25]. Moulik et.al presents an

innovative semi-partitioned heuristic scheduler known as

RESET, which stands for "A Real-time Scheduler for Energy

and Temperature Aware Heterogeneous Multi-core Systems."

This novel scheduler is designed to achieve optimizing

resource utilization by intelligently allocating tasks, while

concurrently tackling the challenges of reducing dynamic

energy consumption and effectively managing core

temperatures. By striking this balance, RESET offers a

promising approach to enhance the overall performance and

efficiency of heterogeneous multi-core systems [26]. Sharma

et.al presents a heuristic technique, named ETA-HP, for

energy and temperature efficient scheduling of a set of real-

time periodic tasks on a DVFS empowered heterogeneous

multicore system. The proposed strategy operates in four

stages, namely Deadline Partitioning, Task-to-Core

Allocation, Temperature-Aware Scheduling, and Energy-

Aware Scheduling [27].

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

4

Recently, a cluster-based technique has been studied for

MC tasks scheduling on multicore systems. In this technique,

all the cores are distributed in clusters and the MC tasks are

assigned to clusters. After assigning tasks to clusters, a global

approach is used for the tasks scheduling within clusters. For

the cluster-based scheduling approach, Ali et al. [8] presented

a scheduling algorithm for MC tasks scheduling on multicore

systems. The authors partitioned MC tasks among clusters

through the worst-fit heuristics approach. In low mode, the

authors used small sizes of clusters (sub-clusters) while in a

high mode they used larger sizes of clusters for tasks

allocation. For task schedulability analysis, the authors used a

fixed-priority response time analysis based on Audsley's

approach [28] in each cluster and sub-cluster. Burn et al.

provided an extensive literature about scheduling algorithms

proposed for the mixed-criticality task sets on multicore

platform including cluster based approach [29].

For minimizing the overhead in real time systems, Zhang et

al. proposed a novel algorithm named Least Switch and Laxity

First to minimize the switching among tasks on unicore

systems [30]. To decrease the overhead in real-time systems,

Li et al. used a scheduling algorithm named Deadline

Partitioning Fair (DP-fair) [31] which reduced the run-time

overhead of tasks. Zhu et al. discussed a novel algorithm for

scheduling of tasks named Boundary fair (Bfair) on real-time

multicore systems. The Bfair approach makes scheduling

decisions for tasks only at the period boundaries, which

essentially minimizes the points of scheduling. Furthermore,

by computing the execution time of tasks between period

boundaries, the Bfair schedule minimizes migrations and

context switches of tasks, which reduces the scheduling

overhead of real-time systems [32].

III. SYSTEM MODEL

This section presents the framework for the adopted cluster-

based scheduling technique. In the cluster-based scheduling

technique, the cores are divided into groups known as clusters.

After creating clusters, the MC tasks are assigned to clusters

by applying DCDU-WF tasks partitioning technique [1]. The

MC tasks are scheduled by a novel MC-Bfair approach on

cores within clusters. Initially, the tasks are scheduled in low

mode i.e each task is executed up to its low mode execution

requirement i.e., 𝐶𝑖(LO), but if a high critical task needs

further execution after completing 𝐶𝑖(LO), the system is

changed to high mode. The low tasks of the MC system are

discarded after the mode switch and only each high task is

scheduled up to their high mode execution requirement 𝐶𝑖(HI)

in high mode.

A. TASK MODEL

 The periodic task set of a mixed-criticality system is known

as workload, which is represented by τ. In low mode, both LO

and HI critical tasks release a job sequence, but in high mode,

only HI tasks release a job sequence. A mixed-criticality

periodic task τi is characterized by 6 parameters i.e., τi = (𝑃𝑖 ,

𝐶𝑖
𝑋𝑖, 𝑋𝑖, 𝐶𝑆. 𝐴𝑖

𝑥𝑖, 𝑀. 𝐴𝑖
𝑥𝑖), where,

 𝑃𝑖 is used for the period of task. It is supposed that 𝑃𝑖 =

 𝐷𝑖 (task’s deadline).

 𝐶𝑖
𝑋𝑖 is WCET of a task at criticality level 𝑋𝑖 and 𝐶𝑖

𝑋𝑖=

{𝐶𝑖(LO), 𝐶𝑖(HI}. The 𝐶𝑖(LO) and 𝐶𝑖(HI) represent the

low mode and high mode WCET of MC task

respectively.

 𝑋𝑖 is used to show the task’s criticality level, where LO is

used for low critical and HI is used for high critical task.

 𝐶𝑆. 𝐴𝑖
𝑥𝑖 is used for context switch overhead time of a task

at criticality level 𝑋𝑖.

 𝑀. 𝐴𝑖
𝑥𝑖 represents the migration overhead time of a task at

criticality level 𝑋𝑖.

The utilization in low and high mode of MC task 𝜏𝑖 is

denoted by Ui
LO and Ui

HI respectively and are derived as Ui
LO=

𝐶𝑖(LO)/ 𝑃𝑖 and Ui
HI= 𝐶𝑖(HI)/ 𝑃𝑖 . The low mode utilization of

all MC tasks is represented by ULM, while in high mode UHM

is used to represent the total utilization of HI tasks and can be

calculated as.

𝑈𝐿𝑀 = ∑ 𝑈𝑖
𝐿𝑂

𝜏𝑖∈𝜏 (1)

𝑈𝐻𝑀 = ∑ 𝑈𝑖
𝐻𝐼

𝜏𝑖∈𝜏 (2)

Equation 1 shows the summation of the utilization of the entire

task set of the MC system in low mode calculated through low

worst-case execution time, while equation 2 shows the

summation of the utilization of HI tasks in high mode

calculated through high worst-case execution time of HI tasks.

B. Clusters

The cores of a real-time MC system are divided into groups

known as clusters. Each cluster is denoted by C having two

parameters C(𝑊𝐶, 𝑁𝐶), where WC is used for the workload of

the cluster while NC is used for the number of cores within a

cluster. The tasks that are assigned to clusters are executed up

to 𝐶𝑖 (LO) in low mode, while each task is executed up to 𝐶𝑖

(HI) in high mode within each cluster.

C. Cluster-Based Scheduling Framework

A cluster-based technique is adopted for the scheduling of

task sets of multicore MC systems, in which the overhead

caused due to context switches and migrations of task is

reduced. The MC tasks are allocated to clusters by DCDU-WF

[8] approach. After tasks partitioning, a novel MC-Bfair

scheduling algorithm is used for the scheduling of MC tasks

on cores within clusters. The general idea of the cluster-based

scheduling framework is given in figure 1 and figure 2 for low

and high modes respectively. The system consists of 4 cores

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

5

on which the task set of table 1 is scheduled. The cores are

equally partitioned into cluster C1 and cluster C2, each having

2 cores. The MC tasks of the system are partitioned into

clusterC1 and cluster C2, each having 4 tasks i.e., C1 = τ2, τ4,

τ6 and τ8 and C2 = τ1, τ3, τ5 and τ7.

Figure 1: Framework of cluster-based approach in low mode

Figure 2: Framework of cluster-based approach in high mode

Table 1

 MC Task set

𝝉𝒊 𝑷𝒊 𝑪𝒊(𝑳𝑶) 𝑪𝒊(𝑯𝑰) 𝑿𝒊 𝑼𝒊
𝑳𝑶 𝑼𝒊

𝑯𝑰

𝛕𝟏 4 2 0 LO 0.5 0

𝛕𝟐 4 2 3 HI 0.5 0.75

𝛕𝟑 12 4 7 HI 0.33 0.58

𝛕𝟒 12 3 0 LO 0.25 0

𝛕𝟓 24 10 12 HI 0.42 0.5

𝛕𝟔 24 10 11 HI 0.42 0.46

𝛕𝟕 24 3 0 LO 0.13 0

𝛕𝟖 12 2 0 LO 0.17 0

IV. Research Motivation

Global and partitioned scheduling approaches are the two

scheduling approaches for multicore mixed-criticality

systems. In this research work, a novel MC-Bfair scheduling

technique is used for the overhead caused by context switches

and migrations of tasks during execution. In global

scheduling, both task migration and context switches can

occur, while in the partitioned approach, migration of tasks is

not allowed, but context switches of tasks occur. A cluster-

based MC-Bfair scheduling approach is used for scheduling

MC tasks to overcome the problems of partitioned and global

approaches. This research work is an extension of the previous

cluster-based scheduling approach [18]. The cluster-based

approach also dominates the partitioned and global approaches

but it lacks the overhead amount for the scheduling of MC

tasks.

For low and high modes, the MC-Bfair algorithm is applied

for scheduling of tasks on cores. This algorithm minimizes the

context switches and migrations of MC tasks which reduces

the scheduling overhead, as the Bfair algorithm minimizes the

overhead of tasks in traditional real-time systems. The MC-

Bfair constructs a periodic schedule for the task set of MC

systems as in Bfair algorithm [32]. This approach allocates

𝐶𝑖
𝐿𝑂 execution time for all tasks in low mode, and for high

mode it allocates 𝐶𝑖
𝐻𝐼 execution time for each HI tasks in the

interval [(k − 1)·𝑃𝑖 , k·𝑃𝑖) for all k ∈ {1, 2, 3, . . .}. The schedule

for a given task set is only considered from 0 to LCM of tasks

periods due to its periodic property. B = {𝑏0, . . . , 𝑏𝑓 } is used

for expressing the period boundaries of tasks, where 𝑏0 is used

for the starting point and is equal to zero, while 𝑏𝑓 is used for

the final time unit which is equal to LCM. The time units

between two consecutive period boundaries 𝑏𝑘 and 𝑏𝑘+1, is

represented by interval [𝑏𝑘, 𝑏𝑘+1).

For each period boundary, the total execution time of each

task is calculated. The low mode utilization 𝑈𝑖
𝐿𝑂 of a task is

calculated as 𝑐𝑖
𝐿𝑂/ 𝑝𝑖 and the high mode utilization 𝑈𝑖

𝐻𝐼 is

calculated as 𝑐𝑖
𝐻𝐼/ 𝑝𝑖 . The sum of utilizations of all tasks of a

system in low mode is defined by 𝑈𝐿𝑀 = ∑ 𝑈𝑖
𝐿𝑂𝑛

𝑖=1 and for

high mode the sum of utilizations of high critical tasks is

defined by 𝑈𝐻𝑀 = ∑ 𝑈𝑖
𝐻𝐼𝑛

𝑖=1 . The remaining work 𝑅𝑊𝑖
𝐾+1 at

period boundary 𝑏𝑘 of task τ𝑖 is define as the difference of

𝑏𝑘.𝑈𝑖 and the allocated time units of task τ𝑖 before period

boundary 𝑏𝑘. A schedule will be boundary fair at any period

boundary, if the remaining work of a task is smaller than one.

The mandatory time 𝑚𝑖
𝐾+1 of an MC task can be calculated as

𝑚𝑖
𝐾+1= max{0, ⌊𝑅𝑊𝑖

𝐾 +(𝑏𝑘+1− 𝑏𝑘) · 𝑈𝑖⌋}. 𝑚𝑖
𝐾+1 which is the

integer part of the summation of the remaining work at 𝑏𝑘 and

the work to be done during [𝑏𝑘, 𝑏𝑘+1). The corresponding

decimal part is defined as pending work and can be calculated

as 𝑃𝑊𝑖
𝐾+1= 𝑅𝑊𝑖

𝐾+(𝑏𝑘+1− 𝑏𝑘)·𝑈𝑖−𝑚𝑖
𝐾+1. Now, we can

calculate the total execution time of each MC task at any

period boundary. The total execution time an MC task at each

period boundary is calculated as 𝑇𝐸𝑖
𝐾+1=𝑚𝑖

𝐾+1+(𝑃𝑊𝑖
𝐾+1-

𝑅𝑊𝑖
𝐾+1).

A. Partitioned Approach for Scheduling of Mixed-
Criticality Tasks

Mixed-criticality tasks are partitioned among cores in the

partitioned scheduling approach and are only schedules on the

cores to which the tasks are assigned. The migration of tasks

among cores is not allowed. Initially, LO and HI tasks are

executed in low mode up to Ci(LO) on a core. If the mode is

switched to high mode, LO tasks are dropped and only HI

tasks are executed up to Ci(HI) on a core. The partitioned

approach has the limitation of the partitioning of tasks among

cores i.e., if the utilization of a task is larger than the remaining

free space on each core, then such task can’t be allocated to

any core. In this scenario, the MC tasks are not scheduled,

which decreases the schedulable utilization of the MC

workload. Similarly, when the mode is switched from low to

high at any core, and if the execution time of a HI task

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

6

becomes larger than the remaining free space of the core, then

the task set is not schedulable, because the task cannot migrate

to a core which has enough capacity to schedule this task.

Example 1.For the task set shown in table 1, consider a system

having 4 cores. The tasks τ1, τ2, τ3, τ4, τ5, τ6, τ7 and τ8 are

allocated to 4 cores by the DCDU-WF tasks allocation

approach. Through this approach, firstly all HI tasks are

assigned to cores, and a HI task of a higher utilization is

assigned to that core having the largest unused space. After

partitioning all HI tasks, LO tasks are partitioned among cores

in the above manner. The MC tasks that are allocated to cores

are shown in Figures 3 and figure 4 for both low and high

modes respectively.

Figure 3: Tasks allocation using DCDU-WF for low mode.

Figure 4: Tasks allocation using DCDU-WF for high mode.

Table 2

 MC tasks for partitioned approach

𝝉𝒊 𝑷𝒊 𝑪𝒊(𝑳𝑶) 𝑪𝒊(𝑯𝑰) 𝑿𝒊 𝑼𝒊
𝑳𝑶 𝑼𝒊

𝑯𝑰 𝑪𝑺. 𝑨𝒊
𝑳𝑶 𝑪𝑺. 𝑨𝒊

𝑯𝑰

𝛕𝟏 4 2 0 LO 0.50 0 0.1 0

𝛕𝟐 4 2 3 HI 0.50 0.75 0.1 0.15

𝛕𝟑 12 4 7 HI 0.33 0.58 0.2 0.35

𝛕𝟒 12 3 0 LO 0.25 0 0.15 0

𝛕𝟓 24 10 12 HI 0.42 0.50 0.5 0.6

𝛕𝟔 24 10 11 HI 0.42 0.46 0.5 0.55

𝛕𝟕 24 3 0 LO 0.13 0 0.15 0

𝛕𝟖 12 2 0 LO 0.17 0 0.1 0

The MC-Bfair scheduling approach schedule all tasks on

each core in low mode including core 3 as shown in figure 5,

but when the overhead time caused by the context switch is

added to the execution time of each task, then the third, fourth

and sixth jobs of τ1 on core 3 missed the deadlines at 12, 16

and 24 period boundaries respectively as shown in Figure 6.

The time of context switch overhead of an MC task is

calculated as 𝐶𝑆. 𝐴𝑖
𝑋𝑖 = 𝐶𝑖

𝑋𝑖 *5/100. Table 2 shows the time

of the context switch added to the execution time of tasks

when the context switches occur. The given task set is not

scheduled by partitioned technique.

Figure 5: Tasks scheduling on core 3.

Figure 6: Tasks scheduling on core 3 with overhead time.

B. Global Approach for MC Tasks Scheduling

Global scheduling consists of a global single-ready queue

in which all MC tasks are stored. In both low and high modes,

tasks are allocated to an idle core for execution. The MC tasks

can migrate among cores during run-time, which causes high

overhead. Initially, the global approach schedule both LO and

HI tasks in low mode. Global scheduling technique overcomes

the problem of partitioned scheduling i.e., allocation of tasks

to cores, but migrations of tasks may lead to high overhead.

The tasks for global approach in low and high mode is shown

in figure 7 and figure 8.

Consider the example given in table 1, the MC task set is

scheduled in low mode on 4 cores from a single ready queue

by using the MC-Bfair algorithm as shown in figure 9. The

total utilization of workload in low mode ULM = 2.72. The

time of context switch overhead of an MC task is calculated as

𝐶𝑆. 𝐴𝑖
𝑋𝑖 = 𝐶𝑖

𝑋𝑖 *10/100, and migration overhead is calculated

as 𝑀. 𝐴𝑖
𝑋𝑖

 = 𝐶𝑖
𝑋𝑖 *20/100, as given in table 3. When the

overhead time caused by the migration ad context switch is

added to the execution time of each task, which increases the

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

7

total execution time of tasks. In low mode, the tasks are not

schedulable between period boundaries 𝑏4 and 𝑏5 by adding

the additional time of overhead. Table 4 shows the execution

time of tasks with overhead time. The 16-time units are

available between 𝑏4 and 𝑏5 for the 4 cores, while the required

execution time units are 18.1 as shown in table 4. Therefore,

the MC workload is not scheduled at period boundary 20 in

low mode.

Figure 7: Tasks for Global scheduling in LO mode

Figure 8: Tasks for Global scheduling in HI mode

Table 3

MC task set for Global scheduling

FIGURE 9. Global scheduling of tasks

Table 4

The Execution time of each tasks with overhead in global scheduling

𝒃𝒌 𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒃𝟓 𝒃𝟔

Time 0 4 8 12 16 20 24

𝑇𝐸1
𝐾 0 2 2.4 2 2.4 2.4 2

𝑇𝐸2
𝐾 0 2 2 2 2 2 2

𝑇𝐸3
𝐾 0 2 1.4 1.4 2 1.4 1.4

𝑇𝐸4
𝐾 0 1 1.9 1.9 1.6 1.9 1.9

𝑇𝐸5
𝐾 0 2 3.0 2.0 2.0 2 3.3

𝑇𝐸6
𝐾 0 2 2 3 2 4 2

𝑇𝐸7
𝐾 0 1 0 0 1 1.9 0

𝑇𝐸8
𝐾 0 1 2.2 0 0 2.2 2.2

Total 0 13 14.9 12.3 13 18.1 14.8

C Cluster-Based Approach for scheduling of MC tasks

In cluster-based technique, cores of systems are divided in

clusters and tasks are allocated to the clusters. The cluster-

based approach affectively utilizes the unused capacity on all

cores i.e., a task is allocated to a cluster when the utilization of

a task does not exceed the total amount of unused utilization

of the cluster. When the tasks are assigned to clusters, different

global scheduling algorithms are used within clusters for

scheduling the task sets. The cluster-based technique can

change into partitioned technique if each cluster has only one

core and can also change to global technique when all the

cores are put together in one cluster.

Considering example 1, tasks τ2, τ4, τ6 and τ8 are allocated

to cluster C1 while tasks τ1, τ3, τ5 and τ7 are allocated to

cluster C2 in low mode using the DCDU-WF [8] approach, as

shown in figure 10. The utilizations of cluster C1 and cluster

C2 in low mode are higher than utilization in high mode

because the utilizations of all HI and LO tasks is added in low

mode while only the utilizations of all HI critical tasks is added

in high mode. Figure 11 shows the HI critical tasks of cluster

C1 and cluster C2 in high mode. The task set of Table 1 is

scheduled in both low and high modes by the cluster-based

technique using a novel MC-Bfair scheduling algorithm.

𝛕𝐢 𝑷𝒊 𝑪𝒊(𝑳𝑶) 𝑪𝒊(𝑯𝑰) 𝑿𝒊 𝑪𝑺. 𝑨𝒊
𝑳𝑶 𝑪𝑺. 𝑨𝒊

𝑯𝑰 𝑴. 𝑨𝒊
𝑳𝑶 𝑴. 𝑨𝒊

𝑯𝑰

𝛕𝟏 4 2 0 L0 0.2 0 0.4 0

𝛕𝟐 4 2 3 HI 0.2 0.3 0.4 0.6

𝛕𝟑 12 4 7 HI 0.4 0.7 0.8 1.4

𝛕𝟒 12 3 0 L0 0.3 0 0.6 0

𝛕𝟓 24 10 12 HI 1 1.2 2 2.4

𝛕𝟔 24 10 11 HI 1 1.1 2 2.2

𝛕𝟕 24 3 0 L0 0.3 0 0.6 0

𝛕𝟖 12 2 0 L0 0.2 0 0.4 0

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

8

FIGURE 10. Allocation of tasks to clusters in low mode.

FIGURE 11. Allocation of tasks to clusters in high mode

V. Allocation of MC Tasks to Clusters

The tasks of MC system are distributed to clusters by the

DCDU-WF [8] tasks allocation technique. In the DCDU

technique, MC tasks are arranged by criticality level and

utilization i.e., all high tasks are arranged first and then low

critical tasks by decreasing utilization. As each high critical

tasks has two execution times 𝐶𝑖
𝐿𝑂 and 𝐶𝑖

𝐻𝐼, therefore, it has

two utilizations 𝑈𝑖
𝐿𝑂 and 𝑈𝑖

𝐻𝐼 for the low mode and high mode

respectively, whereas a LO tasks have only 𝑈𝑖
𝐿𝑂utilization for

low mode. The high critical tasks are arranged through 𝑈𝑖
𝐻𝐼

utilization while low critical tasks are arranged through 𝑈𝑖
𝐿𝑂

utilization.

After the arrangement of all MC tasks by DCDU technique,

the worst-fit heuristic is used for partitioning MC tasks into

clusters. This approach assigns an MC task to a cluster having

maximum unused space i.e., high remaining utilization. The

HI tasks are partitioned among clusters to ensure the efficient

scheduling of HI tasks in high mode on the cores up to their

Ci(HI) execution time. The aim of the first allocation of high-

critical tasks to clusters is to ensure the schedulability of high-

critical tasks after mode change. After assigning all HI tasks

to clusters, LO tasks of the system are partitioned among

clusters through the same approach. The LO task with high

utilization is assigned first to a cluster with high remaining

capacity and so on. The allocation of MC tasks is discussed in

the following example 2.

Example 2. Consider the task set shown in Table 1.

The DCDU approach ordered the tasks as τ2, τ3, τ5, τ6, τ1,

τ4, τ7 and τ8. The low mode utilization of the given task set is

𝑈𝐿𝑀 = 2.72 and the high mode utilization is 𝑈𝐻𝑀 = 2.29. As

we know that the number of cores must be greater than the

total utilizations of tasks i.e., 𝑈𝐿𝑀 and 𝑈𝐻𝑀 for the low mode

and high mode respectively. The cores are divided into two

clusters, each having two cores. Initially, the high mode

utilization of cluster C1 and C2 i.e., 𝑈𝐶1
𝐻𝑀 and 𝑈𝐶2

𝐻𝑀

respectively for high tasks are zero. Therefore, the task τ2 is

assigned to cluster C1 and task τ3 is assigned to cluster C2. The

high mode utilization of cluster C1 becomes greater than C2

i.e., (𝑈𝐶1
𝐻𝑀 = 𝑈2

𝐻𝐼 = 0.75) ˃ (𝑈𝐶2
𝐻𝑀= 𝑈3

𝐻𝐼 = 0.58), so the next

HI task with largest utilization i.e., τ5 is assigned to cluster C2

and the utilization of cluster C2 becomes 𝑈𝐶2
𝐻𝑀 =𝑈3

𝐻𝐼 + 𝑈5
𝐻𝐼

= 1.08 in high mode. The allocation of task τ5 to cluster C2

minimizes the remaining unused space of cluster C2 than C1,

so the task τ6 is assigned to cluster C1 and the utilization of

cluster C1 becomes 𝑈𝐶1
𝐻𝑀 = 𝑈2

𝐻𝐼 + 𝑈6
𝐻𝐼 = 1.21 in high mode.

The HI tasks of the system are distributed among both clusters

C1 and C2 with DCDU-WF. Now, the LO tasks are allocated

to clusters by using the same technique. For partitioning of LO

tasks among clusters, cluster C2 has the maximum unused

space than C1 in low mode i.e., (𝑈𝐶2
𝐿𝑀 =𝑈3

𝐿𝑂 + 𝑈5
𝐿𝑂 =0.75) <

(𝑈𝐶1
𝐿𝑀 =𝑈2

𝐿𝑂 + 𝑈6
𝐿𝑂 = 0.92), therefore task τ1 is assigned to

C2, because τ1 have largest utilization among all low critical

tasks. After assigning τ1 to cluster C2, the remaining unused

space of C1 becomes larger than C2 i.e., 𝑈𝐶2
𝐿𝑀 =𝑈3

𝐿𝑂 + 𝑈5
𝐿𝑂

+ 𝑈1
𝐿𝑂 = 1.25. Therefore, the next low critical task τ4 is

assigned to cluster C1. The utilization of cluster C1 becomes

𝑈𝐶1
𝐿𝑀 = 𝑈2

𝐿𝑂 + 𝑈6
𝐿𝑂 + 𝑈4

𝐿𝑂= 1.16, and as the utilization of C1

is still smaller than C2, so task τ8 is assigned to cluster C1.

Now, the remaining unused space of cluster C2 becomes larger

than cluster C1 i.e., 𝑈𝐶1
𝐿𝑀 =𝑈2

𝐿𝑂 + 𝑈6
𝐿𝑂 + 𝑈4

𝐿𝑂+ 𝑈8
𝐿𝑂= 1.34,

so, the last task τ7 is assigned to cluster C2. The low mode

utilization of cluster C2 becomes, 𝑈𝐶2
𝐿𝑀 =𝑈3

𝐿𝑂 + 𝑈1
𝐿𝑂 + 𝑈5

𝐿𝑂+

𝑈7
𝐿𝑂= 1.38. The tasks that are assigned to both clusters C1 and

C2 are shown in figure 12.

FIGURE 12. Allocation of tasks to clusters C1 and C2

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

9

VI. Cluster-Based Scheduling of MC System

For low and high modes, the MC-Bfair algorithm is applied

for globally scheduling of tasks on cores of cluster C1 and

cluster C2. The MC-BFair algorithm, first computes the

utilizations of all low and high criticality tasks in low

criticality mode (ULM). For high criticality mode, it determines

the utilizations of only high criticality tasks (UHM) in the

mixed criticality system. For initial schedulability test, if the

value of ULM or UHM is larger than the total number of cores

in the system, then the mixed criticality task set is not

schedulable. A schedulability test is applied for each cluster

capacity (number of its cores) in high mode. If the utilization

of high criticality tasks in a cluster is less than the cluster

capacity, the task set is schedulable using MC-BFair

scheduling algorithm. Otherwise the task set is not

schedulable. Another schedulability test is applied for each

cluster capacity in low mode. If the utilization of both low and

high criticality tasks in a cluster is less than the cluster

capacity, the task set is schedulable using MC-BFair

scheduling algorithm. Otherwise the task set is not

schedulable. The MC-BFair scheduling algorithm is shown in

figure 13.

FIGURE 13. Algorithm for Mixed-Criticality Boundary Fair Scheduling

The schedulability test is applied during mode change. If the

utilization of high criticality task for mode change is less than

the cluster capacity, the mixed criticality task set is

schedulable using MC-BFair scheduling algorithm.

Otherwise, the mixed-criticality task set is schedulable on

multicore platform using cluster-based approach.

A. Total Execution Time Calculation in Low Mode

For low mode, the low mode utilization 𝑈𝑖
𝐿𝑂 = 𝑐𝑖

𝐿𝑂/ 𝑝𝑖 is used

in each equation for finding the total execution time of tasks

in each period boundary. As explained earlier, the remaining

work (𝑅𝑊𝑖
𝐾+1), mandatory work (𝑚𝑖

𝐾+1), and pending work

(𝑃𝑊𝑖
𝐾+1) are calculated for each MC task to calculate the total

execution time units (𝑇𝐸𝑖
𝐾+1) of each task. The calculated total

execution time 𝑇𝐸𝑖
𝐾+1 of tasks is allocated to cores by the

DCDU-WF approach for scheduling on cores at each period

boundary. The tasks that are allocated to cluster C1 are shown

in table 5 and the tasks of cluster C2 is given in table 6. The

overhead time of context switch and migration of each task is

calculated as, 𝐶𝑆. 𝐴𝑖
𝑋𝑖 = 𝐶𝑖

𝑋𝑖 *5/100 and 𝑀. 𝐴𝑖
𝑋𝑖 = 𝐶𝑖

𝑋𝑖

*10/100 respectively. The values of 𝑅𝑊𝑖
𝐾+1, 𝑚𝑖

𝐾+1, 𝑃𝑊𝑖
𝐾+1

and 𝑇𝐸𝑖
𝐾+1 of each task in low mode at each period boundary

is shown in table 7 and table 8 for clusters C1 and C2

respectively. The schedule generated from table 7 and table 8

is shown in figure 14 and figure 15.

Table 5

 Cluster C1 Task

Table 6

Cluster C2 Tasks

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

10

Table 7

Calculation of execution time for tasks of cluster C1 in low mode

 Table 8

Calculation of execution time for tasks of cluster C2 in low mode

FIGURE 14. LO mode scheduling of Cluster C1

FIGURE 15. LO mode scheduling of Cluster C2.

 The time of overhead is added to the execution time of each

task. The time of migration overhead is added when the task

migrates from one core to another during run-time scheduling

and the time of context switch is added when context switch

occurs. In low mode, the overhead time of migration and

context switch is calculated 𝑀𝐴𝑖
𝐿𝑂= 𝑐𝑖

𝐿𝑂*10/100 and 𝐶𝑆𝐴𝑖
𝐿𝑂=

𝑐𝑖
𝐿𝑂*5/100 respectively. The execution time with overhead

time units of each task at each period boundary is given in

table 9 and table 10 for cluster C1 and cluster C2 respectively.

The generated schedule form table 9 and table 10 with

overhead amount for cluster C1 and cluster C2 is shown in

figure 16 and figure 17, respectively. The novel MC-Bfair

approach scheduled the task set given in table 1 successfully

for low mode with overhead time in both cluster C1 and cluster

C2. The MC-BFair scheduling algorithm for low mode is

shown in figure 18.

Time 0 4 8 12 16 20 24

bk

b0

b2 b3 b4 b5 b6 b7

𝑹𝑾𝟐
𝑲 0 0 0 0 0 0 0

𝑹𝑾𝟒
𝑲 0 0 0 0 0 0 0

𝑹𝑾𝟔
𝑲 0 - 1/3 1/3 0 - 1/3 - 2/3 0

𝑹𝑾𝟖
𝑲 0 - 1/3 1/3 0 - 1/3 - 2/3 0

𝒎𝟐
𝑲 * 2 2 2 2 2 2

𝒎𝟒
𝑲 * 1 1 1 1 1 1

𝒎𝟔
𝑲 * 1 1 2 1 1 1

𝒎𝟖
𝑲 * 0 0 1 0 0 0

𝑷𝑾𝟐
𝑲 * 0 0 0 0 0 0

𝑷𝑾𝟒
𝑲 * 0 0 0 0 0 0

𝑷𝑾𝟔
𝑲 * 2/3 1/3 0 2/3 1/3 0

𝑷𝑾𝟖
𝑲 * 2/3 1/3 0 2/3 1/3 -0

𝑻𝑬𝟐
𝑲 * 2 2 2 2 2 2

𝑻𝑬𝟒
𝑲 * 1 1 1 1 1 1

𝑻𝑬𝟔
𝑲 * 2 1 2 2 2 1

𝑻𝑬𝟖
𝑲 * 1 0 1 1 1 0

Time 0 4 8 12 16 20 24

bk

b0

b2 b3 b4 b5 b6 b7

𝑹𝑾𝟏
𝑲 0 0 0 0 0 0 0

𝑹𝑾𝟑
𝑲 0 - 1/3 - 2/3 0 - 1/3 1/3 0

𝑹𝑾𝟓
𝑲 0 - 1/3 1/3 0 - 1/3 - 2/3 0

𝑹𝑾𝟕
𝑲 0 - ½ 0 - ½ 0 - ½ 0

𝒎𝟏
𝑲 * 2 2 2 2 2 2

𝒎𝟑
𝑲 * 1 1 1 1 1 2

𝒎𝟓
𝑲 * 1 1 2 1 1 1

𝒎𝟕
𝑲 * 0 0 0 0 0 0

𝑷𝑾𝟏
𝑲 * 0 0 0 0 0 0

𝑷𝑾𝟑
𝑲 * 2/3 1/3 0 2/3 1/3 0

𝑷𝑾𝟓
𝑲 * 2/3 1/3 0 2/3 1/3 0

𝑷𝑾𝟕
𝑲 * ½ 0 ½ 0 ½ 0

𝑻𝑬𝟏
𝑲 * 2 2 2 2 2 2

𝑻𝑬𝟑
𝑲 * 2 2 1 2 1 2

𝑻𝑬𝟓
𝑲 * 2 1 2 2 2 1

𝑻𝑬𝟕
𝑲 * 1 0 1 0 1 0

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

11

Table 9

The LO mode execution time with overhead time for tasks of cluster C1

Table 10

The LO mode execution time with overhead time for tasks of cluster C2

FIGURE 16. Cluster C1 scheduling with overhead for low mode

FIGURE 17. Cluster C2 scheduling with overhead for low mode

FIGURE 18. Algorithm for Tasks scheduling in low mode

B. Total Execution Time Calculation in High Mode

 For high mode, the high mode utilization 𝑈𝑖
𝐻𝐼 = 𝑐𝑖

𝐻𝐼/ 𝑝𝑖 of

high critical tasks is used in each equation for calculating the

total execution time of each task in each period boundary. As

explained earlier, the remaining work (𝑅𝑊𝑖
𝐾+1), mandatory

work (𝑚𝑖
𝐾+1), and pending work (𝑃𝑊𝑖

𝐾+1) are calculated for

each task to calculate the total execution time units (𝑇𝐸𝑖
𝐾+1)

of each task. When 𝑇𝐸𝑖
𝐾+1 is calculated for each high task, the

tasks are allocated to cores by the DCDU-WF approach for

scheduling at each period boundary. The tasks that are

assigned to cluster C1 are shown in table 5 and the task of

cluster C2 is given in table 6. The overhead time of context

switch and migration of each task is calculated by 𝐶𝑆. 𝐴𝑖
𝑋𝑖 =

𝐶𝑖
𝑋𝑖 *5/100 and 𝑀. 𝐴𝑖

𝑋𝑖 = 𝐶𝑖
𝑋𝑖 *10/100 respectively. The

values of 𝑅𝑊𝑖
𝐾+1, 𝑚𝑖

𝐾+1, 𝑃𝑊𝑖
𝐾+1 and 𝑇𝐸𝑖

𝐾+1 of each task in

high mode at each period boundary is shown in table 11 and

table 12 for cluster C1 and cluster C2 respectively. The

generated schedule form table 11 and table 12 cluster C1 and

cluster C2 is shown in figure 19 and figure 20, respectively

𝒃𝒌 𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒃𝟓 𝒃𝟔

Time 0 4 8 12 16 20 24

𝑻𝑬𝟐
𝑲 0 2 2 2 2 2 2

𝑻𝑬𝟒
𝑲 0 1 1.5 1.5 1 1.2 1.5

𝑻𝑬𝟔
𝑲 0 2 1.5 2.5 2.5 2.5 1.5

𝑻𝑬𝟖
𝑲 0 1 0 1.1 1.1 1.1 0

Total 0 6 5 7.1 6.6 6.8 5

𝒃𝒌 𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒃𝟓 𝒃𝟔

Time 0 4 8 12 16 20 24

𝑻𝑬𝟏
𝑲 0 2 2.2 2.2 2 2 2.2

𝑻𝑬𝟑
𝑲 0 2 2.3 1.3 2 1.3 2.3

𝑻𝑬𝟓
𝑲 0 2 1.5 2.5 2.5 2.5 1.5

𝑻𝑬𝟕
𝑲 0 1 0 1.2 0 1.2 0

Total 0 7 6 7.1 6.5 6.9 6

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

12

Table 11

Calculation of execution time for tasks of cluster C1 in HI mode

Table 12
 Calculation of execution time for tasks of cluster C2 in HI mode

FIGURE 19. Cluster C1 scheduling in high mode

FIGURE 20. Cluster C2 scheduling in high mode

For high mode, the time of overhead is added to the task

execution time. The time of migration overhead is added at

each period boundary when the task migrates from one core to

another during run-time scheduling and the time of context

switch is added when context switch occurs. In high mode, the

overhead time of migration and context switch is calculated as

𝑀𝐴𝑖
𝐻𝐼= 𝑐𝑖

𝐻𝐼*10/100 and 𝐶𝑆𝐴𝑖
𝐻𝐼= 𝑐𝑖

𝐻𝐼*5/100 respectively. The

overhead time added to the execution time of tasks is given in

table 13 table 14 for cluster C1 and cluster C2 respectively. The

schedule generated from table 13 and table 14 is shown in

figure 21 and figure 22. The novel MC-Bfair approach

scheduled the task set given in table 1 successfully for high

mode with overhead time in both cluster C1 and cluster C2. The

MC-BFair scheduling algorithm for high mode is shown in

figure 23.

Table 13

The HI mode execution time with overhead time for tasks of cluster C1

Time 0 4 8 12 16 20 24

bk

b0

b2 b3 b4 b5 b6 b7

𝑹𝑾𝟐
𝑲 0 0 0 0 0 0 0

𝑹𝑾𝟒
𝑲 0 0 0 0 0 0 0

𝑹𝑾𝟔
𝑲 0 0 0 0 0 0 0

𝑹𝑾𝟖
𝑲 0 0 0 0 0 0 0

𝒎𝟐
𝑲 * 3 3 3 3 3 3

𝒎𝟒
𝑲 * 0 0 0 0 0 0

𝒎𝟔
𝑲 * 2 2 2 2 2 2

𝒎𝟖
𝑲 * 0 0 0 0 0 0

𝑷𝑾𝟐
𝑲 * 0 0 0 0 0 0

𝑷𝑾𝟒
𝑲 * 0 0 0 0 0 0

𝑷𝑾𝟔
𝑲 * 0 0 0 0 0 0

𝑷𝑾𝟖
𝑲 * 0 0 0 0 0 0

𝑻𝑬𝟐
𝑲 * 3 3 3 3 3 3

𝑻𝑬𝟒
𝑲 * 0 0 0 0 0 0

𝑻𝑬𝟔
𝑲 * 2 2 2 2 2 2

𝑻𝑬𝟖
𝑲 * 0 0 0 0 0 0

Time 0 4 8 12 16 20 24

bk

b0

b2 b3 b4 b5 b6 b7

𝑹𝑾𝟏
𝑲 0 0 0 0 0 0 0

𝑹𝑾𝟑
𝑲 0 - 2/3 2/3 0 - 2/3 2/3 0

𝑹𝑾𝟓
𝑲 0 0 0 0 0 0 0

𝑹𝑾𝟕
𝑲 0 0 0 0 0 0 0

𝒎𝟏
𝑲 * 0 0 0 0 0 0

𝒎𝟑
𝑲 * 2 1 3 2 1 3

𝒎𝟓
𝑲 * 2 2 2 2 2 2

𝒎𝟕
𝑲 * 0 0 0 0 0 0

𝑷𝑾𝟏
𝑲 * 0 0 0 0 0 0

𝑷𝑾𝟑
𝑲 * 1/3 2/3 0 1/3 2/3 0

𝑷𝑾𝟓
𝑲 * 0 0 0 0 0 0

𝑷𝑾𝟕
𝑲 * 0 0 0 0 0 0

𝑻𝑬𝟏
𝑲 * 0 0 0 0 0 0

𝑻𝑬𝟑
𝑲 * 3 1 3 3 1 3

𝑻𝑬𝟓
𝑲 * 2 2 2 2 2 2

𝑻𝑬𝟕
𝑲 * 0 0 0 0 0 0

𝒃𝒌 𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒃𝟓 𝒃𝟔

Time 0 4 8 12 16 20 24

𝑻𝑬𝟐
𝑲 0 3 3 3 3 3 3

𝑻𝑬𝟒
𝑲 0 0 0 0 0 0 0

𝑻𝑬𝟔
𝑲 0 2 2.6 2.6 2.6 2.6 2.6

𝑻𝑬𝟖
𝑲 0 0 0 0 0 0 0

Total 0 5 5.6 5.6 5.6 5.6 5.6

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

13

FIGURE 21. Cluster C1 scheduling with overhead for high mode

Table 14

The HI mode execution time with overhead time for tasks of cluster C2

FIGURE 22. Cluster C2 scheduling with overhead for high mode

FIGURE 23. Algorithm for Tasks scheduling in high mode

C. Total Execution Time Calculation in Mode Change

For the mode switch from low critical to high critical, the

task set given in table 1 is schedulable for all mode switch

times st of high critical tasks. The mode switch can occur in

cluster C1 by HI task t2 on 2, 6, 10, 14, 18 and 22 time units

while task t6 can cause mode switch on 21 time unit. Similarly

the mode switch can occur in cluster C2 by HI task t3 on 9 and

22 time units, while t5 can cause mode switch on 21 time unit.

These switch times are the possible mode switch time units of

high critical tasks of cluster C1 and cluster C2. If a high critical

task causes mode switch at any time of mode switch time of

cluster C1 and cluster C2, the values of remaining work

𝑅𝑊𝑖
𝐾+1, mandatory time unit𝑠 𝑚𝑖

𝐾+1, pending work 𝑃𝑊𝑖
𝐾+1

and total execution time of high tasks is also calculated. For

calculating 𝑅𝑊𝑖
𝐾+1, 𝑚𝑖

𝐾+1 and 𝑃𝑊𝑖
𝐾+1, the high mode

utilization 𝑈𝑖
𝐻𝐼= 𝑐𝑖

𝐻𝐼/ 𝑝𝑖 is used for a HI task at the time of

mode change and after mode change. For all tasks before mode

switch, the low mode utilization 𝑈𝑖
𝐿𝑂= 𝑐𝑖

𝐿𝑂/𝑝𝑖 is used for

calculating 𝑅𝑊𝑖
𝐾+1, 𝑚𝑖

𝐾+1 and 𝑃𝑊𝑖
𝐾+1in each period

boundary. If the deadline of a high critical task exists in a

period boundary after mode change, the total execution time

𝑇𝐸𝑖
𝐾+1 of HI tasks is calculated as follows,

 𝑇𝐸𝑖
𝐾+1 = ⌈𝑚𝑖

𝐾+1 + (𝑃𝑊𝑖
𝐾+1 − 𝑅𝑊𝑖

𝐾+1) ⌉

 + (𝑐𝑖
𝐻𝐼-∑ 𝑇𝐸𝑖

𝐿𝑂
𝑏𝑘𝑜 →𝑏𝑘𝑛

)

𝒃𝒌 𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒃𝟓 𝒃𝟔

Time 0 4 8 12 16 20 24

𝑻𝑬𝟏
𝑲 0 0 0 0 0 0 0

𝑻𝑬𝟑
𝑲 0 3 1.4 3.4 3 1.4 3.4

𝑻𝑬𝟓
𝑲 0 2 2.6 2.6 2.6 2.6 2.6

𝑻𝑬𝟕
𝑲 0 0 0 0 0 0 0

Total 0 5 4 6 5.6 4 6

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

14

 Where, 𝑏𝑘𝑜 is that period boundary in which these tasks

start their execution and 𝑏𝑘𝑛 is the period boundary before the

mode switch. While, ∑ 𝑇𝐸𝑖
𝐿𝑂

𝑏𝑘𝑜 →𝑏𝑘𝑛
 is the sum of the total

execution time of high critical tasks in the low mode in period

boundaries 𝑏𝑘𝑜 to 𝑏𝑘𝑛. The above equation is also used for

calculating total execution time 𝑇𝐸𝑖
𝐾+1of an Hl task in period

boundaries after the mode switch which contain the deadline

of a high critical tasks. When a task τ2 causes a mode change

at time 14, the tasks τ4 and τ8 are discarded and only τ2 and

τ6 are scheduled in high mode. The execution time of tasks for

cluster C1 is calculated in table 15 while the schedule

generated from table 15 of cluster C1 for mode switch time at

time unit 14 is shown in figure 24.

Table 15

 Calculation of execution time for tasks of cluster C1 for mode change

FIGURE 24. Cluster C1 scheduling for mode change

The time of migration overhead is added when the task

migrates among cores during scheduling and the time of

context switch is added when context occurs. The overhead

time added to the execution time of each task is given in table

16 for cluster C1. The generated schedule from table 16 is for

the cluster C1 during mode change is shown in figure 25.

Table 16

The mode change execution time with overhead time units for tasks of

cluster C1

FIGURE 25. Cluster C1 scheduling with overhead for mode change

Figure 22 shows the mode switch occurred at time unit = 9

in cluster C2 by a HI task τ5. After mode change, tasks τ1 and

τ7 are discarded from further execution and only HI tasks τ3

and τ5 are scheduled in high mode. The total execution time

of tasks is calculated in table 17. The schedule generated from

table 17 for the mode switch is shown in figure 26.

Table 17

 Calculation of execution time for tasks of cluster C2 for mode change

Time 0 4 8 12 16 20 24

bk

b0

b2 b3 b4 b5 b6 b7

𝑹𝑾𝟐
𝑲 0

0

0

0 0

0

0

𝑹𝑾𝟒
𝑲 0 0 0 0 0 0 0

𝑹𝑾𝟔
𝑲 0 - 1/3 1/3 0 1/3 1/6 0

𝑹𝑾𝟖
𝑲 0 0 0 0 0 0 0

𝒎𝟐
𝑲 * 2 2 2 3 3 3

𝒎𝟒
𝑲 * 1 1 1 0 0 0

𝒎𝟔
𝑲 * 1 1 2 1 2 2

𝒎𝟖
𝑲 * 1 1 1 0 0 0

𝑷𝑾𝟐
𝑲 * 0 0 0 0 0 0

𝑷𝑾𝟒
𝑲 * 0 0 0 0 0 0

𝑷𝑾𝟔
𝑲 * 2/3 1/3 0 5/6 1/6 0

𝑷𝑾𝟖
𝑲 * 0 0 0 0 0 0

𝑻𝑬𝟐
𝑲 * 2 2 2 3 3 3

𝑻𝑬𝟒
𝑲 * 1 1 1 0 0 0

𝑻𝑬𝟔
𝑲 * 2 1 2 2 2 3

𝑻𝑬𝟖
𝑲 * 1 1 1 0 0 0

𝒃𝒌 𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒃𝟓 𝒃𝟔

Time 0 4 8 12 16 20 24

𝑻𝑬𝟐
𝑲 0 2 2 2 3 3 3

𝑻𝑬𝟒
𝑲 0 1 1.45 1.45 0 0 0

𝑻𝑬𝟔
𝑲 0 2 1.5 2.5 2.6 2.6 3.6

𝑻𝑬𝟖
𝑲 0 1 0 1.1 0 0 0

Total 0 5 5 7.1 5.6 5.6 6.6

Time 0 4 8 12 16 20 24

b k

b0

b1 b2 b3 b4 b5 b6

𝑹𝑾𝟏
𝑲

0

0

0 0 0 0 0

𝑹𝑾𝟑
𝑲 0 - 1/3 - 2/3 0 1/3 - 1/3 0

𝑹𝑾𝟓
𝑲 0 - 1/3 1/3 0 0 0 0

𝑹𝑾𝟕
𝑲 0 - ½ 0 0 0 0 0

𝒎𝟏
𝑲 * 2 2 0 0 0 0

𝒎𝟑
𝑲 * 1 1 1 2 2 2

𝒎𝟓
𝑲 * 1 1 2 2 2 2

𝒎𝟕
𝑲 * 0 0 0 0 0 0

𝑷𝑾𝟏
𝑲 * 0 0 0 0 0 0

𝑷𝑾𝟑
𝑲 * 2/3 1/3 0 1/3 2/3 0

𝑷𝑾𝟓
𝑲 * 2/3 1/3 1/3 0 0 0

𝑷𝑾𝟕
𝑲 * ½ 0 0 0 0 0

𝑻𝑬𝟏
𝑲 * 2 2 0 0 0 0

𝑻𝑬𝟑
𝑲 * 2 2 3 2 3 2

𝑻𝑬𝟓
𝑲 * 2 1 3 2 2 2

𝑻𝑬𝟕
𝑲 * 1 0 0 0 0 0

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

15

FIGURE 26. Cluster C2 scheduling for mode change

The time of overhead added to the tasks execution time task

for mode change in cluster C2 is given in table 18. The time of

overhead of migration and context switches of a task 𝛕𝒊 in high

mode is calculated as 𝑀𝐴𝑖
𝐻𝐼= 𝑐𝑖

𝐻𝐼*10/100 and 𝐶𝑆𝐴𝑖
𝐻𝐼=

𝑐𝑖
𝐻𝐼*5/100 for migration and context switch respectively and

is shown in table 18. For mode change, the schedule obtained

from table 18 is shown in figure 27. For both cluster C1 and

cluster C2, the tasks given in table 1 is scheduled by the novel

MC-Bfair scheduling algorithm during mode change. The The

MC-BFair scheduling algorithm for mode change is shown in

figure 28.

Table 18

 The mode change execution time with overhead time units for tasks of

cluster C2

FIGURE 27. Cluster C2 scheduling with overhead for mode change

FIGURE 28. Algorithm for Tasks scheduling in mode change

VII. Experimental Evaluation

The efficiency of the cluster-based scheduling technique is

shown by experimental evaluation. The experiments are

evaluated on mixed-criticality task sets of MC systems. We

compared the proposed approach with other multicore

scheduling approaches i.e., CB-FP [18], MC-EKG-VD-1 [9],

partitioned and global approaches to show the effectiveness of

our approach. The same time of context switch and migration

overhead of MC-Bfair approach is considered for CB-FP and

MC-EKG-VD-1 approach. The results obtained from

experiments show the better performance of cluster-based

technique as compared to CB-FP, MC-EKG-VD-1,

partitioned and global approaches.

A. Generation of MC Task Sets

For experimental evaluation, the MC task sets are randomly

generated, which are controlled by four parameters i.e., 𝑃𝐻𝐼 ,

𝑅𝐻𝐼, 𝐶𝑖(𝐿𝑂)𝑚𝑎𝑥 and 𝑃𝑚𝑎𝑥. Where, 𝑃𝐻𝐼 represents the

probability of HI tasks in a task set, the parameter 𝑅𝐻𝐼 is used

to represent the ratio between LO and HI WCET of high

critical tasks in a task set, 𝐶𝑖(𝐿𝑂)𝑚𝑎𝑥 denotes the maximum

low mode WCET of MC tasks and 𝑃𝑚𝑎𝑥 represents the

𝒃𝒌 𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒃𝟓 𝒃𝟔

Time 0 4 8 12 16 20 24

𝑻𝑬𝟏
𝑲 0 2 2.2 0 0 0 0

𝑻𝑬𝟑
𝑲 0 2 2.2 3.35 2 3.35 2.35

𝑻𝑬𝟓
𝑲 0 2 1.5 3.6 2.6 2.6 2.6

𝑻𝑬𝟕
𝑲 0 1 0 0 0 0 0

Total 0 7 5.9 6.95 4.6 5.95 4.95

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

16

maximum period of MC tasks. A task set is created through

the following parameters,

.

 Using 𝑃𝐻𝐼 , if Xi = HI, the task is a HI task otherwise Xi

= LO for LO critical task

 𝐶𝑖(LO) is generated within range [1, 𝐶𝑖(𝐿𝑂)𝑚𝑎𝑥],

where 𝐶𝑖(𝐿𝑂)𝑚𝑎𝑥 < 𝑃𝑚𝑎𝑥.

 𝐶𝑖(HI) of a task is generated by 𝐶𝑖(HI) = 𝐶𝑖(LO). 𝑅𝐻𝐼.

 The task’s period Pi is generated within [1, 𝑃𝑚𝑎𝑥]

range.

The MC task set is randomly generated by means of target

utilization U = 𝑈𝐿𝑀. The generation of an MC task set with

exact target utilization is difficult, so the task set is generated

between 𝑈𝑚𝑖𝑛 and 𝑈𝑚𝑎𝑥. Whereas 𝑈𝑚𝑖𝑛 = U – 0.005, and

𝑈𝑚𝑎𝑥= U + 0.005. The generated task set is discarded if the

utilization in low or high mode is bigger than the number of

cores of the MC real-time system.

B. Result Analysis

The experiments are carried out for MC task sets using

different parameters i.e., 𝑅𝐻𝐼 ∈ {1, 2, 3, 4, 5}, 𝑃𝐻𝐼 ∈ {0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, 𝑃𝑚𝑎𝑥 = {60} and n ∈ {9, 10,

12, 15, 18}. Where, 𝑅𝐻𝐼 = 𝐶𝑖(HI)/ 𝐶𝑖(LO), is used for the ratio

between HI and LO WCET. The 𝑃𝐻𝐼 Shows percentage of HI

tasks in a task set and n represents the number of tasks in a task

set. For result analysis, at least 300 MC task sets are used at

each point of figure 29, figure 30, figure 31, and figure 32. The

results obtained from the cluster-based technique are

compared with CB-FP, MC-EKG-VD-1, global and

partitioned techniques.

Under target utilization U = {0.25, 0.375, 0.5, 0.55, 0.6,

0.65, 0.70, 0.75}, figure 29 displays the percentage of

schedulable MC task sets for four cores using the cluster-

based, CB-FP, partitioned and global approaches. As shown

in figure 29, the cluster-based technique scheduled 100% task

sets up to U = 0.55, while the partitioned, and CB-FP

techniques scheduled 100% of generated task sets up to U =

0.45 and the global technique scheduled 100% of the

generated task sets up to U = 0.4. The percentage of

schedulable task sets are decreased onwards by increasing the

target utilization, but still, the performance of our proposed

cluster-based technique is higher than the other techniques up

to U = 0.79. At target utilization U = 0.50, the cluster-based

and MC-EKG-VD-1 techniques schedule 100% MC task sets

while CB-FP technique schedule 83.3%, partitioned technique

schedule 50% and global technique schedule 16.7% task sets

respectively. Similarly, for U = 0.6 the proposed technique

schedule 66.7% task sets while MC-EKG-VD-1, CB-FP,

partitioned and global techniques schedule 50%, 33.3%,

16.7% and 0% task sets respectively. Figure 29 also shows, if

the task sets utilization is increased, the schedulability of task

sets has shown a decrease for all techniques.

 In a task set, the impact of the probability of high critical tasks

on schedulability is shown in figure 30. The probability of

high critical tasks for target utilizations gives a 3-diamesional

plot. To reduce 3-diamensional plots to 2-diamensionals plots,

we used weighted schedulability measures [33]. The weighted

acceptance ratio under the given target utilization is obtained

as ∑ 𝑈𝑖𝑈𝑖𝜖𝑢 . A(Ui) / ∑ 𝑈𝑖𝑈𝑖𝜖𝑢 , where A(Ui) represents

the acceptance ratio for target utilization Ui. For probability, at

least 15 A(Ui) are computed for different utilizations Ui.

Figure 30 shows that if the percentage of HI critical tasks

increases, the percentage of schedulable task sets decreases

due to an increase in the utilization of MC workload. As stated

previously, the proposed cluster-based technique performs

better than the other techniques using the parameter 𝑃𝐻𝐼 .

The impact of the ratio between Ci(HI) and Ci(LO)

execution times on schedulability is shown in figure 31. For

parameter 𝑅𝐻𝐼, at least 15 acceptance ratios are computed for

different utilizations Ui. Figure 31 shows that if the ratio

between Ci(HI) and Ci(LO) increases, the task set

schedulability decreases, because if the 𝑅𝐻𝐼 between Ci(HI)

and Ci(LO) increases, it multiplies the utilization of a given

task set, which decreases the task sets schedulability. The

proposed technique performs better than MC-EKG-VD-1 [9],

CB-FP [18], global and partitioned techniques in terms of high

utilization of task sets due to increasing value of

parameter 𝑅𝐻𝐼 .

The impact of task set size on schedulability is shown in

figure 32. For each variable parameter n, at least 15 A(Ui) with

different target utilization are computed. For n = 6, 9, 12 and

15, the proposed cluster-based technique has higher weighted

schedulability as compared to the other three techniques i.e.,

CB-FP, partitioned and global techniques. The schedulability

of our cluster-based approach is 84% for n = 9, while the MC-

EKG-VD-1, CB-FP, partitioned technique and global

technique have shown 80%, 78%, 75% and 67% weighted

schedulability respectively. As compared to CB-FP, global

and partitioned scheduling techniques, the weighted

schedulability of our cluster-based technique is higher for n =

6, 9, 12, and 15.

FIGURE 29. Utilization vs Schedulability for m = 4 and n = 10

0%

20%

40%

60%

80%

100%

0 . 4 0 . 4 5 0 . 5 0 . 5 5 0 . 6 0 . 6 5 0 . 7 0 . 7 5 0 . 8

SC
H

ED
U

LA
B

IL
IT

Y

UTILIZATION

Partioned Approach Clustered Approach

Global Approach CB-FP

MC-EKG-VD-1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

17

FIGURE 30. High criticality probability vs Weighted schedulability for

m = 4 and n = 10

FIGURE 31. LO and HI WCET ratios vs Weighted Schedulability for m

= 4 and n = 10

FIGURE 32. Task set size vs Weighted schedulability for m = 4

VIII. Conclusion and Future Work

In this research work, a cluster-based technique is used for

scheduling the task set of multicore MC systems. In this study,

the overhead time of task migration and context switches is

reduced. The cores are divided into clusters and MC tasks are

distributed in these clusters by means of the DCDU-WF

heuristic approach [8]. A novel mixed-criticality cluster-based

boundary fair (MC-Bfair) scheduling algorithm is used for the

scheduling of tasks on cores within clusters. The boundary fair

algorithm minimizes the migrations and context switches. The

system initially executes the tasks in low mode. The MC tasks

are executed up to 𝐶𝑖(LO) time units, but when a HI task is

executed upto 𝐶𝑖(LO) execution time in any cluster and still

needs further execution i.e 𝐶𝑖(HI)− 𝐶𝑖(LO), the system is

changed to high mode. In high mode, all LO tasks are dropped

and HI tasks are only executed up to 𝐶𝑖(HI) through MC-Bfair

algorithm in each cluster. This approach has reduced the

overhead caused by context switches and migrations of tasks.

For each migration of a task or context switch, the overhead of

migration and context switch is added to the execution time of

the MC task. In low critical mode, the low mode context

switch and migration overhead time are added to the task’s

execution time while in high critical mode, the high mode

context switch and migration overhead time is added to the

execution time of the task for each context switch and

migration respectively. The results obtained from experiments

show the better performance of the cluster-based technique as

compared to the MC-EKG-VD-1, CB-FP [18], partitioned and

global techniques.

As a future work, the cluster-based scheduling of multicore

MC systems with overhead reduction can be extended to a

system having more criticality levels. It is also needed to

examine fault tolerance in cluster-based technique. As a future

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5

SC
H

ED
U

LA
B

IL
IT

Y

RATIO OF HIGH CRITICAL TASKS

Partitioned Approach Global Approach

Cluster Approach CB-FP

MC-EKG-VD-1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

6 9 1 2 1 5

SC
H

ED
U

LA
B

IL
IT

Y

TASK SET SIZE

Partitioned Approach Global Approach

Cluster Approach CB-FP

MC-EKG-VD-1

0%

20%

40%

60%

80%

100%

120%

0 . 3 0 . 4 0 . 5 0 . 6 0 . 7

W
EI

G
H

TE
D

 S
C

H
ED

U
LA

B
IL

IT
Y

PROBABILITY OF HIGH CRITICALITY TASKS

Partitioned Approach Global Approach

Cluster Approach CB-FP

MC-EKG-VD-1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

18

work we will execute MC tasks on fraction rate of processors

like MC-Fluid [20] to check the performance of our cluster-

based scheduling approach as compared to partitioned and

global scheduling approaches.

References

[1] ARINC653, "An Avionics Standard for Safe, Partitioned," in Wind

River System / IEEE Seminar, 2008.

[2] M. Staron, "AUTOSAR (AUTomotive Open System ARchitecture,"

Springer, pp. 97-136, 2021.

[3] S. Baruah and S. Vestal, "Schedulability analysis of sporadic tasks

with multiple criticality specifications," Euromicro Conference on

Real-Time Systems, IEEE, pp. 147-155, 2008.

[4] S. Ramanathan and A. Easwaran, "Utilization difference based

partitioned scheduling of mixed-criticality systems," In Design,

Automation & Test in Europe Conference & Exhibition, IEEE, pp.

238-243, 2017.

[5] M. Naghibzadeh, P. Neamatollahi, R. Ramezani, A. Rezaeian and T.

Dehghani, "Efficient semi-partitioning and rate-monotonic

scheduling hard real-time tasks on multi-core systems," In 2013 8th

IEEE International Symposium on Industrial Embedded Systems

(SIES), IEEE, pp. 85-88, 2013.

[6] H. Li and S. Baruah, "Outstanding paper award: Global mixed-

criticality scheduling on multiprocessors," In 2012 24th Euromicro

Conference on Real-Time Systems, IEEE, pp. 166-175, 2012.

[7] J. M. Calandrino, J. H. Anderson and D. P. Baumberger, "A hybrid

real-time scheduling approach for large-scale multicore platforms,"

n 19th Euromicro Conference on Real-Time Systems (ECRTS'07),

IEEE, pp. 247-258., 2007.

[8] A. Ali and K. H. Kim, "Cluster-based multicore real-time mixed-

criticality scheduling," Journal of Systems Architecture, vol. 79, pp.

45-58, 2017.

[9] C. Yang, W. Han, Z. Ji and Z. Long, "Semi-partitioned scheduling

of mixed-criticality system on multiprocessor platforms," The

Journal of Supercomputing, vol. 78, no. 5, pp. 6386-6410, 2022.

[10] S. Vestal, "Preemptive scheduling of multi-criticality systems with

varying degrees of execution time assurance," In 28th IEEE

international real-time systems symposium (RTSS 2007), pp. 239-

243, 2007.

[11] O. R. Kelly, H. Aydin and B. Zhao, "On partitioned scheduling of

fixed-priority mixed-criticality task sets.," In 2011IEEE 10th

International Conference on Trust, Security and Privacy in

Computing and Communications, pp. 1051-1059, 2011.

[12] P. Ekberg and W. Yi, "Bounding and shaping the demand of

generalized mixed-criticality sporadic task systems.," Real-time

systems, vol. 50, no. 1, pp. 48-86, 2014.

[13] C. Gu, N. Guan, Q. Deng and W. Yi, "Partitioned mixed-criticality

scheduling on multiprocessor platforms," In 2014 Design,

Automation & Test in Europe Conference & Exhibition, IEEE, pp.

1-6, 2014.

[14] K. Nagalakshmi and N. Gomathi, "Criticality-cognizant Clustering-

based Task Scheduling on Multicore Processors in the Avionicd

Domain," International Journal of Computational Intelligence

Systems, vol. 11, no. 1, pp. 219-237, 2018.

[15] R. M. Pathan, "Schedulability analysis of mixed-criticality systems

on multiprocessors," In 2012 24th Euromicro Conference on Real-

Time Systems, IEEE, pp. 309-320, 2012.

[16] A. Björn, S. Baruah and J. Jonsson, "Static-priority scheduling on

multiprocessors," In Proceedings 22nd IEEE Real-Time Systems

Symposium (RTSS 2001)(Cat. No. 01PR1420),IEEE, pp. 193-202,

2001.

[17] S. Baruah, "Techniques for multiprocessor global schedulability

analysis," In 28th IEEE International Real-Time Systems

Symposium (RTSS 2007), IEEE, pp. 119-128, 2007.

[18] S. K. Baruah, B. Vincenzo, d. Gianlorenzo, M. S. Alberto, v. d. S.

Suzanne and S. Leen, "Mixed-criticality scheduling of sporadic task

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

19

systems," In European symposium on algorithms, pp. 555-566.

Springer, pp. 555-566, 2011.

[19] S. Baruah, "Optimal utilization bounds for the fixed-priority

scheduling of periodic task systems on identical multiprocessors,"

IEEE Transactions on Computers, vol. 53, no. 6, pp. 781-784, 2004.

[20] J. Lee, K.-M. Phan, X. Gu, . J. Lee, A. Easwaran, I. Shin and I. Lee,

"MC-Fluid:Fluid Model-Based Mixed-Criticality Scheduling on

Multiprocessors," IEEE Real-Time Systems Symposium (RTSS

2014), pp. 41-52, 2014.

[21] Y. Sharma and M. Sanjay, "RT-SEAT: A hybrid approach based

real-time scheduler for energy and temperature efficient

heterogeneous multicore platforms," Results in Engineering, vol. 16,

p. 100708, 2022.

[22] . S. Moulik, Z. Das, R. Devaraj and . S. Chakraborty, "SEAMERS:

A semi-partitioned energy-aware scheduler for heterogeneous

multicore real-time systems," Journal of Systems Architecture, vol.

114, p. 101953, 2021.

[23] S. Yanshul and S. Moulik, "CETAS: a cluster based energy and

temperature efficient real-time scheduler for heterogeneous

platforms," Proceedings of the 37th ACM/SIGAPP Symposium on

Applied Computing, pp. 501--509, 2022.

[24] S. Moulik, Z. Das and G. Saikia, "CEAT: a cluster based energy

aware scheduler for real-time heterogeneous systems," 2020 IEEE

International Conference on Systems, Man, and Cybernetics (SMC).

IEEE, pp. 1815--1821, 2020.

[25] . Y. Sharma and S. Moulik, "FATS-2TC: A Fault Tolerant real-time

Scheduler for energy and temperature aware heterogeneous

platforms with Two types of Cores," Microprocessors and

Microsystems, vol. 96, p. 104744, 2023.

[26] S. Moulik, "RESET: A real-time scheduler for energy and

temperature aware heterogeneous multi-core systems," Integration,

vol. 77, pp. 59--69, 2021.

[27] Y. Sharma, S. Chakraborty and S. Moulik, "ETA-HP: an energy and

temperature-aware real-time scheduler for heterogeneous

platforms," The Journal of Supercomputing, vol. 78, no. 8, pp. 1--

25, 2022.

[28] N. C. Audsley, "Optimal priority assignment and feasibility of static

priority tasks with arbitrary start times.," University of York,,

England,, 1991.

[29] A. Burns and R. I. Davis, Mixed criticality systems-a review, 2022.

[30] W. Zhang, S. Teng, Z. Zhu, X. Fu and H. Zhu, "An improved least-

laxity-first scheduling algorithm of variable time slice for periodic

tasks," in In 6th IEEE International Conference on Cognitive

Informatics, IEEE, 2007.

[31] G. Levin, S. Funk, C. Sadowski, I. Pye and S. Brandt, "DP-FAIR: A

simple model for understanding optimal multiprocessor scheduling,"

In 2010 22nd Euromicro Conference on Real-Time Systems, IEEE,

pp. 3-13, 2010.

[32] D. Zhu, X. Qi, D. Mossé and R. Melhem, "An optimal boundary fair

scheduling algorithm for multiprocessor real-time systems," Journal

of Parallel and Distributed Computing, vol. 71, no. 10, pp. 1411-

1425, 2011.

[33] A. Bastoni, B. B. Brandenburg and J. Anderson, "Cache-Related

Preemption and Migration Delays:," Proceedings of OSPERT, no.

10, pp. 33-44, 2010.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

20

APPENDIX

LIST OF EQUATIONS

Equation Definition

Ui
LO= 𝐶𝑖(LO)/ 𝑃𝑖 Utilization of task in low mode

Ui
HI= 𝐶𝑖(HI)/ 𝑃𝑖 Utilization of task in high mode

ULM = ∑ Ui
LO

τi∈W Summation of utilizations of all tasks

in low mode

UHM = ∑ Ui
HI

τi∈W

 Summation of utilizations of all high

tasks in high mode

𝑈𝐶𝑘
𝐿𝑀 Utilization of cluster in low mode

𝑈𝐶𝑘
𝐻𝑀 Utilization of cluster in high mode

𝑅𝑊𝑖
𝐾+1 The remaining work of task 𝛕𝒊 at

boundary 𝑏𝑘 as in (Zhu et al., 2011).

𝑚𝑖
𝐾+1= max{0, ⌊𝑅𝑊𝑖

𝐾 +(𝑏𝑘+1−

𝑏𝑘) · 𝑈𝑖⌋}

The mandatory time units that have to

be assigned to task 𝛕𝒊 to keep its

remaining work within one time unit

𝑃𝑊𝑖
𝐾+1= 𝑅𝑊𝑖

𝐾 + (𝑏𝑘+1− 𝑏𝑘) ·

𝑈𝑖 − 𝑚𝑖
𝐾+1

The pending work is the

corresponding decimal part of the

summation of remaining work at 𝑏𝑘

and the work to be done

𝑇𝐸𝑖
𝐾+1=𝑚𝑖

𝐾+1+(𝑃𝑊𝑖
𝐾+1-

𝑅𝑊𝑖
𝐾+1).

The total execution time of a task in

interval [𝑏𝑘, 𝑏𝑘+1)

𝐶𝑆. 𝐴𝑖
𝑋𝑖 = 𝐶𝑖

𝑋𝑖 *5/100 Context switch overhead amount at

criticality level Xi

𝑀. 𝐴𝑖
𝑋𝑖 = 𝐶𝑖

𝑋𝑖 *10/100. Migration overhead amount at

criticality level Xi

𝑇𝐸𝑖
𝐾+1 = ⌈𝑚𝑖

𝐾+1 + (𝑃𝑊𝑖
𝐾+1 −

𝑅𝑊𝑖
𝐾+1) ⌉ + (𝑐𝑖

𝐻𝐼-

∑ 𝑇𝐸𝑖
𝐿𝑂

𝑏𝑘𝑜 →𝑏𝑘𝑛
)

Total execution time units of tasks at

period boundary in which mode

switch is occurred from low to high

mode.

LIST OF ACRONYMS

'

Acronym Explanation

MC Mixed Criticality

MCS Mixed Criticality System

DCDU Decreasing Criticality Decreasing Utilization

MC-Bfair Mixed-Criticality Clustered-based Boundary Fair

CA Certification Authorities

WCET Worst-Case Execution Time

EDF Earliest Deadline First

RM Rate Monotonic

MPVD Mixed-Criticality Partitioning With Virtual
Deadline

EDF-VD EDF With Virtual Deadline

FpEDF Fixed-Priority EDF

DP-fair Deadline Partitioning Fair

Bfair Boundary Fair

CB-FP Cluster-Based Fixed Priority

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

21

 Dr. Amjad Ali received his B.Sc. and MS degrees

in Computer Science from the University of

Peshawar in Pakistan in 1997 and 2010

respectively. In 2000, he obtained his M.Sc. degree
in Computer Science from Gomal University in

Pakistan. He worked as lecturer in University of

Peshawar from 2001 to 2011. Since 2012, he has
been an assistant professor at the Department of

Computer and Software Technology, University of

Swat. In 2013, he joined real-time systems lab in
Gyeongsang National University, South Korea as a PhD candidate and

received PhD degree in 2016. His research interests include real-time

systems, power-aware computing and fault-tolerance computing.

Asad Masood Khattak is an Associate Professor at

the College of Technological Innovation, Zayed

University in Abu Dhabi, UAE that he joined in

August 2014. He received his M.S. in Information
Technology from National University of Sciences

and Technology (NUST), Islamabad, Pakistan in

2008 and received his Ph.D. degree in Computer
Engineering from Kyung Hee University, South

Korea in 2012. He worked as Post-Doctoral

Fellow at Department of Computer Engineering,
Kyung Hee University, South Korea and later

joined the same college as Assistant Professor. He

is currently leading three research projects, collaborating in four research
projects, and has successfully completed five research projects in the fields

of Data Curation, Context-aware Computing, IoT, and Secure Computing.
He is IEEE member and has authored/coauthored more than 120 journal and

conference articles in highly reputed venues. He is serving as reviewer,

program committee member and guest editor of many conferences and
journals. He has delivered keynote speeches, invited talks, guest lectures

and has delivered short courses in many universities. He and his team have

secured several national and international awards in different competitions.

 Omar Alfandi is an Associate Professor at the

College of Technological Innovation at Zayed

University. He holds a Doctoral degree in

Computer Engineering from the Georg-August-
University of Goettingen - Germany in 2009. He

received his M.Sc. degree in Telecommunication

Engineering in 2005 from the University of
Technology Kaiserslautern - Germany. Between

2009 and 2011, he enjoyed a Post-doctoral

Fellowship at Telematics Research Group and he
founded a Research and Education Sensor Lab

where he is currently as Lab Advisor. Before that he carried his Doctoral

Research as part of an Industry, Academia and Research centers
collaboration European Union (EU) project. Dr. Alfandi was working

package leader of EU DAIDALOS II in the 6th framework project. He

published numerous articles on Authentication Framework for 4G
Communication Systems, Future Internet and Trust and Reputation Systems

in Mobile ad hoc and Sensor Networks. He is the co-founder and co-director

of the SMART (Sensors and Mobile Applications Research and Education)

Lab at CTI. His current research activities are directed towards Internet of

Things (IoT), Security in Next Generation Networks, Smart Technologies,

Security Engineering, Mobile and Wireless Communications. In 2015 he
was appointed as the Assistant Dean for Abu Dhabi Campus.

Mr. Shahid Iqbal received his B.S and M.S. in

Computer Science from University of Swat, Swat,

Pakistan in 2016 and 2022 respectively. His

research interests include real-time systems,
power-aware computing and fault-tolerance

computing.

Bashir Hayat is Faculty member at Institute of

Management Sciences Peshawar, Pakistan that he
joined in 2011. He received his M.S. in Computer

Science from Shaheed Zulfiqar Ali Bhutto

Institute of Science and Technology (SZABIST),
Islamabad, Pakistan in 2010 and received his

Ph.D. degree in Informatics from Gyeongsang

National University, Jinju, South Korea in 2020.

Muhammad Hameed Siddiqi is currently working

as an Associate Professor in Department Computer

Science, Jouf University, Sakaka, Kingdom of

Saudi Arabia since November 2020. He was an
Assistant Professor in Department Computer

Science, Jouf University, Sakaka, Kingdom of

Saudi Arabia from September 2016 to October
2020. He was also a Postdoctoral Research

Scientist at the Department of Computer Science

and Engineering, Sungkyunkwan University,
Suwon, South Korea from March 2016 to August 2016. He has completed

his Bachelor of Computer Science (Hons) from Islamia College (chartered
university) Peshawar, KPK, Pakistan in 2007, and Master and PhD from

Ubiquitous Computing (UC) Lab, Department of Computer Engineering,

Kyung Hee University, Suwon, South Korea by 2012 and 2016,
respectively. He was a Graduate Assistant at Universiti Teknologi

PETRONAS, Malaysia from 2008 to 2009. He published more than 85

research articles in highly reputable international journals and conferences.
He is also reviewer for different journals and conferences. His research

interest is Image Processing, Pattern Recognition, Machine Intelligence,

Activity Recognition, and Facial Expression Recognition.

Dr. Adil Khan is a seasoned Professor and prolific

Researcher specialising in Machine Learning.

With a robust background in Machine Learning,

Deep Learning, and Representation Learning, he
is passionately dedicated to both pedagogy and

innovative research in the realm of Artificial

Intelligence. Dr. Khan’s research journey started
in 2006 in South Korea, where he concentrated on

human activity recognition through wearable

sensors. His groundbreaking discoveries were
published in reputable journals and employed by leading technology firms

for their healthcare applications. Over his career, He has undertaken more

than ten research projects, obtaining substantial funding, and has published
in excess of 90 research papers. He has supervised over two dozen Ph.D.

and MS students to completion. Dr. Khan's expertise and experience are not

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

22

limited to a single geographic location. His academic career has spanned

across various prestigious universities in South Korea, Denmark, Russia, the

United Arab Emirates, Switzerland, and the United Kingdom. These diverse

collaborations and experiences have enriched his knowledge and cultural
understanding, augmenting his holistic approach towards research and

education.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

	Overhead Based Cluster Scheduling of Mixed Criticality Systems on Multicore Platform
	Recommended Citation
	Author First name, Last name, Institution

	Overhead Based Cluster Scheduling of Mixed Criticality Systems on Multicore Platform

