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ABSTRACT The cluster-based technique is gaining focus for scheduling tasks of mixed-criticality (MC) 

real-time multicore systems. In this technique, the cores of the MC system are distributed in groups known 

as clusters. When all cores are distributed in clusters, the tasks are partitioned into clusters, which are 

scheduled on the cores within each cluster using a global approach. In this study, a cluster-based technique 

is adopted for scheduling tasks of real-time mixed-criticality systems (MCS). The Decreasing Criticality 

Decreasing Utilization with the worst-fit (DCDU-WF) technique is used for partitioning of tasks to clusters, 

whereas a novel mixed-criticality cluster-based boundary fair (MC-Bfair) scheduling approach is used for 

scheduling tasks on cores within clusters. The MC-Bfair scheduling algorithm reduces the number context 

switches and migration of tasks, which minimizes the overhead of mixed-criticality tasks. The migration and 

context switch overhead time is added at the time of each migration and context switch respectively for a 

task. In low critical mode, the low mode context switch and migration overhead time is added to task 

execution time, while the high mode overhead time of migration and context switch is added to the execution 

time of a task in high critical mode.  The results obtained from experiments show the better schedulablity 

performance of proposed cluster-based technique as compared to cluster-based fixed priority (CB-FP), MC-

EKG-VD-1, global and partitioned scheduling techniques e.g., for target utilization U=0.6, the proposed 

technique schedule 66.7% task sets while MC-EKG-VD-1,  CB-FP, partitioned and global techniques 

schedule 50%, 33.3%, 16.7% and 0% task sets respectively. 

INDEX TERMS Mixed-criticality systems, Real-time systems, Cluster-based approach, Mixed-criticality 

Boundary fair, Context switches, Tasks migration. 

I. INTRODUCTION 

The integration of multiple functionalities i.e., high critical 

(safety-critical) and low critical functionalities (mission 

critical) on a common executing platform is a recent trend in 

real-time systems and is commonly employed on different 

platforms such as ARINAC [1]for aerospace, and AUTOSAR 

[2] for automotive industries. For integrating these different 

multiple functionalities on a common execution platform, the 

idea of mixed-criticality (MC) was adopted by such platforms. 

The high critical functionalities have very high importance 

while the importance of low critical functionalities is low. 

Such a real-time system having different functionalities is 

known as mixed-criticality system (MCS). Baruah et.al, noted 

that task execution time bounds tend to be larger and more 

conservative as confidence requirements increase. For 

example the largest execution time observed during tests of 

normal operating mode scenarios can be specified as the 

WCET at a low level of assurance; the largest execution time 

observed during more exhaustive “code-coverage” tests are 

more appropriate as the WCET at a higher level of assurance 
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[3]. The high critical functionalities need certification to 

ensure their correctness. For certification, the certification 

authorities (CA) make certain assumptions e.g line of code for 

estimating the WCET (worst-case execution Time) of these 

high critical functionalities. The WCET estimated by CA is 

too large than the WCET specified by designer of the system 

i.e., the WCET acquired through experiments. The 

certification authorities only concern with the correction of 

functionalities having high criticality while the designer of the 

system requires the correctness of both functionalities.  

The evolution of embedded systems from single core to 

multicore platforms is in trending from the recent past and 

receiving more attention. There are three basic scheduling 

techniques for scheduling tasks of real-time multicore systems 

i.e., partitioned, global, and cluster-based approaches. In 

partitioned technique, each task is allocated to a particular core 

and the core executes those tasks only which are allocated to 

it. Tasks can be scheduled on each core using the EDF or RM 

scheduling algorithms. Partitioning tasks and assigning each 

partition to one core has the advantages of using the safety 

verification formula to make sure no task overruns occurs, and 

task migration between cores is not possible hence execution 

overhead is also reduced [4]. The problem in partitioned 

scheduling approach is the allocation of tasks to cores i.e., a 

task is not allocated to any core when the utilization of a task 

is less than the total amount of unused utilization of all cores 

but there is not a single core with unused capacity greater or 

equal to the utilization of that task. In this case, the task set is 

not schedulable, which reduces the schedulable workload 

utilization. Similarly, when the mode is switched from low 

(LO) to high (HI) mode on any processor, and if the execution 

time of tasks become higher than the unused space of 

processor, the MC task set is also not schedulable. Because 

task migration to another processor is prohibited which have 

enough capacity for executing the tasks, this causes a 

reduction of schedulable workload utilization. In semi-

partitioned approach, few tasks are splitted into sub tasks, 

which can utilize the unused capacity of processors to increase 

the utilization of processors [5]. But this approach increases 

the number of preemptions and preemption overhead of tasks, 

and decrease the schedulable utilization of a task set. 

 In contrast, the global technique consists of a single shared 

queue containing all tasks to be executed on multicore 

platform. A task having higher priority is allocated from the 

global queue to an idle core for execution. The global 

approach allows migration of tasks among the cores during 

runtime i.e. a task can execute on any core, which overcomes 

the limitation of tasks allocation of the partitioned scheduling 

technique [6]. But this tasks migrations among cores can lead 

to high run-time overhead in the global scheduling approach. 

Moreover, neither partitioned technique nor global 

technique take over each other, because some task sets are 

schedulable by partitioned technique but not schedulable by 

global technique, and vice versa. The number of context 

switches in both techniques and the number of migrations in 

global technique causes high overhead, which can’t be 

neglected.   Recently, Cluster based scheduling technique is 

gaining focus for scheduling the tasks of multicore real-time 

systems. Cluster-based technique overcomes the tasks 

allocation problem of partitioned technique and high 

migration overhead of global technique. In cluster-based 

technique, all cores are divided in clusters and the tasks of 

system are allocated to these clusters. The cluster-based 

approach affectively utilizes the unused capacity on all cores 

i.e., a task is allocated to a cluster when the utilization of a task 

does not exceed the total amount of unused utilization of the 

cluster. When the tasks are assigned to clusters, different 

global scheduling algorithms are used within clusters to 

schedule the task sets.  The cluster-based technique can 

convert into partitioned technique when every cluster has only 

one core and can also change to global technique when all the 

cores are putted in one cluster. Clustering reduces the number 

of migrations as compared to global approach which leads to 

reduce the overhead and also overcome the task allocation 

problem in partitioned technique. Calandrino et.al presented a 

new hybrid technique for real-time multicore systems named 

H-EDF, to minimize the problems of G-EDF and P-EDF 

scheduling approaches. The authors divides cores in various 

clusters which share a cache and allocate tasks to these 

clusters. The tasks are scheduled in clusters by a global 

scheduling algorithm named preemptive global EDF [7]. 

In this research work, the overhead caused by tasks 

migration and context switches is reduced in cluster-based 

technique for multicore mixed-criticality systems. We used an 

efficient task allocation technique for tasks allocation to 

clusters. After tasks allocation to the clusters, the tasks are 

scheduled on the cores within the cluster using a novel global 

scheduling technique. This research work is one of the initial 

research works that reduces the overhead caused by context 

switches and migrations of tasks in cluster-based MC systems. 

This research work performs better as compared to cluster-

based fixed priority (CB-FP) [8], MC-EKG-VD-1 [9] global 

and partitioned scheduling approaches. 

 
II. RELATED WORK 

Initially, Vestal [10] used the notion of mixed-criticality 

(MC) for scheduling tasks on the unicore platform, but now 

multicore or multiprocessor platform is gaining focus to adopt 

the idea of MC scheduling. For multicore MC real-time 

systems, the partitioned scheduling approach is initially used 

for scheduling MC tasks. For partitioned scheduling, Kelly et 

al. discussed different techniques for task ordering and 

partitioning of tasks among cores. The authors used 

Decreasing Criticality and Decreasing Utilization techniques 

for tasks ordering and partitioning of tasks among the cores. 

They discussed different tasks partitioning heuristic 

approaches i.e., first-fit, best-fit, and worst-fit. In first-fit, the 

order of cores is fixed and a task is given to the first core on 

which it fits, otherwise it is allocated to the next core on which 

it fits, and so on. In best-fit, the task is allocated to that core 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

3 
 

having minimum unused capacity among cores. In worst-fit, 

each task is assigned to that core having maximum unused 

capacity among the cores. The authors also used the fixed-

priority RM and Audslay’s approach for tasks scheduling on 

each core [11]. Later, Gu et al. extended EY (Ekberg and Yi) 

[12] virtual deadline MC unicore scheduling algorithm, and 

proposed a new algorithm named Mixed-criticality  

Partitioning  with  Virtual  Deadline (MPVD) for scheduling 

the MC task set of multicore systems. The MPVD algorithm 

first allocates high-criticality tasks through worst-fit and then 

allocates low critical tasks using first-fit approaches [13]. 

Nagalakshmi et al. proposed a partitioned-based scheduling 

approach named C-PEDF [14] that groups the MC tasks in 

clusters. Each cluster contains one executive task i.e. high 

critical task, and a group of member tasks i.e. low critical 

tasks. These clusters are then partitioned among cores, which 

schedule these clusters of tasks using partitioned approach. It 

should be noted that if the execution budget of tasks exists in 

two clusters, then these clusters should be allocated to one core 

to avoid the concurrent execution of the task. As a task may 

allocated to more than one clusters, therefore the overhead of 

context switches is increases [14]. 

After the partitioned approach, the global approach is used 

for scheduling tasks of MC multicore real-time systems. 

Initially, Pathan applied fixed-priority response time analysis 

for the global scheduling of MC sporadic tasks on multicore 

[15]. Andersson et al. considered utilization bounds for 

periodic task sets with implicit deadlines. They showed that 

the maximum utilization bound for any global fixed job 

priority algorithm is (m+1)/2 on m cores [16]. Baruah derived 

a sufficient schedulability test for global EDF scheduling of 

sporadic task sets with constrained deadlines [17]. Li and 

Baruah [6] extend a uni-core scheduling algorithm EDF-VD 

(EDF with Virtual Deadline) [18] to multicore and proposed a 

novel global algorithm named GLOBAL, by applying fpEDF 

[19] for MC tasks scheduling. EDF-VD is a unicore MC 

systems scheduling algorithm and fpEDF is a scheduling 

approach for traditional real-time multicore systems. Lee et al. 

proposed a fluid model based scheduling algorithm for 

multiprocessor MC system MC-Fluid. MC-Fluid algorithm 

executes each tasks in proportion to its criticality-dependent 

rate. They also propose an exact schedulability condition for 

MC-Fluid and an optimal assignment algorithm for criticality-

dependent execution rates. The authors showed that MC-Fluid 

has a speedup factor of (1 + √ 5) /2 (~ 1.618), which is best 

known in multiprocessor MC scheduling [20]. 

In the domain of real-time scheduling for heterogeneous 

multicore platforms, various heuristic cluster-based and semi-

partitioned scheduling approaches have been proposed to 

optimize energy efficiency, temperature management, and 

task allocation. Sharma et.al introduced a heuristic approach 

called RT-SEAT for hybrid scheduling approach. The 

proposed RT-SEAT scheduler operates across four distinct 

layers. It begins by segmenting the timeline into intervals in 

the outermost layer. In the subsequent layer, the scheduler 

handles task-to-core assignments and generates a provisional 

task schedule for each core. Transitioning to the third layer, 

the scheduler reorganizes the sequence of task execution on 

individual cores to effectively manage core temperatures. 

Finally, in the last layer, it incorporates DVFS to ensure the 

scheduler's energy awareness. In the following sections, a 

more detailed exploration of the scheduler's functioning will 

be presented [21]. 

Moulik et.al introduced an efficient and low overhead 

cluster-oriented scheduling technique referred to as 

SEAMERS. This approach focuses on the allocation of tasks 

in a heterogeneous multicore environment while minimizing 

unnecessary computational burdens. SEAMERS implements 

dynamic voltage and frequency scaling (DVFS) on a per-core 

basis, enabling optimized task scheduling at the core level 

[22]. Sharma et.al presented a cluster based heuristic 

scheduling strategy named CETAS which stands for A Cluster 

based Energy and Temperature Efficient Real-time Scheduler 

for heterogeneous platforms, which performs energy as well 

as temperature aware task scheduling on heterogeneous 

multicore platforms. This approach efficiently schedule a set 

of real-time periodic tasks on a DVFS-enabled heterogeneous 

platform with a focus on energy and temperature 

considerations [23]. Moulik et.al introduce a heuristic  Cluster 

based Energy Aware Scheduler for Real-Time Heterogeneous 

Systems referred to as CEAT, aimed at energy-aware 

scheduling of a set of real-time periodic tasks on a 

heterogeneous multicore platform with DVFS capabilities. 

This approach involves three sequential phases: Deadline 

Segmentation, Allocation of Tasks to Cores, and scheduling 

that Prioritizes Energy Efficiency [24].  

Sharma et.al develop a heuristic scheduling approach 

named FATS-2TC, addressing the simultaneous control of 

energy and peak temperature levels. This is achieved through 

the standby-sparing mechanism on systems with two types of 

cores, such as the big. LITTLE architecture, enhancing 

resilience against transient faults [25]. Moulik et.al presents an 

innovative semi-partitioned heuristic scheduler known as 

RESET, which stands for "A Real-time Scheduler for Energy 

and Temperature Aware Heterogeneous Multi-core Systems." 

This novel scheduler is designed to achieve optimizing 

resource utilization by intelligently allocating tasks, while 

concurrently tackling the challenges of reducing dynamic 

energy consumption and effectively managing core 

temperatures. By striking this balance, RESET offers a 

promising approach to enhance the overall performance and 

efficiency of heterogeneous multi-core systems [26]. Sharma 

et.al presents a heuristic technique, named ETA-HP, for 

energy and temperature efficient scheduling of a set of real-

time periodic tasks on a DVFS empowered heterogeneous 

multicore system. The proposed strategy operates in four 

stages, namely Deadline Partitioning, Task-to-Core 

Allocation, Temperature-Aware Scheduling, and Energy-

Aware Scheduling [27]. 
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Recently, a cluster-based technique has been studied for 

MC tasks scheduling on multicore systems. In this technique, 

all the cores are distributed in clusters and the MC tasks are 

assigned to clusters. After assigning tasks to clusters, a global 

approach is used for the tasks scheduling within clusters. For 

the cluster-based scheduling approach, Ali et al. [8] presented 

a scheduling algorithm for MC tasks scheduling on multicore 

systems. The authors partitioned MC tasks among clusters 

through the worst-fit heuristics approach. In low mode, the 

authors used small sizes of clusters (sub-clusters) while in a 

high mode they used larger sizes of clusters for tasks 

allocation. For task schedulability analysis, the authors used a 

fixed-priority response time analysis based on Audsley's 

approach [28] in each cluster and sub-cluster. Burn et al. 

provided an extensive literature about scheduling algorithms 

proposed for the mixed-criticality task sets on multicore   

platform including cluster based approach [29]. 

For minimizing the overhead in real time systems, Zhang et 

al. proposed a novel algorithm named Least Switch and Laxity 

First to minimize the switching among tasks on unicore 

systems [30]. To decrease the overhead in real-time systems, 

Li et al. used a scheduling algorithm named Deadline 

Partitioning Fair (DP-fair) [31] which reduced the run-time 

overhead of tasks. Zhu et al. discussed a novel algorithm for 

scheduling of tasks named Boundary fair (Bfair) on real-time 

multicore systems. The Bfair approach makes scheduling 

decisions for tasks only at the period boundaries, which 

essentially minimizes the points of scheduling. Furthermore, 

by computing the execution time of tasks between period 

boundaries, the Bfair schedule minimizes migrations and 

context switches of tasks, which reduces the scheduling 

overhead of real-time systems [32].  

 
III. SYSTEM MODEL 

This section presents the framework for the adopted cluster-

based scheduling technique. In the cluster-based scheduling 

technique, the cores are divided into groups known as clusters. 

After creating clusters, the MC tasks are assigned to clusters 

by applying DCDU-WF tasks partitioning technique [1]. The 

MC tasks are scheduled by a novel MC-Bfair approach on 

cores within clusters. Initially, the tasks are scheduled in low 

mode i.e each task is executed up to its low mode execution 

requirement i.e., 𝐶𝑖(LO),  but if a high critical task needs 

further execution after completing 𝐶𝑖(LO), the system is 

changed to high mode. The low tasks of the MC system are 

discarded after the mode switch and only each high task is 

scheduled up to their high mode execution requirement 𝐶𝑖(HI) 

in high mode. 

A. TASK MODEL 

 The periodic task set of a mixed-criticality system is known 

as workload, which is represented by τ. In low mode, both LO 

and HI critical tasks release a job sequence, but in high mode, 

only HI tasks release a job sequence. A mixed-criticality 

periodic task τi is characterized by 6 parameters i.e., τi = (𝑃𝑖 , 

𝐶𝑖
𝑋𝑖,  𝑋𝑖, 𝐶𝑆. 𝐴𝑖

𝑥𝑖,  𝑀. 𝐴𝑖
𝑥𝑖), where, 

 

 𝑃𝑖 is used for the period of task. It is supposed that 𝑃𝑖 =

 𝐷𝑖 (task’s deadline). 

 𝐶𝑖
𝑋𝑖 is WCET of a task at criticality level 𝑋𝑖 and 𝐶𝑖

𝑋𝑖= 

{𝐶𝑖(LO), 𝐶𝑖(HI}. The 𝐶𝑖(LO) and 𝐶𝑖(HI) represent the 

low mode and high mode WCET of MC task 

respectively.  

 𝑋𝑖 is used to show the task’s criticality level, where LO is 

used for low critical and HI is used for high critical task. 

 𝐶𝑆. 𝐴𝑖
𝑥𝑖  is used for context switch overhead time of a task 

at criticality level 𝑋𝑖.  

 𝑀. 𝐴𝑖
𝑥𝑖 represents the migration overhead time of a task at 

criticality level 𝑋𝑖. 

  

The utilization in low and high mode of MC task 𝜏𝑖 is 

denoted by Ui
LO and Ui

HI respectively and are derived as Ui
LO= 

𝐶𝑖(LO)/ 𝑃𝑖 and Ui
HI= 𝐶𝑖(HI)/ 𝑃𝑖 .  The low mode utilization of 

all MC tasks is represented by ULM, while in high mode UHM 

is used to represent the total utilization of HI tasks and can be 

calculated as. 

 

𝑈𝐿𝑀 = ∑ 𝑈𝑖
𝐿𝑂

𝜏𝑖∈𝜏    (1) 

𝑈𝐻𝑀 = ∑ 𝑈𝑖
𝐻𝐼

𝜏𝑖∈𝜏                              (2) 

 

Equation 1 shows the summation of the utilization of the entire 

task set of the MC system in low mode calculated through low 

worst-case execution time, while equation 2 shows the 

summation of the utilization of HI tasks in high mode 

calculated through high worst-case execution time of HI tasks. 

B. Clusters 

The cores of a real-time MC system are divided into groups 

known as clusters. Each cluster is denoted by C having two 

parameters C(𝑊𝐶, 𝑁𝐶), where WC is used for the workload of 

the cluster while NC is used for the number of cores within a 

cluster. The tasks that are assigned to clusters are executed up 

to 𝐶𝑖 (LO) in low mode, while each task is executed up to 𝐶𝑖 

(HI) in high mode within each cluster.  

C. Cluster-Based Scheduling Framework 

A cluster-based technique is adopted for the scheduling of 

task sets of multicore MC systems, in which the overhead 

caused due to context switches and migrations of task is 

reduced. The MC tasks are allocated to clusters by DCDU-WF 

[8] approach. After tasks partitioning, a novel MC-Bfair 

scheduling algorithm is used for the scheduling of MC tasks 

on cores within clusters. The general idea of the cluster-based 

scheduling framework is given in figure 1 and figure 2 for low 

and high modes respectively. The system consists of 4 cores 
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on which the task set of table 1 is scheduled. The cores are 

equally partitioned into cluster C1 and cluster C2, each having 

2 cores. The MC tasks of the system are partitioned into 

clusterC1 and cluster C2, each having 4 tasks i.e., C1 = τ2, τ4, 

τ6 and τ8 and C2 = τ1, τ3, τ5 and τ7.  

Figure 1: Framework of cluster-based approach in low mode 

Figure 2: Framework of cluster-based approach in high mode 

Table 1 

 MC Task set 

𝝉𝒊 𝑷𝒊 𝑪𝒊(𝑳𝑶) 𝑪𝒊(𝑯𝑰) 𝑿𝒊 𝑼𝒊
𝑳𝑶 𝑼𝒊

𝑯𝑰 

𝛕𝟏 4 2 0 LO 0.5 0 

𝛕𝟐 4 2 3 HI 0.5 0.75 

𝛕𝟑 12 4 7 HI 0.33 0.58 

𝛕𝟒 12 3 0 LO 0.25 0 

𝛕𝟓 24 10 12 HI 0.42 0.5 

𝛕𝟔 24 10 11 HI 0.42 0.46 

𝛕𝟕 24 3 0 LO 0.13 0 

𝛕𝟖 12 2 0 LO 0.17 0 

 
 

IV. Research Motivation 

Global and partitioned scheduling approaches are the two 

scheduling approaches for multicore mixed-criticality 

systems. In this research work, a novel MC-Bfair scheduling 

technique is used for the overhead caused by context switches 

and migrations of tasks during execution. In global 

scheduling, both task migration and context switches can 

occur, while in the partitioned approach, migration of tasks is 

not allowed, but context switches of tasks occur. A cluster-

based MC-Bfair scheduling approach is used for scheduling 

MC tasks to overcome the problems of partitioned and global 

approaches. This research work is an extension of the previous 

cluster-based scheduling approach [18]. The cluster-based 

approach also dominates the partitioned and global approaches 

but it lacks the overhead amount for the scheduling of MC 

tasks. 

For low and high modes, the MC-Bfair algorithm is applied 

for scheduling of tasks on cores. This algorithm minimizes the 

context switches and migrations of MC tasks which reduces 

the scheduling overhead, as the Bfair algorithm minimizes the 

overhead of tasks in traditional real-time systems. The MC-

Bfair constructs a periodic schedule for the task set of MC 

systems as in Bfair algorithm [32]. This approach allocates 

𝐶𝑖
𝐿𝑂 execution time for all tasks in low mode, and for high 

mode it allocates 𝐶𝑖
𝐻𝐼 execution time for each HI tasks in the 

interval [(k − 1)·𝑃𝑖 , k·𝑃𝑖) for all k ∈ {1, 2, 3, . . .}. The schedule 

for a given task set is only considered from 0 to LCM of tasks 

periods due to its periodic property. B = {𝑏0, . . . , 𝑏𝑓 } is used 

for expressing the period boundaries of tasks, where 𝑏0 is used 

for the starting point and is equal to zero, while 𝑏𝑓 is used for 

the final time unit which is equal to LCM. The time units 

between two consecutive period boundaries 𝑏𝑘 and 𝑏𝑘+1,  is 

represented by interval [𝑏𝑘, 𝑏𝑘+1).  

For each period boundary, the total execution time of each 

task is calculated. The low mode utilization 𝑈𝑖
𝐿𝑂 of a task is 

calculated as 𝑐𝑖
𝐿𝑂/ 𝑝𝑖  and the high mode utilization 𝑈𝑖

𝐻𝐼 is 

calculated as 𝑐𝑖
𝐻𝐼/ 𝑝𝑖 . The sum of utilizations of all tasks of a 

system in low mode is defined by 𝑈𝐿𝑀 = ∑ 𝑈𝑖
𝐿𝑂𝑛

𝑖=1  and for 

high mode the sum of utilizations of high critical tasks is 

defined by 𝑈𝐻𝑀 = ∑ 𝑈𝑖
𝐻𝐼𝑛

𝑖=1 . The remaining work 𝑅𝑊𝑖
𝐾+1 at 

period boundary 𝑏𝑘 of task τ𝑖 is define as the difference of 

𝑏𝑘.𝑈𝑖 and the allocated time units of task τ𝑖 before period 

boundary 𝑏𝑘. A schedule will be boundary fair at any period 

boundary, if the remaining work of a task is smaller than one. 

The mandatory time 𝑚𝑖
𝐾+1 of an MC task can be calculated as 

𝑚𝑖
𝐾+1= max{0, ⌊𝑅𝑊𝑖

𝐾  +(𝑏𝑘+1− 𝑏𝑘) · 𝑈𝑖⌋}. 𝑚𝑖
𝐾+1  which is the 

integer part of the summation of the remaining work at 𝑏𝑘 and 

the work to be done during [𝑏𝑘, 𝑏𝑘+1).  The corresponding 

decimal part is defined as pending work and can be calculated 

as 𝑃𝑊𝑖
𝐾+1= 𝑅𝑊𝑖

𝐾+(𝑏𝑘+1− 𝑏𝑘)·𝑈𝑖−𝑚𝑖
𝐾+1. Now, we can 

calculate the total execution time of each MC task at any 

period boundary. The total execution time an MC task at each 

period boundary is calculated as 𝑇𝐸𝑖
𝐾+1=𝑚𝑖

𝐾+1+(𝑃𝑊𝑖
𝐾+1-

𝑅𝑊𝑖
𝐾+1). 

A. Partitioned Approach for Scheduling of Mixed-
Criticality Tasks 

Mixed-criticality tasks are partitioned among cores in the 

partitioned scheduling approach and are only schedules on the 

cores to which the tasks are assigned. The migration of tasks 

among cores is not allowed. Initially, LO and HI tasks are 

executed in low mode up to Ci(LO) on a core. If the mode is 

switched to high mode, LO tasks are dropped and only HI 

tasks are executed up to Ci(HI) on a core. The partitioned 

approach has the limitation of the partitioning of tasks among 

cores i.e., if the utilization of a task is larger than the remaining 

free space on each core, then such task can’t be allocated to 

any core. In this scenario, the MC tasks are not scheduled, 

which decreases the schedulable utilization of the MC 

workload. Similarly, when the mode is switched from low to 

high at any core, and if the execution time of a HI task 
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becomes larger than the remaining free space of the core, then 

the task set is not schedulable, because the task cannot migrate 

to a core which has enough capacity to schedule this task. 

 

Example 1.For the task set shown in table 1, consider a system 

having 4 cores. The tasks τ1, τ2, τ3, τ4, τ5, τ6, τ7 and τ8 are 

allocated to 4 cores by the DCDU-WF tasks allocation 

approach. Through this approach, firstly all HI tasks are 

assigned to cores, and a HI task of a higher utilization is 

assigned to that core having the largest unused space. After 

partitioning all HI tasks, LO tasks are partitioned among cores 

in the above manner. The MC tasks that are allocated to cores 

are shown in Figures 3 and figure 4 for both low and high 

modes respectively. 

Figure 3: Tasks allocation using DCDU-WF for low mode. 

 
Figure 4: Tasks allocation using DCDU-WF for high mode. 

Table 2 

 MC tasks for partitioned approach 

𝝉𝒊 𝑷𝒊 𝑪𝒊(𝑳𝑶) 𝑪𝒊(𝑯𝑰) 𝑿𝒊 𝑼𝒊
𝑳𝑶 𝑼𝒊

𝑯𝑰 𝑪𝑺. 𝑨𝒊
𝑳𝑶 𝑪𝑺. 𝑨𝒊

𝑯𝑰 

𝛕𝟏 4 2 0 LO 0.50 0 0.1 0 

𝛕𝟐 4 2 3 HI 0.50 0.75 0.1 0.15 

𝛕𝟑 12 4 7 HI 0.33 0.58 0.2 0.35 

𝛕𝟒 12 3 0 LO 0.25 0 0.15 0 

𝛕𝟓 24 10 12 HI 0.42 0.50 0.5 0.6 

𝛕𝟔 24 10 11 HI 0.42 0.46 0.5 0.55 

𝛕𝟕 24 3 0 LO 0.13 0 0.15 0 

𝛕𝟖 12 2 0 LO 0.17 0 0.1 0 

 

The MC-Bfair scheduling approach schedule all tasks on 

each core in low mode including core 3 as shown in figure 5, 

but when the overhead time caused by the context switch is 

added to the execution time of each task, then the third, fourth 

and sixth jobs of τ1 on core 3 missed the deadlines at 12, 16 

and 24 period boundaries respectively as shown in Figure 6. 

The time of context switch overhead of an MC task is 

calculated as 𝐶𝑆. 𝐴𝑖
𝑋𝑖 =  𝐶𝑖

𝑋𝑖 *5/100. Table 2 shows the time 

of the context switch added to the execution time of tasks 

when the context switches occur. The given task set is not 

scheduled by partitioned technique. 

 

Figure 5: Tasks scheduling on core 3. 

 

 
Figure 6: Tasks scheduling on core 3 with overhead time. 

B. Global Approach for MC Tasks Scheduling  

Global scheduling consists of a global single-ready queue 

in which all MC tasks are stored. In both low and high modes, 

tasks are allocated to an idle core for execution. The MC tasks 

can migrate among cores during run-time, which causes high 

overhead. Initially, the global approach schedule both LO and 

HI tasks in low mode. Global scheduling technique overcomes 

the problem of partitioned scheduling i.e., allocation of tasks 

to cores, but migrations of tasks may lead to high overhead. 

The tasks for global approach in low and high mode is shown 

in figure 7 and figure 8. 

Consider the example given in table 1, the MC task set is 

scheduled in low mode on 4 cores from a single ready queue 

by using the MC-Bfair algorithm as shown in figure 9. The 

total utilization of workload in low mode ULM = 2.72. The 

time of context switch overhead of an MC task is calculated as 

𝐶𝑆. 𝐴𝑖
𝑋𝑖  =  𝐶𝑖

𝑋𝑖 *10/100, and migration overhead is calculated 

as 𝑀. 𝐴𝑖
𝑋𝑖

 = 𝐶𝑖
𝑋𝑖 *20/100, as given in table 3. When the 

overhead time caused by the migration ad context switch is 

added to the execution time of each task, which increases the 
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total execution time of tasks. In low mode, the tasks are not 

schedulable between period boundaries 𝑏4 and 𝑏5 by adding 

the additional time of overhead. Table 4 shows the execution 

time of tasks with overhead time. The 16-time units are 

available between 𝑏4 and 𝑏5 for the 4 cores, while the required 

execution time units are 18.1 as shown in table 4. Therefore, 

the MC workload is not scheduled at period boundary 20 in 

low mode.  

 

Figure 7: Tasks for Global scheduling in LO mode 

 

Figure 8: Tasks for Global scheduling in HI mode 

 

Table 3  

MC task set for Global scheduling 

 
 

FIGURE 9.   Global scheduling of tasks 

 

Table 4 

The Execution time of each tasks with overhead in global scheduling 

𝒃𝒌 𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒃𝟓 𝒃𝟔 

Time 0 4 8 12 16 20 24 

𝑇𝐸1
𝐾  0 2 2.4 2 2.4 2.4 2 

𝑇𝐸2
𝐾  0 2 2 2 2 2 2 

𝑇𝐸3
𝐾  0 2 1.4 1.4 2 1.4 1.4 

𝑇𝐸4
𝐾  0 1 1.9 1.9 1.6 1.9 1.9 

𝑇𝐸5
𝐾  0 2 3.0 2.0 2.0 2 3.3 

𝑇𝐸6
𝐾  0 2 2 3 2 4 2 

𝑇𝐸7
𝐾  0 1 0 0 1 1.9 0 

𝑇𝐸8
𝐾  0 1 2.2 0 0 2.2 2.2 

Total 0 13 14.9 12.3 13 18.1 14.8 

 
C Cluster-Based Approach for scheduling of MC tasks 

In cluster-based technique, cores of systems are divided in 

clusters and tasks are allocated to the clusters. The cluster-

based approach affectively utilizes the unused capacity on all 

cores i.e., a task is allocated to a cluster when the utilization of 

a task does not exceed the total amount of unused utilization 

of the cluster. When the tasks are assigned to clusters, different 

global scheduling algorithms are used within clusters for 

scheduling the task sets.  The cluster-based technique can 

change into partitioned technique if each cluster has only one 

core and can also change to global technique when all the 

cores are put together in one cluster. 

Considering example 1, tasks  τ2, τ4, τ6 and τ8 are allocated 

to cluster C1 while tasks τ1, τ3, τ5 and τ7 are allocated to 

cluster C2 in low mode using the DCDU-WF [8] approach, as 

shown in figure 10. The utilizations of cluster C1 and cluster 

C2 in low mode are higher than utilization in high mode 

because the utilizations of all HI and LO tasks is added in low 

mode while only the utilizations of all HI critical tasks is added 

in high mode. Figure 11 shows the HI critical tasks of cluster 

C1 and cluster C2 in high mode. The task set of Table 1 is 

scheduled in both low and high modes by the cluster-based 

technique using a novel MC-Bfair scheduling algorithm.  
 

𝛕𝐢 𝑷𝒊 𝑪𝒊(𝑳𝑶) 𝑪𝒊(𝑯𝑰) 𝑿𝒊 𝑪𝑺. 𝑨𝒊
𝑳𝑶 𝑪𝑺. 𝑨𝒊

𝑯𝑰 𝑴. 𝑨𝒊
𝑳𝑶 𝑴. 𝑨𝒊

𝑯𝑰 

𝛕𝟏 4 2 0 L0 0.2   0 0.4  0 

𝛕𝟐 4 2 3 HI 0.2   0.3 0.4  0.6 

𝛕𝟑 12 4 7 HI 0.4   0.7 0.8  1.4 

𝛕𝟒 12 3 0 L0 0.3   0 0.6  0 

𝛕𝟓 24 10 12 HI 1 1.2 2 2.4 

𝛕𝟔 24 10 11 HI 1 1.1 2 2.2 

𝛕𝟕 24 3 0 L0 0.3   0 0.6  0 

𝛕𝟖 12 2 0 L0 0.2   0 0.4  0 
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FIGURE 10.  Allocation of tasks to clusters in low mode. 

FIGURE 11.  Allocation of tasks to clusters in high mode 

 

 
V. Allocation of MC Tasks to Clusters 

The tasks of MC system are distributed to clusters by the 

DCDU-WF [8] tasks allocation technique. In the DCDU 

technique, MC tasks are arranged by criticality level and 

utilization i.e., all high tasks are arranged first and then low 

critical tasks by decreasing utilization. As each high critical 

tasks has two execution times 𝐶𝑖
𝐿𝑂 and 𝐶𝑖

𝐻𝐼, therefore, it has 

two utilizations 𝑈𝑖
𝐿𝑂 and 𝑈𝑖

𝐻𝐼 for the low mode and high mode 

respectively, whereas a LO tasks have only 𝑈𝑖
𝐿𝑂utilization for 

low mode. The high critical tasks are arranged through 𝑈𝑖
𝐻𝐼 

utilization while low critical tasks are arranged through 𝑈𝑖
𝐿𝑂 

utilization. 

After the arrangement of all MC tasks by DCDU technique, 

the worst-fit heuristic is used for partitioning MC tasks into 

clusters. This approach assigns an MC task to a cluster having 

maximum unused space i.e., high remaining utilization. The 

HI tasks are partitioned among clusters to ensure the efficient 

scheduling of HI tasks in high mode on the cores up to their 

Ci(HI) execution time. The aim of the first allocation of high-

critical tasks to clusters is to ensure the schedulability of high-

critical tasks after mode change. After assigning all HI tasks 

to clusters, LO tasks of the system are partitioned among 

clusters through the same approach. The LO task with high 

utilization is assigned first to a cluster with high remaining 

capacity and so on. The allocation of MC tasks is discussed in 

the following example 2.  

 

Example 2. Consider the task set shown in Table 1. 

The DCDU approach ordered the tasks as τ2, τ3, τ5, τ6, τ1, 

τ4, τ7 and τ8. The low mode utilization of the given task set is 

𝑈𝐿𝑀 = 2.72 and the high mode utilization is 𝑈𝐻𝑀 = 2.29. As 

we know that the number of cores must be greater than the 

total utilizations of tasks i.e.,  𝑈𝐿𝑀 and 𝑈𝐻𝑀 for the low mode 

and high mode respectively. The cores are divided into two 

clusters, each having two cores. Initially, the high mode 

utilization of cluster C1 and C2 i.e.,  𝑈𝐶1
𝐻𝑀 and 𝑈𝐶2

𝐻𝑀 

respectively for high tasks are zero. Therefore, the task τ2 is 

assigned to cluster C1 and task τ3 is assigned to cluster C2. The 

high mode utilization of cluster C1 becomes greater than C2 

i.e., (𝑈𝐶1
𝐻𝑀 = 𝑈2

𝐻𝐼 = 0.75) ˃ (𝑈𝐶2
𝐻𝑀= 𝑈3

𝐻𝐼 = 0.58), so the next 

HI task with largest utilization i.e., τ5 is assigned to cluster C2 

and the utilization of cluster C2 becomes 𝑈𝐶2
𝐻𝑀  =𝑈3

𝐻𝐼 + 𝑈5
𝐻𝐼 

= 1.08 in high mode. The allocation of task τ5 to cluster C2 

minimizes the remaining unused space of cluster C2 than C1, 

so the task τ6 is assigned to cluster C1 and the utilization of 

cluster C1 becomes 𝑈𝐶1
𝐻𝑀 = 𝑈2

𝐻𝐼 + 𝑈6
𝐻𝐼 = 1.21 in high mode. 

The HI tasks of the system are distributed among both clusters 

C1 and C2 with DCDU-WF. Now, the LO tasks are allocated 

to clusters by using the same technique. For partitioning of LO 

tasks among clusters, cluster C2 has the maximum unused 

space than C1 in low mode i.e., (𝑈𝐶2
𝐿𝑀  =𝑈3

𝐿𝑂 + 𝑈5
𝐿𝑂 =0.75) < 

(𝑈𝐶1
𝐿𝑀  =𝑈2

𝐿𝑂 + 𝑈6
𝐿𝑂  = 0.92), therefore task τ1 is assigned to 

C2, because τ1 have largest utilization among all low critical 

tasks. After assigning τ1 to cluster C2, the remaining unused 

space of C1 becomes larger than C2 i.e.,  𝑈𝐶2
𝐿𝑀  =𝑈3

𝐿𝑂 + 𝑈5
𝐿𝑂 

+ 𝑈1
𝐿𝑂 = 1.25. Therefore, the next low critical task τ4 is 

assigned to cluster C1. The utilization of cluster C1 becomes 

𝑈𝐶1
𝐿𝑀 = 𝑈2

𝐿𝑂 + 𝑈6
𝐿𝑂 + 𝑈4

𝐿𝑂= 1.16, and as the utilization of C1 

is still smaller than C2, so task τ8 is assigned to cluster C1. 

Now, the remaining unused space of cluster C2 becomes larger 

than cluster C1 i.e., 𝑈𝐶1
𝐿𝑀  =𝑈2

𝐿𝑂 + 𝑈6
𝐿𝑂 + 𝑈4

𝐿𝑂+ 𝑈8
𝐿𝑂= 1.34, 

so, the last task τ7 is assigned to cluster C2. The low mode 

utilization of cluster C2 becomes, 𝑈𝐶2
𝐿𝑀  =𝑈3

𝐿𝑂 + 𝑈1
𝐿𝑂 + 𝑈5

𝐿𝑂+ 

𝑈7
𝐿𝑂= 1.38. The tasks that are assigned to both clusters C1 and 

C2 are shown in figure 12. 

 
FIGURE 12.  Allocation of tasks to clusters C1 and C2 
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VI. Cluster-Based Scheduling of MC System 

For low and high modes, the MC-Bfair algorithm is applied 

for globally scheduling of tasks on cores of cluster C1 and 

cluster C2. The MC-BFair algorithm, first computes the 

utilizations of all low and high criticality tasks in low 

criticality mode (ULM). For high criticality mode, it determines 

the utilizations of only high criticality tasks (UHM) in the 

mixed criticality system. For initial schedulability test, if the 

value of ULM or UHM is larger than the total number of cores 

in the system, then the mixed criticality task set is not 

schedulable. A schedulability test is applied for each cluster 

capacity (number of its cores) in high mode. If the utilization 

of high criticality tasks in a cluster is less than the cluster 

capacity, the task set is schedulable using MC-BFair 

scheduling algorithm. Otherwise the task set is not 

schedulable.  Another schedulability test is applied for each 

cluster capacity in low mode. If the utilization of both low and 

high criticality tasks in a cluster is less than the cluster 

capacity, the task set is schedulable using MC-BFair 

scheduling algorithm. Otherwise the task set is not 

schedulable. The MC-BFair scheduling algorithm is shown in 

figure 13.  

FIGURE 13.  Algorithm for Mixed-Criticality Boundary Fair Scheduling 

The schedulability test is applied during mode change. If the 

utilization of high criticality task for mode change is less than 

the cluster capacity, the mixed criticality task set is 

schedulable using MC-BFair scheduling algorithm. 

Otherwise, the mixed-criticality task set is schedulable on 

multicore platform using cluster-based approach. 

A. Total Execution Time Calculation in Low Mode 

For low mode, the low mode utilization 𝑈𝑖
𝐿𝑂 = 𝑐𝑖

𝐿𝑂/ 𝑝𝑖  is used 

in each equation for finding the total execution time of tasks 

in each period boundary. As explained earlier, the remaining 

work (𝑅𝑊𝑖
𝐾+1), mandatory work (𝑚𝑖

𝐾+1), and pending work 

(𝑃𝑊𝑖
𝐾+1 ) are calculated for each MC task to calculate the total 

execution time units (𝑇𝐸𝑖
𝐾+1) of each task. The calculated total 

execution time 𝑇𝐸𝑖
𝐾+1 of tasks is allocated to cores by the 

DCDU-WF approach for scheduling on cores at each period 

boundary. The tasks that are allocated to cluster C1 are shown 

in table 5 and the tasks of cluster C2 is given in table 6. The 

overhead time of context switch and migration of each task is 

calculated as, 𝐶𝑆. 𝐴𝑖
𝑋𝑖 =  𝐶𝑖

𝑋𝑖 *5/100 and 𝑀. 𝐴𝑖
𝑋𝑖 =  𝐶𝑖

𝑋𝑖 

*10/100 respectively. The values of 𝑅𝑊𝑖
𝐾+1, 𝑚𝑖

𝐾+1, 𝑃𝑊𝑖
𝐾+1  

and 𝑇𝐸𝑖
𝐾+1 of each task in low mode at each period boundary 

is shown in table 7 and table 8 for clusters C1 and C2 

respectively. The schedule generated from table 7 and table 8 

is shown in figure 14 and figure 15. 

 
Table 5 

 Cluster C1 Task 

 

Table 6  

Cluster C2 Tasks 
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Table 7  

Calculation of execution time for tasks of cluster C1 in low mode 

 

 Table 8 

Calculation of execution time for tasks of cluster C2 in low mode 

  

 

 

FIGURE 14.  LO mode scheduling of Cluster C1 

 

 

FIGURE 15.  LO mode scheduling of Cluster C2. 

 

 The time of overhead is added to the execution time of each 

task. The time of migration overhead is added when the task 

migrates from one core to another during run-time scheduling 

and the time of context switch is added when context switch 

occurs. In low mode, the overhead time of migration and 

context switch is calculated 𝑀𝐴𝑖
𝐿𝑂= 𝑐𝑖

𝐿𝑂*10/100 and 𝐶𝑆𝐴𝑖
𝐿𝑂= 

𝑐𝑖
𝐿𝑂*5/100 respectively. The execution time with overhead 

time units of each task at each period boundary is given in 

table 9 and table 10 for cluster C1 and cluster C2 respectively. 

The generated schedule form table 9 and table 10 with 

overhead amount for cluster C1 and cluster C2 is shown in 

figure 16 and figure 17, respectively. The novel MC-Bfair 

approach scheduled the task set given in table 1 successfully 

for low mode with overhead time in both cluster C1 and cluster 

C2. The MC-BFair scheduling algorithm for low mode is 

shown in figure 18. 

 

 

 

Time 0 4 8 12 16 20 24 

bk 

 

b0 

 

b2 b3 b4 b5 b6 b7 

𝑹𝑾𝟐
𝑲 0 0     0     0     0     0     0     

𝑹𝑾𝟒
𝑲 0 0     0     0     0     0     0     

𝑹𝑾𝟔
𝑲 0 - 1/3  1/3 0     - 1/3 - 2/3 0     

𝑹𝑾𝟖
𝑲 0 - 1/3  1/3 0     - 1/3 - 2/3 0     

𝒎𝟐
𝑲 * 2 2 2 2     2     2     

𝒎𝟒
𝑲 * 1 1 1 1     1     1     

𝒎𝟔
𝑲 * 1 1 2 1     1     1     

𝒎𝟖
𝑲 * 0 0 1 0     0     0     

𝑷𝑾𝟐
𝑲 * 0     0     0     0     0     0     

𝑷𝑾𝟒
𝑲 * 0     0     0     0     0     0     

𝑷𝑾𝟔
𝑲 *  2/3  1/3 0      2/3  1/3 0     

𝑷𝑾𝟖
𝑲 *  2/3  1/3 0      2/3  1/3 -0     

𝑻𝑬𝟐
𝑲 * 2     2     2     2     2     2     

𝑻𝑬𝟒
𝑲 * 1     1     1     1     1     1     

𝑻𝑬𝟔
𝑲 * 2     1     2     2     2     1     

𝑻𝑬𝟖
𝑲 * 1     0     1     1     1     0     

Time 0 4 8 12 16 20 24 

bk 

 

b0 

 

b2 b3 b4 b5 b6 b7 

𝑹𝑾𝟏
𝑲 0 0     0     0     0     0     0     

𝑹𝑾𝟑
𝑲 0 - 1/3 - 2/3 0     - 1/3  1/3 0     

𝑹𝑾𝟓
𝑲 0 - 1/3  1/3 0     - 1/3 - 2/3 0     

𝑹𝑾𝟕
𝑲 0 - ½ 0     - ½ 0     - ½ 0     

𝒎𝟏
𝑲 * 2 2 2 2     2     2     

𝒎𝟑
𝑲 * 1 1 1 1     1     2     

𝒎𝟓
𝑲 * 1 1 2 1     1     1     

𝒎𝟕
𝑲 * 0 0 0 0     0     0     

𝑷𝑾𝟏
𝑲 * 0     0     0     0     0     0     

𝑷𝑾𝟑
𝑲 *  2/3  1/3 0      2/3  1/3 0     

𝑷𝑾𝟓
𝑲 *  2/3  1/3 0      2/3  1/3 0     

𝑷𝑾𝟕
𝑲 *  ½ 0      ½ 0      ½ 0     

𝑻𝑬𝟏
𝑲 * 2     2     2     2     2     2     

𝑻𝑬𝟑
𝑲 * 2     2     1     2     1     2     

𝑻𝑬𝟓
𝑲 * 2     1     2     2     2     1     

𝑻𝑬𝟕
𝑲 * 1     0     1     0     1     0     
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Table 9  

The LO mode execution time with overhead time for tasks of cluster C1 

 

 
Table 10  

The LO mode execution time with overhead time for tasks of cluster C2 

 
FIGURE 16. Cluster C1 scheduling with overhead for low mode 

 

 
 

FIGURE 17.  Cluster C2 scheduling with overhead for low mode 
 

FIGURE 18. Algorithm for Tasks scheduling in low mode 

B. Total Execution Time Calculation in High Mode 

 For high mode, the high mode utilization 𝑈𝑖
𝐻𝐼 = 𝑐𝑖

𝐻𝐼/ 𝑝𝑖  of 

high critical tasks is used in each equation for calculating the 

total execution time of each task in each period boundary. As 

explained earlier, the remaining work (𝑅𝑊𝑖
𝐾+1), mandatory 

work (𝑚𝑖
𝐾+1), and pending work (𝑃𝑊𝑖

𝐾+1 ) are calculated for 

each task to calculate the total execution time units (𝑇𝐸𝑖
𝐾+1) 

of each task. When 𝑇𝐸𝑖
𝐾+1 is calculated for each high task, the 

tasks are allocated to cores by the DCDU-WF approach for 

scheduling at each period boundary. The tasks that are 

assigned to cluster C1 are shown in table 5 and the task of 

cluster C2 is given in table 6. The overhead time of context 

switch and migration of each task is calculated by 𝐶𝑆. 𝐴𝑖
𝑋𝑖  =  

𝐶𝑖
𝑋𝑖 *5/100 and 𝑀. 𝐴𝑖

𝑋𝑖 =  𝐶𝑖
𝑋𝑖 *10/100 respectively. The 

values of 𝑅𝑊𝑖
𝐾+1, 𝑚𝑖

𝐾+1, 𝑃𝑊𝑖
𝐾+1  and 𝑇𝐸𝑖

𝐾+1 of each task in 

high mode at each period boundary is shown in table 11 and 

table 12 for cluster C1 and cluster C2 respectively. The 

generated schedule form table 11 and table 12 cluster C1 and 

cluster C2 is shown in figure 19 and figure 20, respectively 

  

 

 
 

𝒃𝒌 𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒃𝟓 𝒃𝟔 

Time 0 4 8 12 16 20 24 

𝑻𝑬𝟐
𝑲 0 2 2 2 2 2 2 

𝑻𝑬𝟒
𝑲 0 1 1.5 1.5 1 1.2 1.5 

𝑻𝑬𝟔
𝑲 0 2 1.5 2.5 2.5 2.5 1.5 

𝑻𝑬𝟖
𝑲 0 1 0 1.1 1.1 1.1 0 

Total 0 6 5 7.1 6.6 6.8 5 

𝒃𝒌 𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒃𝟓 𝒃𝟔 

Time 0 4 8 12 16 20 24 

𝑻𝑬𝟏
𝑲 0 2 2.2 2.2 2 2 2.2 

𝑻𝑬𝟑
𝑲 0 2 2.3 1.3 2 1.3 2.3 

𝑻𝑬𝟓
𝑲 0 2 1.5 2.5 2.5 2.5 1.5 

𝑻𝑬𝟕
𝑲 0 1 0 1.2 0 1.2 0 

Total 0 7 6 7.1 6.5 6.9 6 
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Table 11 

Calculation of execution time for tasks of cluster C1 in HI mode 

 

 

Table 12 
 Calculation of execution time for tasks of cluster C2 in HI mode 

 

 

FIGURE 19.  Cluster C1 scheduling   in high mode 

FIGURE 20.  Cluster C2 scheduling in high mode 

 

For high mode, the time of overhead is added to the task 

execution time. The time of migration overhead is added at 

each period boundary when the task migrates from one core to 

another during run-time scheduling and the time of context 

switch is added when context switch occurs. In high mode, the 

overhead time of migration and context switch is calculated as 

𝑀𝐴𝑖
𝐻𝐼= 𝑐𝑖

𝐻𝐼*10/100 and 𝐶𝑆𝐴𝑖
𝐻𝐼= 𝑐𝑖

𝐻𝐼*5/100 respectively. The 

overhead time added to the execution time of tasks is given in 

table 13 table 14 for cluster C1 and cluster C2 respectively. The 

schedule generated from table 13 and table 14 is shown in 

figure 21 and figure 22. The novel MC-Bfair approach 

scheduled the task set given in table 1 successfully for high 

mode with overhead time in both cluster C1 and cluster C2. The 

MC-BFair scheduling algorithm for high mode is shown in 

figure 23. 

 

Table 13 

The HI mode execution time with overhead time for tasks of cluster C1 

Time 0 4 8 12 16 20 24 

bk 

 

b0 

 
b2 b3 b4 b5 b6 b7 

𝑹𝑾𝟐
𝑲 0 0 0 0 0 0 0 

𝑹𝑾𝟒
𝑲 0 0 0 0 0 0 0 

𝑹𝑾𝟔
𝑲 0 0 0 0 0 0 0 

𝑹𝑾𝟖
𝑲 0 0 0 0 0 0 0 

𝒎𝟐
𝑲 * 3 3 3 3 3 3 

𝒎𝟒
𝑲 * 0 0 0 0 0 0 

𝒎𝟔
𝑲 * 2 2 2 2 2 2 

𝒎𝟖
𝑲 * 0 0 0 0 0 0 

𝑷𝑾𝟐
𝑲 * 0 0 0 0 0 0 

𝑷𝑾𝟒
𝑲 * 0 0 0 0 0 0 

𝑷𝑾𝟔
𝑲 * 0 0 0 0 0 0 

𝑷𝑾𝟖
𝑲 * 0 0 0 0 0 0 

𝑻𝑬𝟐
𝑲 * 3 3 3 3 3 3 

𝑻𝑬𝟒
𝑲 * 0 0 0 0 0 0 

𝑻𝑬𝟔
𝑲 * 2 2 2 2 2 2 

𝑻𝑬𝟖
𝑲 * 0 0 0 0 0 0 

Time 0 4 8 12 16 20 24 

bk 
 

b0 
 

b2 b3 b4 b5 b6 b7 

𝑹𝑾𝟏
𝑲 0 0 0 0 0 0 0 

𝑹𝑾𝟑
𝑲 0 - 2/3 2/3 0 - 2/3 2/3 0 

𝑹𝑾𝟓
𝑲 0 0 0 0 0 0 0 

𝑹𝑾𝟕
𝑲 0 0 0 0 0 0 0 

𝒎𝟏
𝑲 * 0 0 0 0 0 0 

𝒎𝟑
𝑲 * 2 1 3 2 1 3 

𝒎𝟓
𝑲 * 2 2 2 2 2 2 

𝒎𝟕
𝑲 * 0 0 0 0 0 0 

𝑷𝑾𝟏
𝑲 * 0 0 0 0 0 0 

𝑷𝑾𝟑
𝑲 * 1/3 2/3 0 1/3 2/3 0 

𝑷𝑾𝟓
𝑲 * 0 0 0 0 0 0 

𝑷𝑾𝟕
𝑲 * 0 0 0 0 0 0 

𝑻𝑬𝟏
𝑲 * 0 0 0 0 0 0 

𝑻𝑬𝟑
𝑲 * 3 1 3 3 1 3 

𝑻𝑬𝟓
𝑲 * 2 2 2 2 2 2 

𝑻𝑬𝟕
𝑲 * 0 0 0 0 0 0 

𝒃𝒌 𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒃𝟓 𝒃𝟔 

Time 0 4 8 12 16 20 24 

𝑻𝑬𝟐
𝑲 0 3 3 3 3 3 3 

𝑻𝑬𝟒
𝑲 0 0 0 0 0 0 0 

𝑻𝑬𝟔
𝑲 0 2 2.6 2.6 2.6 2.6 2.6 

𝑻𝑬𝟖
𝑲 0 0 0 0 0 0 0 

Total 0 5 5.6 5.6 5.6 5.6 5.6 
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FIGURE 21.  Cluster C1 scheduling with overhead for high mode 

 

 
Table 14  

The HI mode execution time with overhead time for tasks of cluster C2 

 

 

 
FIGURE 22.  Cluster C2 scheduling with overhead for high mode  

 

 

 

 

FIGURE 23. Algorithm for Tasks scheduling in high mode 

C. Total Execution Time Calculation in Mode Change 

For the mode switch from low critical to high critical, the 

task set given in table 1 is schedulable for all mode switch 

times st of high critical tasks. The mode switch can occur in 

cluster C1 by HI task t2 on 2, 6, 10, 14, 18 and 22 time units 

while task t6 can cause mode switch on 21 time unit. Similarly 

the mode switch can occur in cluster C2 by HI task t3 on 9 and 

22 time units, while t5 can cause mode switch on 21 time unit. 

These switch times are the possible mode switch time units of 

high critical tasks of cluster C1 and cluster C2. If a high critical 

task causes mode switch at any time of mode switch time of 

cluster C1 and cluster C2, the values of remaining work 

𝑅𝑊𝑖
𝐾+1, mandatory time unit𝑠 𝑚𝑖

𝐾+1, pending work 𝑃𝑊𝑖
𝐾+1 

and total execution time of high tasks is also calculated. For 

calculating 𝑅𝑊𝑖
𝐾+1,  𝑚𝑖

𝐾+1 and 𝑃𝑊𝑖
𝐾+1, the high mode 

utilization 𝑈𝑖
𝐻𝐼= 𝑐𝑖

𝐻𝐼/ 𝑝𝑖  is used for a HI task at the time of 

mode change and after mode change. For all tasks before mode 

switch, the low mode utilization 𝑈𝑖
𝐿𝑂= 𝑐𝑖

𝐿𝑂/𝑝𝑖  is used for 

calculating 𝑅𝑊𝑖
𝐾+1,  𝑚𝑖

𝐾+1 and 𝑃𝑊𝑖
𝐾+1in each period 

boundary. If the deadline of a high critical task exists in a 

period boundary after mode change, the total execution time 

𝑇𝐸𝑖
𝐾+1  of HI tasks is calculated as follows, 

 

 𝑇𝐸𝑖
𝐾+1 = ⌈𝑚𝑖

𝐾+1 + (𝑃𝑊𝑖
𝐾+1 − 𝑅𝑊𝑖

𝐾+1) ⌉  

                 + (𝑐𝑖
𝐻𝐼-∑ 𝑇𝐸𝑖

𝐿𝑂
𝑏𝑘𝑜 →𝑏𝑘𝑛

) 

𝒃𝒌 𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒃𝟓 𝒃𝟔 

Time 0 4 8 12 16 20 24 

𝑻𝑬𝟏
𝑲 0 0 0 0 0 0 0 

𝑻𝑬𝟑
𝑲 0 3 1.4 3.4 3 1.4 3.4 

𝑻𝑬𝟓
𝑲 0 2 2.6 2.6 2.6 2.6 2.6 

𝑻𝑬𝟕
𝑲 0 0 0 0 0 0 0 

Total 0 5 4 6 5.6 4 6 
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 Where, 𝑏𝑘𝑜 is that period boundary in which these tasks 

start their execution and 𝑏𝑘𝑛 is the period boundary before the 

mode switch. While,  ∑ 𝑇𝐸𝑖
𝐿𝑂

𝑏𝑘𝑜 →𝑏𝑘𝑛
 is the sum of the total 

execution time of high critical tasks in the low mode in period 

boundaries  𝑏𝑘𝑜 to 𝑏𝑘𝑛.  The above equation is also used for 

calculating total execution time 𝑇𝐸𝑖
𝐾+1of an Hl task in period 

boundaries after the mode switch which contain the deadline 

of a high critical tasks. When a task τ2 causes a mode change 

at time 14, the tasks τ4  and τ8 are discarded and only τ2  and 

τ6 are scheduled in high mode. The execution time of tasks for 

cluster C1 is calculated in table 15 while the schedule 

generated from table 15 of cluster C1 for mode switch time at 

time unit 14 is shown in figure 24.  
 

Table 15 

 Calculation of execution time for tasks of cluster C1 for mode change 

 

 

FIGURE 24.  Cluster C1 scheduling for mode change 

 

The time of migration overhead is added when the task 

migrates among cores during scheduling and the time of 

context switch is added when context occurs. The overhead 

time added to the execution time of each task is given in table 

16 for cluster C1. The generated schedule from table 16 is for 

the cluster C1 during mode change is shown in figure 25. 

 
Table 16 

The mode change execution time with overhead time units for tasks of 

cluster C1 

FIGURE 25.  Cluster C1 scheduling with overhead for mode change  

 

Figure 22 shows the mode switch occurred at time unit = 9 

in cluster C2 by a HI task τ5. After mode change, tasks τ1 and 

τ7  are discarded from further execution and only HI tasks τ3 

and τ5 are scheduled in high mode. The total execution time 

of tasks is calculated in table 17. The schedule generated from 

table 17 for the mode switch is shown in figure 26.  

 
Table 17 

 Calculation of execution time for tasks of cluster C2 for mode change 

Time 0 4 8 12 16 20 24 

bk 

 

b0 

 

b2 b3 b4 b5 b6 b7 

𝑹𝑾𝟐
𝑲 0 

 

0 

 

0 

 

0 0 

 

0 

 

0 

 

𝑹𝑾𝟒
𝑲 0 0 0 0 0 0 0 

𝑹𝑾𝟔
𝑲 0 - 1/3 1/3 0 1/3 1/6 0 

𝑹𝑾𝟖
𝑲 0 0 0 0 0 0 0 

𝒎𝟐
𝑲 * 2 2 2 3 3 3 

𝒎𝟒
𝑲 * 1 1 1 0 0 0 

𝒎𝟔
𝑲 * 1 1 2 1 2 2 

𝒎𝟖
𝑲 * 1 1 1 0 0 0 

𝑷𝑾𝟐
𝑲 * 0 0 0 0 0 0 

𝑷𝑾𝟒
𝑲 * 0 0 0 0 0 0 

𝑷𝑾𝟔
𝑲 * 2/3 1/3 0 5/6 1/6 0 

𝑷𝑾𝟖
𝑲 * 0 0 0 0 0 0 

𝑻𝑬𝟐
𝑲 * 2 2 2 3 3 3 

𝑻𝑬𝟒
𝑲 * 1 1 1 0 0 0 

𝑻𝑬𝟔
𝑲 * 2 1 2 2 2 3 

𝑻𝑬𝟖
𝑲 * 1 1 1 0 0 0 

𝒃𝒌 𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒃𝟓 𝒃𝟔 

Time 0 4 8 12 16 20 24 

𝑻𝑬𝟐
𝑲 0 2 2 2 3 3 3 

𝑻𝑬𝟒
𝑲 0 1 1.45 1.45 0 0 0 

𝑻𝑬𝟔
𝑲 0 2 1.5 2.5 2.6 2.6 3.6 

𝑻𝑬𝟖
𝑲 0 1 0 1.1 0 0 0 

Total 0 5 5 7.1 5.6 5.6 6.6 

Time 0 4 8 12 16 20 24 

b k 

 

b0 

 

b1 b2 b3 b4 b5 b6 

𝑹𝑾𝟏
𝑲  

0 

0 

 

0 0 0 0 0 

𝑹𝑾𝟑
𝑲 0 - 1/3 - 2/3 0 1/3 - 1/3 0 

𝑹𝑾𝟓
𝑲 0 - 1/3 1/3 0 0 0 0 

𝑹𝑾𝟕
𝑲 0 - ½ 0 0 0 0 0 

𝒎𝟏
𝑲 * 2 2 0 0 0 0 

𝒎𝟑
𝑲 * 1 1 1 2 2 2 

𝒎𝟓
𝑲 * 1 1 2 2 2 2 

𝒎𝟕
𝑲 * 0 0 0 0 0 0 

𝑷𝑾𝟏
𝑲 * 0 0 0 0 0 0 

𝑷𝑾𝟑
𝑲 * 2/3 1/3 0 1/3 2/3 0 

𝑷𝑾𝟓
𝑲 * 2/3 1/3 1/3 0 0 0 

𝑷𝑾𝟕
𝑲 * ½ 0 0 0 0 0 

𝑻𝑬𝟏
𝑲 * 2 2 0 0 0 0 

𝑻𝑬𝟑
𝑲 * 2 2 3 2 3 2 

𝑻𝑬𝟓
𝑲 * 2 1 3 2 2 2 

𝑻𝑬𝟕
𝑲 * 1 0 0 0 0 0 
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FIGURE 26.  Cluster C2 scheduling for mode change 

 

The time of overhead added to the tasks execution time task 

for mode change in cluster C2 is given in table 18. The time of 

overhead of migration and context switches of a task 𝛕𝒊 in high 

mode is calculated as 𝑀𝐴𝑖
𝐻𝐼= 𝑐𝑖

𝐻𝐼*10/100 and 𝐶𝑆𝐴𝑖
𝐻𝐼= 

𝑐𝑖
𝐻𝐼*5/100 for migration and context switch respectively and 

is shown in table 18. For mode change, the schedule obtained 

from table 18 is shown in figure 27. For both cluster C1 and 

cluster C2, the tasks given in table 1 is scheduled by the novel 

MC-Bfair scheduling algorithm during mode change. The The 

MC-BFair scheduling algorithm for mode change is shown in 

figure 28. 

 
Table 18 

 The mode change execution time with overhead time units for tasks of 

cluster C2 

 

 
FIGURE 27.  Cluster C2 scheduling with overhead for mode change  

 

FIGURE 28. Algorithm for Tasks scheduling in mode change 

 
VII. Experimental Evaluation 

The efficiency of the cluster-based scheduling technique is 

shown by experimental evaluation. The experiments are 

evaluated on mixed-criticality task sets of MC systems. We 

compared the proposed approach with other multicore 

scheduling approaches i.e., CB-FP [18], MC-EKG-VD-1 [9], 

partitioned and global approaches to show the effectiveness of 

our approach. The same time of context switch and migration 

overhead of MC-Bfair approach is considered for CB-FP and 

MC-EKG-VD-1 approach. The results obtained from 

experiments show the better performance of cluster-based 

technique as compared to CB-FP, MC-EKG-VD-1, 

partitioned and global approaches.   

A. Generation of MC Task Sets 

For experimental evaluation, the MC task sets are randomly 

generated, which are controlled by four parameters i.e.,  𝑃𝐻𝐼 , 

𝑅𝐻𝐼, 𝐶𝑖(𝐿𝑂)𝑚𝑎𝑥 and 𝑃𝑚𝑎𝑥. Where, 𝑃𝐻𝐼  represents the 

probability of HI tasks in a task set, the parameter 𝑅𝐻𝐼 is used 

to represent the ratio between LO and HI WCET of high 

critical tasks in a task set, 𝐶𝑖(𝐿𝑂)𝑚𝑎𝑥 denotes the maximum 

low mode WCET of MC tasks and 𝑃𝑚𝑎𝑥 represents the 

𝒃𝒌 𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒃𝟓 𝒃𝟔 

Time 0 4 8 12 16 20 24 

𝑻𝑬𝟏
𝑲 0 2 2.2 0 0 0 0 

𝑻𝑬𝟑
𝑲 0 2 2.2 3.35 2 3.35 2.35 

𝑻𝑬𝟓
𝑲 0 2 1.5 3.6 2.6 2.6 2.6 

𝑻𝑬𝟕
𝑲 0 1 0 0 0 0 0 

Total 0 7 5.9 6.95 4.6 5.95 4.95 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330973

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

16 
 

maximum period of MC tasks. A task set is created through 

the following parameters, 

.  

 Using 𝑃𝐻𝐼 , if Xi = HI, the task is a HI task otherwise Xi 

= LO for LO critical task 

 𝐶𝑖(LO) is generated within range [1, 𝐶𝑖(𝐿𝑂)𝑚𝑎𝑥], 

where  𝐶𝑖(𝐿𝑂)𝑚𝑎𝑥  < 𝑃𝑚𝑎𝑥. 

 𝐶𝑖(HI) of a task is generated by 𝐶𝑖(HI) = 𝐶𝑖(LO). 𝑅𝐻𝐼.  

 The task’s period Pi is generated within [1, 𝑃𝑚𝑎𝑥] 

range.  

The MC task set is randomly generated by means of target 

utilization U = 𝑈𝐿𝑀. The generation of an MC task set with 

exact target utilization is difficult, so the task set is generated 

between 𝑈𝑚𝑖𝑛  and 𝑈𝑚𝑎𝑥. Whereas 𝑈𝑚𝑖𝑛   = U – 0.005, and 

𝑈𝑚𝑎𝑥= U + 0.005. The generated task set is discarded if the 

utilization in low or high mode is bigger than the number of 

cores of the MC real-time system. 

B. Result Analysis 

The experiments are carried out for MC task sets using 

different parameters i.e., 𝑅𝐻𝐼 ∈ {1, 2, 3, 4, 5}, 𝑃𝐻𝐼  ∈ {0.1, 0.2, 

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, 𝑃𝑚𝑎𝑥  = {60} and n ∈ {9, 10, 

12, 15, 18}. Where, 𝑅𝐻𝐼 = 𝐶𝑖(HI)/ 𝐶𝑖(LO), is used for the ratio 

between HI and LO WCET. The  𝑃𝐻𝐼  Shows percentage of HI 

tasks in a task set and n represents the number of tasks in a task 

set. For result analysis, at least 300 MC task sets are used at 

each point of figure 29, figure 30, figure 31, and figure 32. The 

results obtained from the cluster-based technique are 

compared with CB-FP, MC-EKG-VD-1, global and 

partitioned techniques.  

Under target utilization U = {0.25, 0.375, 0.5, 0.55, 0.6, 

0.65, 0.70, 0.75}, figure 29 displays the percentage of 

schedulable MC task sets for four cores using the cluster-

based, CB-FP, partitioned and global approaches. As shown 

in figure 29, the cluster-based technique scheduled 100% task 

sets up to U = 0.55, while the partitioned, and CB-FP 

techniques scheduled 100% of generated task sets up to U = 

0.45 and the global technique scheduled 100% of the 

generated task sets up to U = 0.4. The percentage of 

schedulable task sets are decreased onwards by increasing the 

target utilization, but still, the performance of our proposed 

cluster-based technique is higher than the other techniques up 

to U = 0.79. At target utilization U = 0.50, the cluster-based 

and MC-EKG-VD-1 techniques schedule 100% MC task sets 

while CB-FP technique schedule 83.3%, partitioned technique 

schedule 50% and global technique schedule 16.7% task sets 

respectively. Similarly, for U = 0.6 the proposed technique 

schedule 66.7% task sets while MC-EKG-VD-1,  CB-FP, 

partitioned and global techniques schedule 50%, 33.3%, 

16.7% and 0% task sets respectively. Figure 29 also shows, if 

the task sets utilization is increased, the schedulability of task 

sets has shown a decrease for all techniques. 

 In a task set, the impact of the probability of high critical tasks 

on schedulability is shown in figure 30.  The probability of 

high critical tasks for target utilizations gives a 3-diamesional 

plot. To reduce 3-diamensional plots to 2-diamensionals plots, 

we used weighted schedulability measures [33]. The weighted 

acceptance ratio under the given target utilization is obtained 

as ∑ 𝑈𝑖𝑈𝑖𝜖𝑢  . A(Ui) /  ∑ 𝑈𝑖𝑈𝑖𝜖𝑢 , where A(Ui) represents 

the acceptance ratio for target utilization Ui. For probability, at 

least 15 A(Ui) are computed for different utilizations Ui. 

Figure 30 shows that if the percentage of HI critical tasks 

increases, the percentage of schedulable task sets decreases 

due to an increase in the utilization of MC workload. As stated 

previously, the proposed cluster-based technique performs 

better than the other techniques using the parameter 𝑃𝐻𝐼 .   

The impact of the ratio between Ci(HI) and Ci(LO) 

execution times on schedulability is shown in figure 31. For 

parameter 𝑅𝐻𝐼,  at least 15 acceptance ratios are computed for 

different utilizations Ui. Figure 31 shows that if the ratio 

between Ci(HI) and Ci(LO) increases, the task set 

schedulability decreases, because if the 𝑅𝐻𝐼 between Ci(HI) 

and Ci(LO) increases, it multiplies the utilization of a given 

task set, which decreases the task sets schedulability. The 

proposed technique performs better than MC-EKG-VD-1 [9], 

CB-FP [18], global and partitioned techniques in terms of high 

utilization of task sets due to increasing value of 

parameter 𝑅𝐻𝐼 .  

The impact of task set size on schedulability is shown in 

figure 32. For each variable parameter n, at least 15 A(Ui) with 

different target utilization are computed. For n = 6, 9, 12 and 

15, the proposed cluster-based technique has higher weighted 

schedulability as compared to the other three techniques i.e., 

CB-FP, partitioned and global techniques. The schedulability 

of our cluster-based approach is 84% for n = 9, while the MC-

EKG-VD-1, CB-FP, partitioned technique and global 

technique have shown 80%, 78%, 75% and 67% weighted 

schedulability respectively. As compared to CB-FP, global 

and partitioned scheduling techniques, the weighted 

schedulability of our cluster-based technique is higher for n = 

6, 9, 12, and 15. 

 

 
 

FIGURE 29.  Utilization vs Schedulability for m = 4 and n = 10 
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FIGURE 30.  High criticality probability vs Weighted schedulability for 

m = 4 and n = 10 

 

 

 

 

 
 
 

FIGURE 31.  LO and HI WCET ratios vs Weighted Schedulability for m 

= 4 and n = 10 
 
 
 
 
 
 

 
 

FIGURE 32.  Task set size vs Weighted schedulability for m = 4 

 
VIII. Conclusion and Future Work 

In this research work, a cluster-based technique is used for 

scheduling the task set of multicore MC systems. In this study, 

the overhead time of task migration and context switches is 

reduced. The cores are divided into clusters and MC tasks are 

distributed in these clusters by means of the DCDU-WF 

heuristic approach [8]. A novel mixed-criticality cluster-based 

boundary fair (MC-Bfair) scheduling algorithm is used for the 

scheduling of tasks on cores within clusters. The boundary fair 

algorithm minimizes the migrations and context switches. The 

system initially executes the tasks in low mode. The MC tasks 

are executed up to 𝐶𝑖(LO) time units, but when a HI task is 

executed upto 𝐶𝑖(LO) execution time in any cluster and still 

needs further execution i.e 𝐶𝑖(HI)− 𝐶𝑖(LO), the system is 

changed to high mode. In high mode, all LO tasks are dropped 

and HI tasks are only executed up to 𝐶𝑖(HI) through MC-Bfair 

algorithm in each cluster. This approach has reduced the 

overhead caused by context switches and migrations of tasks. 

For each migration of a task or context switch, the overhead of 

migration and context switch is added to the execution time of 

the MC task. In low critical mode, the low mode context 

switch and migration overhead time are added to the task’s 

execution time while in high critical mode, the high mode 

context switch and migration overhead time is added to the 

execution time of the task for each context switch and 

migration respectively. The results obtained from experiments 

show the better performance of the cluster-based technique as 

compared to the MC-EKG-VD-1, CB-FP [18], partitioned and 

global techniques. 

As a future work, the cluster-based scheduling of multicore 

MC systems with overhead reduction can be extended to a 

system having more criticality levels. It is also needed to 

examine fault tolerance in cluster-based technique. As a future 
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work we will execute MC tasks on fraction rate of processors 

like MC-Fluid [20] to check the performance of our cluster-

based scheduling approach as compared to partitioned and 

global scheduling approaches. 
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APPENDIX 
 
LIST OF EQUATIONS 
 

Equation Definition 

Ui
LO= 𝐶𝑖(LO)/ 𝑃𝑖 Utilization of task in low mode 

Ui
HI= 𝐶𝑖(HI)/ 𝑃𝑖 Utilization of task in high mode 

ULM = ∑ Ui
LO

τi∈W    Summation of utilizations of all tasks 

in low mode  

UHM = ∑ Ui
HI

τi∈W

 Summation of utilizations of all high 

tasks in high mode 

𝑈𝐶𝑘
𝐿𝑀 Utilization of cluster in low mode 

𝑈𝐶𝑘
𝐻𝑀 Utilization of cluster in high mode 

𝑅𝑊𝑖
𝐾+1 The remaining work of task 𝛕𝒊 at 

boundary 𝑏𝑘 as in (Zhu et al., 2011). 

𝑚𝑖
𝐾+1= max{0, ⌊𝑅𝑊𝑖

𝐾 +(𝑏𝑘+1− 

𝑏𝑘) · 𝑈𝑖⌋} 

The mandatory time units that have to 

be assigned to task 𝛕𝒊 to keep its 

remaining work within one time unit 

𝑃𝑊𝑖
𝐾+1= 𝑅𝑊𝑖

𝐾 + (𝑏𝑘+1− 𝑏𝑘) · 

𝑈𝑖 − 𝑚𝑖
𝐾+1 

The pending work is the 

corresponding decimal part of the 

summation of remaining work at 𝑏𝑘 

and the work to be done 

𝑇𝐸𝑖
𝐾+1=𝑚𝑖

𝐾+1+(𝑃𝑊𝑖
𝐾+1-

𝑅𝑊𝑖
𝐾+1). 

The total execution time of a task in 

interval [𝑏𝑘, 𝑏𝑘+1) 

𝐶𝑆. 𝐴𝑖
𝑋𝑖 =  𝐶𝑖

𝑋𝑖 *5/100 Context switch overhead amount at 

criticality level Xi 

𝑀. 𝐴𝑖
𝑋𝑖 =  𝐶𝑖

𝑋𝑖 *10/100. Migration overhead amount at 

criticality level Xi 

𝑇𝐸𝑖
𝐾+1 = ⌈𝑚𝑖

𝐾+1 + (𝑃𝑊𝑖
𝐾+1 −

𝑅𝑊𝑖
𝐾+1) ⌉ + (𝑐𝑖

𝐻𝐼-

∑ 𝑇𝐸𝑖
𝐿𝑂

𝑏𝑘𝑜 →𝑏𝑘𝑛
) 

 

Total execution time units of tasks at 

period boundary in which mode 

switch is occurred from low to high 

mode.  

 
 
 
 
 
 
 
 

LIST OF ACRONYMS 

' 

Acronym Explanation 

MC Mixed Criticality 

MCS Mixed Criticality System 

DCDU Decreasing Criticality Decreasing Utilization  

MC-Bfair Mixed-Criticality Clustered-based Boundary Fair 

CA Certification Authorities 

WCET Worst-Case Execution Time 

EDF Earliest Deadline First 

RM Rate Monotonic 

MPVD Mixed-Criticality Partitioning With Virtual 
Deadline 

EDF-VD EDF With Virtual Deadline 

FpEDF Fixed-Priority EDF 

DP-fair Deadline Partitioning Fair 

Bfair Boundary Fair 

 

CB-FP Cluster-Based Fixed Priority 
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