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A B S T R A C T

In this investigation, we present a new method for addressing fractional neutral pantograph
problems, utilizing the Bernstein polynomials method. We obtain solutions for the fractional
pantograph equations by employing operational matrices of differentiation, derived from
fractional derivatives in the Caputo sense applied to Bernstein polynomials. Error analysis, along
with Chebyshev algorithms and interpolation nodes, is employed for solution characterization.
Both theoretical and practical stability analyses of the method are provided. Demonstrative
examples indicate that our proposed techniques occasionally yield exact solutions. We compare
the algorithms using several established analytical methods. Our results reveal that our
algorithm, based on Bernstein series solution methods, outperforms others, exhibiting superior
performance with higher accuracy orders compared to those obtained from Chebyshev spectral
methods, Bernoulli wavelet method, and Spectral Tau method.

1. Introduction

The exploration of various phenomena through fractional differential equations has become increasingly significant. This field has
deep historical roots, stretching back to 1695 when L’Hopital engaged Leibniz in a discourse to ascertain the importance of 𝑑𝑛𝑦

𝑑𝑥𝑛 for
the order’s derivative when 𝑛 = 1

2 . In recent times, fractional differential equations have found applications across various domains of
mathematical engineering and physics, particularly in fields such as fluid mechanics [1], physical modeling [2], medicine [3], and
signal processing engineering [4], see, [5,6]. One recent cutting-edge study delved into the significant application of fractional
differential equations in modeling anomalous diffusion processes. For example, in paper [7], the authors put forward a novel
numerical approach on the basis of Euler wavelet for resolving fractional diffusion-wave equations. In [8], the authors explored the
existence and uniqueness of iterative fractional differential equations, employing the fixed-point theorem under specific conditions.
Moreover, a new operational matrix based on the Bernstein matrices method, employing integration, was proposed to tackle a
category of fractional integral differential equations [9].

A delay differential equation is characterized by a differential equation where the state variable is dependent on delayed
arguments [10]. Fractional delay differential equations (FDDEs) denote equations that incorporate both fractional derivatives
and time delays. These equations find applications in diverse fields of applied sciences including physics, biology, economics,
bioengineering, and hydraulic networks [11]. FDDEs have been utilized in bioengineering to elucidate the dynamics occurring
within biological tissues [12]. In recent years, researchers have continued their investigation into FDDEs, exploring their properties
and applications across various fields. In [13], the author resolved a fractional delay differential equation utilizing Fraction Taylor’s
series through the traditional reproducing kernel method. Furthermore, a Fractional Legendre polynomials method was employed
to address a specific category of fractional delay differential equations, accompanied by convergence analysis [14].
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Among the significant fractional delay equations, pantograph equations stand out prominently. These equations are frequently
employed to model various real-life phenomena. Analytical methods have been utilized extensively to derive closed-form solutions
for fractional pantograph equations. In [15], the spectral Tau method was leveraged to resolve multi-pantograph equation systems.
Chebyshev spectral methods have been applied in order to address multi-order fractional neutral pantograph equations [16]. In the
recent past, 𝜓 Caputo fractional derivatives were implemented to evaluate the solution pertaining to fractional pantograph problems
associated with boundary conditions. It is noteworthy that this study considered scenarios where 𝜓(𝑡) = 𝑡 refer to [17]. The study
explores the existence, uniqueness, and diverse forms of Ulam–Hyers (UH)-type stability outcomes for nonlocal pantograph equations
featuring psi-piecewise Caputo fractional derivatives [18].

Recently, several methods reliant on the collocation technique have emerged for solving fractional differential equations. Among
these, the Bernstein polynomial method holds significant importance. Central to this method is the translation of each term in
the problem into matrix form. Fractional Bernstein matrices extend the concept of standard Bernstein polynomials by expressing
𝑡→ 𝑡𝛼 . Numerous researchers have employed the Bernstein polynomials method with a view to addressing significant impediments
in applied mathematics and physics; refer to [19–22].

FDDEs find widespread applications across engineering, applied science, and various other fields. It is noteworthy to emphasize
that a comprehensive examination of fractional calculus has been conducted to delineate the diverse applications involving FDDEs.
In this paper, we delve into the following two fractional delay differential equations:

Problem 1.
{

𝐷(𝛾)𝑢(𝑡) = 𝑓 (𝑡, 𝑢(𝑡), 𝑢(𝛿𝑡 − 𝜔)), 0 ≤ 𝑡 ≤ 1, 𝑛 − 1 < 𝛾 ≤ 𝑛

𝑢(𝑖)(0) = 𝜆𝑖 𝑖 = 0, 1,… , 𝑛 − 1.
(1)

Problem 2 (Fractional Multi-Pantograph System).

𝐷(𝛾)𝑢1(𝑡) = 𝛼1𝑢1(𝑡) + 𝑓1(𝑡, 𝑢𝑖(𝑡), 𝑢𝑖(𝛿𝑗 𝑡))

𝐷(𝛾)𝑢2(𝑡) = 𝛼2𝑢1(𝑡) + 𝑓2(𝑡, 𝑢𝑖(𝑡), 𝑢𝑖(𝛿𝑗 𝑡))

⋮

𝐷(𝛾)𝑢𝑛(𝑡) = 𝛼𝑛𝑢𝑛(𝑡) + 𝑓𝑛(𝑡, 𝑢𝑖(𝑡), 𝑢𝑖(𝛿𝑗 𝑡)) (2)
𝑢(𝑖)(0) = 𝜆𝑖, 𝑖, 𝑗 =∈ 0, 1,… , 𝑛.

Leveraging the matrix relations between the Bernstein matrices 𝐵𝑛(𝑡) and their derivatives, we present a numerical method to solve
Eqs. (1) and (2). By implementing the Caputo sense, Bernstein operational matrix of derivative 𝛺(𝑡) is introduced. To illustrate
the effectiveness of the proposed techniques, we construct differentiation operational matrices for a problem with a non-smooth
exact solution. We then compare these solutions with several established approaches, including the Bernoulli wavelets method, the
Chebyshev spectral method, the Spectral Tau method, the fractional Adams method (FAM), and the new predictor–corrector method
(NPCM).

This paper is organized as follows: In Section 2, we provide essential background on fractional calculus and define Bernstein
polynomials. In Section 3, we introduce a numerical algorithm, the Bernstein series solution (BSS), utilizing operational matrices
of differentiation (referred to as BSSD), to solve the proposed FDDEs. The solution is obtained by applying the conditions and
employing the Gauss elimination procedure. In Section 4, we outline the residual correction procedure to estimate the absolute
error and assess the stability of the methods. Section 5 presents several numerical experiments to validate the approach for various
values of n. Finally, Section 6 concludes the paper.

2. Preliminaries and notations

2.1. Fractional derivatives

This section presents the definitions and properties of fractional calculus [23].

Definition 2.1. The Riemann–Liouville fractional integral operator (𝐽 𝛾 ) of order 𝛾 ≥ 0, of a function 𝑢 ∈ 𝐶𝜇 , 𝜇 ≥ −1, is defined as
follows:

𝐽 𝛾𝑢(𝑡) = 1
𝛤 (𝛾) ∫

𝑡

0
(𝑡 − 𝑠)𝛾−1𝑢(𝑡)𝑑𝑠 (𝛾 > 0),

𝐽 0𝑢(𝑡) = 𝑢(𝑡), (3)

where 𝛤 (𝛾) denotes a well-known gamma function. Certain properties of the operator 𝐽 𝛾 , which will be required her, are: For 𝑢 ∈ 𝐶𝜇 ,
𝜇 ≥ −1, 𝛾, 𝛽 ≥ 0 and 𝛾 ≥ −1:

1. 𝐽 𝛾𝐽 𝛽𝑢(𝑡) = 𝐽 𝛾+𝛽𝑢(𝑡),
2. 𝐽 𝛾𝐽 𝛽𝑢(𝑡) = 𝐽 𝛽𝐽 𝛾𝑢(𝑡),
3. 𝐽 𝛾 𝑡𝛽 = 𝛤 (𝛽+1)

𝛤 (𝛾+𝛽+1) 𝑡
𝛾+𝛽 .
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Definition 2.2. In Caputo’s sense, the fractional derivative (𝐷𝛾 ) of 𝑢(𝑡) is defined in the following manner:

𝐷𝛾𝑢(𝑡) = 1
𝛤 (𝑛 − 𝛾) ∫

𝑡

0
(𝑡 − 𝑠)𝑛−𝛾−1𝑢(𝑛)(𝑡)𝑑𝑠, (4)

for 𝑛 − 1 < 𝛾 < 𝑛, 𝑛 ∈ 𝑁, 𝑡 > 0, 𝑢 ∈ 𝐶𝑛−1.

The two rudimentary properties of the Caputo fractional derivative are as follows: [24]:

1. Let 𝑢 ∈ 𝐶𝑛−1, 𝑛 ∈ 𝑁 . Than 𝐷𝛾𝑢, 0 ≤ 𝛾 ≤ 𝑛 is well defined and 𝐷𝛾𝑢 ∈ 𝐶−1.
2. Let 𝑛 − 1 ≤ 𝛾 ≤ 𝑛, 𝑛 ∈ 𝑁 and 𝑢 ∈ 𝐶𝑛𝜇 , 𝜇 ≥ −1. Then

(𝐽 𝛾𝐷𝛾 )𝑢(𝑡) = 𝑢(𝑡) −
𝑛−1
∑

𝑘=0
𝑢(𝑘)(0+) 𝑡

𝑘

𝑘!
. (5)

With regard to the Caputo derivative, we have

𝐷𝛾
∗𝑐 = 0, (𝑐 constant), (6)

𝐷𝛾
∗𝑡
𝛽 =

{

0, for 𝛽 ∈ 𝑁0 and 𝛾 < ⌈𝛾⌉,
𝛤 (𝛽+1)
𝛤 (𝛽+1−𝛾) 𝑡

𝛽−𝛾 , for 𝛾 ∈ 𝑁0 and 𝛽 ≥ ⌈𝛾⌉ or 𝛾 > ⌊𝛾⌋.
(7)

Notably, this study will utilize the Caputo fractional derivative along with its properties to identify the approximate solutions.

2.2. Definitions of Bernstein polynomials

The following equation elucidates the 𝑛th degree Bernstein polynomials:

𝐵𝑟,𝑛(𝑡) =
(

𝑛
𝑟

)

𝑡𝑟(𝑅 − 𝑡)𝑛−𝑟

𝑅𝑛
, 𝑟 = 0, 1, 2,… , 𝑛 𝑡 ∈ [0, 𝑅], (8)

In a similar vein, 𝐵𝛾𝑟,𝑛(𝑡) fractional Bernstein polynomials are formed by means of 𝑥 → 𝑥𝛾 , which is why Eq. (8) becomes

𝐵𝛾𝑟,𝑛(𝑡) =
(

𝑛
𝑟

)

𝑡𝑟𝛾 (𝑅 − 𝑡𝛾 )𝑛−𝑟

𝑅𝑛
, 0 < 𝛾 < 1, (9)

𝑟 = 0, 1, 2,… , 𝑛 𝑡 ∈ [0, 𝑅],

In addition, a recursive definition is capable of producing the B-polynomials over this interval; thus, the 𝑛th degree of B-polynomials
can be written as follows:

𝐵𝑟,𝑛(𝑡) =
(𝑅 − 𝑡)
𝑅

𝐵𝑟,𝑛−1(𝑡) +
𝑡
𝑅
𝐵𝑟−1,𝑛−1(𝑡), 𝑟 = 0, 1, 2,… , 𝑛 𝑡 ∈ [0, 𝑅], (10)

The fractional derivative of the 𝑛th degree B-polynomials represent polynomials of degree 𝑛 − 1; they are denoted by

𝐷𝛾𝐵𝑟,𝑛(𝑡) =
𝑛
𝑅

(

𝐵𝛾𝑟−1,𝑛−1(𝑡) − 𝐵
𝛾
𝑟,𝑛−1(𝑡)

)

(11)

We will employ the Caputo derivative definition, which is a modification of the Riemann–Liouville definition. This definition can be
advantageous in resolving certain initial value problems. The following multivariate fractional Taylor’s theorem will be employed
by us [25] in order to bound the absolute error.

Theorem 2.1. For a compact and convex domain 𝐷 ⊂ R, let 𝐷𝑘𝛾𝑓 ∈ 𝐶(𝐷) for 𝑘 = 0, 1,… , 𝑚 + 1 where

𝐷𝑘𝛾𝑓 = 𝐷𝑘𝛾−𝑛𝐷𝑛𝑓, 𝑛 is the smallest integer exceeding 𝑘𝛾

𝐷𝑛𝑓 =
(

𝛥𝑡 𝜕
𝜕𝑡

)𝑛
𝑓.

If 𝑡0 ∈ 𝐷, then

𝑓 (𝑥) =
𝑚
∑

𝑘=0

𝐷𝑘𝛾𝑓 (𝑡0)
𝛤 (𝑘𝛾 + 1)

+
𝐷(𝑚+1)𝛾𝑓 (𝜉)

𝛤 ((𝑚 + 1)𝛾 + 1)

= 𝑃 𝛾𝑚(𝑡) + 𝑅
𝛾
𝑚(𝜉)

where 𝜉 = 𝑡0 + 𝜃𝛥𝑡, 0 < 𝜃 < 1 and

𝑃 𝛾𝑚(𝑡) =
𝑚
∑

𝑘=0

𝐷𝑘𝛾𝑓 (𝑡0)
𝛤 (𝑘𝛾 + 1)

(Truncated mult. frac. Taylor series) (12)

𝑅𝛾𝑚(𝜉) =
𝐷(𝑚+1)𝛾𝑓 (𝜉)

𝛤 ((𝑚 + 1)𝛾 + 1)
(Remainder term).
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3. Method of solutions

According to the definition of Bernstein polynomials in Section 2.2, the Bernstein series solution for Bernstein series solution of
Eqs. (1) and (2) is obtained using the operational matrix of derivatives

𝑢(𝑡) = 𝐁𝑛(𝑡)𝐀 (13)

where

𝐁𝑛(𝑡) =
[

𝐵0,𝑛(𝑡) 𝐵1,𝑛(𝑡) ⋯ 𝐵𝑛,𝑛(𝑡)
]

, 𝐀 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑎0
𝑎1
⋮
𝑎𝑛

⎤

⎥

⎥

⎥

⎥

⎦

(14)

[𝐁𝑛(𝑡)]𝐓 is expressed as follows:

[𝐁𝑛(𝑡)]𝐓 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐵0,𝑛(𝑡)
𝐵1,𝑛(𝑡)

⋮
𝐵𝑛,𝑛(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

= 𝐗(𝑡)𝐌𝐓,

where

𝐌 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑚00 𝑚01 … 𝑚0𝑛

𝑚10 𝑚11 … 𝑚1𝑛

⋮ ⋮ ⋱ ⋮

𝑚𝑛0 𝑚𝑛1 … 𝑚𝑛𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, 𝐗(𝑡) = [1 𝑡 𝑡2 … 𝑡𝑛], (15)

𝑚𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

(−1)𝑗−𝑖
𝑅𝑗

(𝑛
𝑖

)(𝑛−𝑖
𝑗−𝑖

)

, 𝑖 ≤ 𝑗

0 , 𝑖 > 𝑗
(16)

Meanwhile, we can write the approximate solution in (13) as follows:

𝑢(𝑡) = 𝐗(𝑡)𝐌𝐓𝐀. (17)

On the other hand, we can write the fractional derivative of (17) as follows:

𝐷𝛾𝑢(𝑡) = 𝐷𝛾𝐗(𝑡)𝐌𝐓𝐀, (18)

then

𝐷𝛾𝑢(𝑡) = 𝐷𝛾 [𝐗(𝑡)]𝐌𝐓𝐀, (19)

Utilizing the Caputo definitions mentioned in (7), we can introduce the relationship between the matrix 𝐗(𝑡) and its derivative
𝐷𝛾 [𝐗(𝑡)] as

𝐷𝛾 [𝐗(𝑡)] =
[

0 𝛤 (2)
𝛤 (2−𝛾) 𝑡

1−𝛾 𝛤 (3)
𝛤 (3−𝛾) 𝑡

2−𝛾 ⋯ 𝛤 (𝑛+1)
𝛤 (𝑛+1−𝛾) 𝑡

𝑛−𝛾
]

. (20)

the relationship in (20) can be written as

𝐷𝛾 [𝐗(𝑡)] = 𝐗(𝑡)Ψ(𝑡), (21)

where

Ψ(𝑡) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 … 0

0 𝛤 (2)
𝛤 (2−𝛾) 𝑡

−𝛾 0 … 0

0 0 𝛤 (3)
𝛤 (3−𝛾) 𝑡

−𝛾 … 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 … 𝛤 (𝑛+1)
𝛤 (𝑛+1−𝛾) 𝑡

−𝛾

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (22)

and

𝐗(𝑡) = [1 𝑡 𝑡2 … 𝑡𝑛]. (23)

Thus, the relationship in (19) can be written in the following manner:

𝑢(𝛾)(𝑡) = 𝐗(𝑡)Ψ(𝑡)𝐌𝐓𝐀, (24)
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Therefore, the part 𝑢(𝛿𝑡−𝜔) in the relation (1) may be expressed by converting it to matrix using the properties of Bernstein matrices
and relationship (15) as,

𝐗(𝛿𝑡 − 𝜔) = [1 (𝛿𝑡 − 𝜔) (𝛿𝑡 − 𝜔)2 …(𝛿𝑡 − 𝜔)𝑛] = 𝐗(𝑡)𝛺(𝛿, 𝜔). (25)

where

𝛺(𝛿, 𝜔) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(0
0

)

(𝛿)0(𝜔)0
(1
0

)

(𝛿)0(𝜔)1
(2
0

)

(𝛿)0(𝜔)2 …
(𝑛
0

)

(𝛿)0(𝜔)𝑛

0
(1
1

)

(𝛿)1(𝜔)0
(2
1

)

(𝛿)1(𝜔)1 …
(𝑛
1

)

(𝛿)1(𝜔)𝑛−1

0 0
(2
2

)

(𝛿)2(𝜔)0 …
(𝑛
2

)

(𝛿)2(𝜔)𝑛−2

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 …
(𝑛
𝑛

)

(𝛿)𝑛(𝜔)0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (26)

and for 𝛿 ≠ 0 and 𝜔 = 0

𝛺(𝛿, 0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(𝛿)0 0 0 … 0

0 (𝛿)1 0 … 0

0 0 (𝛿)2 … 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 … (𝛿)𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (27)

We can form the fractional derivative of relation (25) as

𝐷𝛾 [𝐗(𝛿𝑡 − 𝜔)] = 𝐗(𝑡)𝛺(𝛿, 𝜔)Ψ(𝑡), (28)

Therefore, the matrix relation of 𝑢(𝛿𝑡 − 𝜔) is obtained by employing the matrix forms in (17) and (25).

𝑢(𝛿𝑡 − 𝜔) = 𝐗(𝛿𝑡 − 𝜔)𝐌𝐓𝐀. (29)

We can express the fractional derivative of (29) as follows:

𝑢(𝛾)(𝛿𝑡 − 𝜔) = 𝐷𝛾 [𝐗(𝛿𝑡 − 𝜔)]𝐌𝐓𝐀. (30)

by utilizing relation (28) in (30), the following is derived:

𝑢(𝛾)(𝛿𝑡 − 𝜔) = 𝐗(𝑡)𝛺(𝛿, 𝜔)Ψ(𝑡)𝐌𝐓𝐀, (31)

We obtain the primary matrix equation by replacing the matrix relationships in (17), (24), and (31) into Eq. (1), as

{

𝐗(𝑡)Ψ(𝑡)𝐌𝐓𝐀 = 𝑓 (𝑡,𝐗(𝑡)𝐌𝐓𝐀,𝐗(𝛿𝑡 − 𝜔)𝐌𝐓𝐀), 0 ≤ 𝑡 ≤ 1, 𝑛 − 1 < 𝛾 ≤ 𝑛

𝐗(𝜏)𝐌𝐓𝐀 = 𝜆𝑖 𝑖 = 0, 1,… , 𝑛 − 1, 0 ≤ 𝜏 ≤ 𝑅.
(32)

We obtain the matrix 𝐖(𝐧+𝟏)×(𝐧+𝟏) by replacing the collocation points 𝑥𝑖 in (32). These collocation points can be identified after
implementing Chebyshev roots.

𝑥𝑖 =
1
2
+ 1

2 cos((2𝑖 + 1) 𝜋2𝑛 )
, 𝑖 = 0, 1,… , 𝑚 − 1. (33)

Therefore, the equation in (32) becomes:

𝐗Ψ𝐌𝐓𝐀 − 𝐗𝐌𝐓𝐀 − 𝐗(𝛿, 𝜔)𝐌𝐓𝐀 = 𝑓 (𝑡), (34)

we can write relation (34) as,

[𝐗Ψ𝐌𝐓 − 𝐗𝐌𝐓 − 𝐗(𝛿, 𝜔)𝐌𝐓]𝐀 = 𝑓 (𝑡), (35)

it formulates (35) as the rudimentary matrix form yielded by

𝐖𝐀 = 𝐅, (36)

where

𝐖 = 𝐗Ψ𝐌𝐓 − 𝐗𝐌𝐓 − 𝐗(𝛿, 𝜔)𝐌𝐓. (37)

We can write the initial conditions in (1) in the matrix forms in the following manner
𝐗(𝜏)𝐌𝐓𝐀 = 𝜆𝑖 𝑖 = 0, 1,… , 𝑛 − 1, 0 ≤ 𝜏 ≤ 𝑅.
In the event the matrix 𝐖 denotes an invertible square matrix, it becomes possible to identify the unknowns 𝐀 = [𝑎0, 𝑎1,… , 𝑎𝑛]

by

𝐀 = (𝐖)−1𝐅 (38)
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4. Stability analysis and residual correction procedure

This section encompasses the estimation of stability concerning linear systems (1).
Let the system’s solution as 𝑢𝑝,i.e., 𝑢𝑝 signify the disturbing system’s solution that follows:

{

𝐷(𝛾)𝑢(𝑡) = 𝑓 (𝑡, 𝑢(𝑡), 𝑢(𝛿𝑡 − 𝜔)), 0 ≤ 𝑡 ≤ 1, 𝑛 − 1 < 𝛾 ≤ 𝑛

𝑢(𝑖)(0) = 𝜆𝑖 𝑖 = 0, 1,… , 𝑛 − 1.
(39)

The rudimentary matrix form is derived by

𝐖𝐀 = 𝐅, (40)

Thereafter, the implementation of this method yields the following:

𝐖𝐀 = 𝐅+𝛥𝐅. (41)

Let 𝐀𝑝 = denote the perturbed solution of (41). Subsequently, the alteration in 𝐀 can be bounded as: [26]
‖𝛥𝐀‖
‖𝐀‖

≤ 𝑐𝑜𝑛𝑑(𝐖)
‖𝛥𝐅‖
‖𝐅‖

.

As a second case, we consider the perturbed problem result of arithmetic operations

(𝐖+𝛥𝐖)𝐀 = 𝐅+𝛥𝐅. (42)

In the capacity of the same notation, the alteration in 𝐀 triggered by perturbing the initials as well as arithmetic operations is
bounded above in the following manner.

‖𝛥𝐀‖
‖𝐀‖

≤ 𝑐𝑜𝑛𝑑(𝐖)

1 − 𝑐𝑜𝑛𝑑(𝐖)
‖𝛥𝐖‖

‖𝐖‖

(

‖𝛥𝐖‖

‖𝐖‖

+
‖𝛥𝐅‖
‖

‖

�̄�‖
‖

)

.

Hence, BSSI can be bounded as follows for the case (41),

|𝑢(𝑡) − 𝑢𝑝(𝑡)| = |

|

𝐁𝑛(𝑡) (𝐀 − (𝐀 + 𝛥𝐀))|
|

(43)
≤ ‖

‖

𝐁𝑛(𝑡)‖‖ ‖𝛥𝐀‖

≤ ‖

‖

𝐁𝑛(𝑡)‖‖ 𝑐𝑜𝑛𝑑(𝐖)
‖𝛥𝐅‖ ‖𝐀‖

‖𝐅‖
.

Consequently, we ascertain the manner in which minor alterations can impact the solution via the calculation of 𝑐𝑜𝑛𝑑(𝐖). We can
attain similar conclusions for (42).

With a view to constituting the error analysis by employing the residual correction procedure pertaining to this problem, let 𝑅𝑛
be defined in the following manner:

𝑅𝑛(𝑥) ∶= 𝐷(𝛾)𝑢(𝑡) − 𝑓 (𝑡, 𝑢(𝑡), 𝑢(𝛿𝑡 − 𝜔)). (44)

Subsequently, adding/subtracting the term 𝑅𝑛 from Eq. (44) yields the following problem for the absolute error

𝑒𝛼𝑛 (𝑥) = 𝑓 (𝑡, 𝑒𝑛(𝑡), 𝑒𝑛(𝛿𝑡 − 𝜔)). (45)

where 𝑒𝑛 = 𝑢 − 𝑢𝑛 associated with this initial condition

𝑒(𝛼)𝑛 (𝛿) = 0. (46)

We get an approximate solution using the approach in Eq. (45) with the condition (46), which is signified by 𝑒𝑛,𝑚, for the absolute
error, where 𝑚 represents the degree of approximation.

Notably, 𝑢𝑛,𝑚 ∶= 𝑢𝑛 + 𝑒𝑛,𝑚 denotes another approximate solution, referred to as the corrected solution, and its error function is
𝑒𝑛,𝑚. In case ‖

‖

𝑒𝑛 − 𝑒𝑛,𝑚‖‖ < ‖

‖

𝑢 − 𝑒𝑛‖‖, 𝑢𝑛,𝑚 can be deemed an improved approximation than 𝑢𝑛 in the norm. Meanwhile, we can estimate
𝑒𝑛 by 𝑒𝑛,𝑚 whenever ‖

‖

𝑒𝑛,𝑛 − 𝑒
𝑚,𝑚
𝑛,𝑛 ‖

‖

< 𝜀 is small.

5. Numerical results and discussion

This section provides four examples to highlight the strengths and effectiveness of our method. The first two examples will be
solved as follows: To begin with, we will solve as Problem 1; subsequently, we will solve two examples as Problem 2.

Example 1. Let us take into consideration the fractional delay differential equation [12]

𝑢(0.9)(𝑡) = 2𝑡1.1
𝛤 (2.1)

− 𝑡0.1

𝛤 (1.1)
+ 𝑢(𝑡 − 0.1) − 𝑢(𝑡) + 0.2𝑡 − 0.11 (47)

We can denote the initial condition as follows:

𝑢(𝑡) = 0, 𝑡 ≤ 0.
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Fig. 1. The absolute error for Example 2, with 𝑛 = 12, 𝑡 = 1 and 𝜔 = 0.2, 0.5.

This problem’s exact solution is

𝑢(𝑡) = 𝑡2 − 𝑡. (48)

After implementing the technique in Section 3, with n = 2, we obtain the fundamental matrices for Eq. (47) in the following manner:

𝐌𝐓 =
⎛

⎜

⎜

⎝

1 0 0
−2 2 0
1 −2 1

⎞

⎟

⎟

⎠

, 𝐗(𝑡) = [1 𝑡 𝑡2],

𝛺(𝛿, 𝜔) =
⎛

⎜

⎜

⎝

1 −0.1 0.01
0 1 −0.2
0 0 1

⎞

⎟

⎟

⎠

, Ψ(𝑡) =
⎛

⎜

⎜

⎝

0 0 0
0 1.05𝑡−0.9 0
0 0 1.91𝑡−0.9

⎞

⎟

⎟

⎠

We identify the values of unknowns 𝑎𝑖 in (14) as:

𝐀 =
⎡

⎢

⎢

⎣

𝑎0
𝑎1
𝑎3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
−0.5
0

⎤

⎥

⎥

⎦

We get the approximate solution as follows by substituting these unknowns 𝑎𝑖 into Eq. (13),

𝑢(𝑡) = 𝑡2 − 𝑡.

which, in turn, denotes the exact solution, in the Eq. (48).
Our method helps derive the exact solution. On the other hand, we found that the methods used to solve the problem (47),

namely, FAM, three-term NPCM, and the new method (L1-PCM), suffered from errors; refer to [12]. This exemplifies the effectiveness
and accuracy of the existing method.

Example 2. Let us consider the fractional delay differential equation [27]

𝑢(𝛾)(𝑡) = −𝑢(𝑡) + 𝜔
2
𝑢(𝜔𝑡) − 𝜔

2
𝑒−𝜔𝑡, 0 ≤ 𝑡 ≤ 1 0 ≤ 𝛾 ≤ 1 (49)

The initial condition is as follows:

𝑢(0) = 1.

This problem’s exact solution when 𝛾 = 1 is 𝑢(𝑡) = 𝑒−𝑡.
The fundamental matrices equations for Eq. (49) are obtained by applying the technique in Section 3, with 𝑛 = 12; in addition,

we obtain and substitute 𝑎𝑖 in Eq. (13) in order to identify the approximate solution for this problem.
The values of unknowns 𝑎𝑖 in (14) are found as follows:

𝐀 =
[

1 0.9160 0.8490 0.7796 ⋯ 0.3678
]

. (50)
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Fig. 2. The error correction procedure for Example 2, with 𝑛 = 3 and 𝑚 = 12 at time 𝑡 = 1 and 𝜔 = 0.5.

Table 1
Comparison of the absolute error utilizing the method outlined in Section 3 and those produced by means
of the Bernoulli wavelets method [27] and collocation methods [28] at 𝛾 = 1 for Example 2.
t Present method Other methods

𝑛 = 6 𝑛 = 12 [27] [28]

1/4 1.56 × 10−10 5.50 × 10−19 1.05 × 10−8 1.08 × 10−5

1/8 2.83 × 10−8 2.89 × 10−18 5.79 × 10−9 3.81 × 10−5

1/16 9.18 × 10−9 8.70 × 10−19 2.00 × 10−8 1.26 × 10−5

1/32 1.53 × 10−9 3.82 × 10−18 3.70 × 10−9 4.09 × 10−5

1/64 3.24 × 10−9 1.17 × 10−18 2.30 × 10−8 1.20 × 10−5

Table 1 presents the approximate solution’s values and compares them with other methods at various stages. Furthermore, Figs. 1, 2,
and 3, illustrate the plots of the exact solution, the approximate solution, as well as the corrected approximate solution, respectively.
Table 2 displays the stability results premised on the method employed by us.
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Fig. 3. The error correction procedure for Example 2, with 𝑛 = 6 and 𝑚 = 12 at time 𝑡 = 1 and 𝜔 = 0.5.

Table 2
Stability results of the system derived through the existing method for Example 2.

𝑛 = 2 𝑛 = 4 𝑛 = 8

𝑐𝑜𝑛𝑑(𝑊 ) 4.72 21 133.77
‖𝛥𝐴‖ 3.02 × 10−1 9.80 × 10−1 9.99 × 10−1

‖𝐴‖ 0.47 0.75 0.87
‖𝛥𝐺‖ 10−16 10−16 10−16

‖𝐺‖ 9.7 × 10−2 9.95 × 10−2 9.98 × 10−2

Upper bound obtained by (43) 1.12 × 10−15 1.92 × 10−14 1.96 × 10−12
‖

‖

𝑢𝑛 − 𝑢
𝑝
𝑛
‖

‖

1.0 × 10−16 2.0 × 10−16 3.0 × 10−16

Example 3. Let us take into consideration the fractional delay differential equation [16]

𝑢(𝛾)(𝑡) = 1 − 2𝑢2( 𝑡
2
) 0 ≤ 𝑡 ≤ 1 1 ≤ 𝛾 ≤ 2 (51)

The initial condition is as follows:

𝑢(0) = 1, 𝑢′(0) = 0
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Fig. 4. The absolute error for Example 3, with 𝑛 = 12, 𝑡 = 1 and 𝛾 = 2, and approximate solutions for varying 𝛾 values with exact.

Table 3
Comparison of the absolute error utilizing the method outlined in Section 3 along with those produced by the Chebyshev Spectral method
[16] and MLWM methods [29] and OMBWM [27] at 𝛾 = 2 for Example 3.
t Chebyshev spectral

[16]
MLWM [29]
𝑚 = 20

OMBWM [27]
𝛼 = 2

Present method
𝑛 = 12

0.0 1.11 × 10−16 2.11 × 10−8 1.62 × 10−11 0
0.2 1.98 × 10−12 2.09 × 10−8 3.30 × 10−13 4.69 × 10−17

0.4 2.13 × 10−12 2.08 × 10−8 4.17 × 10−9 9.06 × 10−16

0.6 2.82 × 10−12 2.04 × 10−8 1.08 × 10−10 1.24 × 10−15

0.8 3.63 × 10−12 2.00 × 10−8 1.62 × 10−9 1.09 × 10−15

This problem’s exact solution when 𝛾 = 2 is 𝑢(𝑡) = cos 𝑡.

The results are tabulated in Table 3 by applying the presented method for 𝑛 = 12; it becomes apparent that the proposed method
proves to be more precise in comparison to other methods, in [16,27,29]. Fig. 4 shows absolute errors with 𝑛 = 12, 𝛾 = 2 as well as
the approximate solutions for varying values of 𝛾 with exact solutions.

Example 4. Let us examine the system of fractional delay differential equation [16]

𝑢(𝛾)1 (𝑡) = 𝑢1(𝑡) − 𝑢2(𝑡) + 𝑢1(0.5𝑡) − 𝑒0.5𝑡
𝛾
+ 𝑒−𝑡

𝛾

𝑢(𝛾)2 (𝑡) = −𝑢1(𝑡) − 𝑢2(𝑡) − 𝑢2(0.5𝑡) + 𝑒−0.5𝑡
𝛾
+ 𝑒𝑡

𝛾 (52)

The initial conditions are 𝑢1(0) = 1, 𝑢2(0) = 1.
This problem’s exact solution when 𝛾 = 1 is 𝑢1(𝑡) = 𝑒𝑡 and 𝑢2(𝑡) = 𝑒−𝑡.

The fundamental matrix equation for Eq. (52) is obtained by applying the technique in Section 3, and the findings can be seen
in Tables 5 and 6. Absolute error analysis with the findings of residual correction procedure are visually represented in Figs. 5–7.
Table 4 illustrates the stability results for 𝑢1(𝑡) and 𝑢2(𝑡) on the basis of the method used by us.

The problem is approached by [16] applying the Chebyshev spectral methods and [15] that implemented the tau spectral method
(TSM) for its solution. In Tables 5 and 6, the absolute errors of 𝑢1(𝑡) and 𝑢2(𝑡) are compared with 𝑛 = 12 against the best results
attained by using the RPSM [30], TSM [15,16].

6. Conclusions

This study demonstrates the efficacious utilization of operational matrices of differentiation approach by means of Bernstein
series in order to solve a class of FDDEs. The comparison between our proposed method and others is presented in Section 5,
where it is evident that our algorithm yields more accurate results compared to methods such as the Bernoulli wavelets method,
the Laguerre wavelets method, collocation methods, and the Chebyshev spectral method. The numerical experiments demonstrate a
strong agreement between theoretical predictions and numerical outcomes, as evidenced by Tables 1–6 and Figs. 1–7. Throughout
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Fig. 5. The absolute error for Example 4, with 𝑛 = 12, 𝛾 = 1.

Table 4
Stability findings derived via our method of the pantograph system of equations shown in Example 4.

𝑢𝑖 𝑛 = 2 𝑛 = 4 𝑛 = 8

𝑐𝑜𝑛𝑑(𝑊 ) 𝑢1 41.14 243.61 7766.8
𝑢2 3.14 41.23 83.5.77

‖𝛥𝐴‖ 𝑢1 1.66 2.51 1.79
𝑢2 3.48 5.02 9.92

‖𝐴‖ 𝑢1 2.78 2.71 2.37
𝑢2 0.34 0.80 2.71

‖𝛥𝐺‖ 𝑢2 10−16 10−16 10−16

𝑢2 10−16 10−16 10−16

‖𝐺‖ 𝑢1 1.10 1.25 1.26
𝑢2 3.00 3.26 3.30

Upper bound obtained by (43) 𝑢2 1.66 × 10−14 9.75 × 10−13 5.11 × 10−10

𝑢2 1.31 × 10−15 1.88 × 10−13 6.12 × 10−12

‖

‖

𝑢𝑛 − 𝑢
𝑝
𝑛
‖

‖

𝑢1 1.0 × 10−16 2.0 × 10−16 3.0 × 10−16

𝑢2 1.0 × 10−16 2.0 × 10−16 3.0 × 10−16

Table 5
Comparison of the absolute error for 𝑢1(𝑡) utilizing the method outlined in Section 3 along with those produced by the RPSM
method [30], TSM methods [15] and Chebyshev spectral [16] at 𝛾 = 1 for Example 4.
𝑢1(𝑡)

t RPSM [30] TSM [15] Chebyshev spectral [16] Present method, 𝑛 = 12

0.2 2.60 × 10−9 4.50 × 10−8 5.38 × 10−11 1.07 × 10−17

0.4 3.42 × 10−7 5.75 × 10−8 1.63 × 10−9 1.11 × 10−17

0.6 6.00 × 10−6 6.02 × 10−8 1.96 × 10−9 5.44 × 10−17

0.8 4.61 × 10−5 4.62 × 10−8 8.02 × 10−10 4.20 × 10−16

1 2.76 × 10−4 1.27 × 10−8 2.37 × 10−9 2.57 × 10−15

the illustrations presented so far, we have demonstrated the fundamental matrices of integration and differentiation Ψ,Ω(𝜹,𝝎),𝐖
and 𝐀 generated on the basis of our techniques. Furthermore, this novel approach can also be leveraged for the option pricing model
solution.
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Fig. 6. The error correction procedure for Example 4 𝑢1(𝑡) with 𝑛 = 3 and 𝑚 = 12.

Table 6
Comparison of the absolute error for 𝑢2(𝑡) utilizing the method outlined in Section 3 along with those produced by the RPSM
method [30], TSM methods [15] and Chebyshev spectral [16] at 𝛾 = 1 for Example 4.
𝑢2(𝑡)

t RPSM [30] TSM [15] Chebyshev spectral [16] Present method, 𝑛 = 12

0.2 2.47 × 10−9 2.14 × 10−8 4.63 × 10−10 9.55 × 10−18

0.4 2.60 × 10−8 2.60 × 10−8 2.43 × 10−10 4.02 × 10−18

0.6 1.63 × 10−8 1.63 × 10−8 3.91 × 10−10 2.45 × 10−17

0.8 1.12 × 10−8 1.12 × 10−8 5.07 × 10−10 1.60 × 10−16

1 2.97 × 10−9 2.97 × 10−9 1.05 × 10−9 2.21 × 10−16

Data availability
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Fig. 7. The error correction procedure for Example 4 𝑢2(𝑡) with 𝑛 = 3 and 𝑚 = 12.
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