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ABSTRACT Real-time systems mostly interact with the external world and each input operation must
meet predetermined deadlines to be useful. However, in many real-time applications, a partial result is
also acceptable. We developed a reward-based mixed criticality system based on the resource reservation
approach to address the problem of ensuring the effective execution of low- and high-criticality tasks in
both low- and high modes, even under heavy workloads. Using dedicated servers with pessimistic resource
allocation for each high criticality task ensured their execution in both modes unaffected by low criticality
tasks. The surplus resources are reclaimed and assigned to low critical tasks’ server by utilizing a greedy
reclamation of unused bandwidth (GRUB) algorithm. Three strategies were suggested for server allocation
to low criticality tasks: a dedicated server for all low criticality tasks, a single server for each low criticality
task, and two servers (mandatory and optional) for each low criticality task. Our analysis revealed efficiency
of the first approach by achieving 100% schedulability at a 1.1 target utilization, scheduling 20% and
50% more task sets than the second and third approaches, respectively. Moreover, the effectiveness of
the proposed approach over existing imprecise mixed criticality approaches were demonstrated through
comprehensive experimentation.

INDEX TERMS Greedy reclamation, Imprecise computation, Imprecise mixed criticality (IMC) systems,
Mixed criticality systems, Real-time systems, Resource reservation reward-based Scheduling, Servers

I. INTRODUCTION

Real-time systems include a wide range of systems, from
basic control loops in embedded systems to complex net-
works of distributed systems. The specifications, standards,
and applications of these systems cover a wide range of
areas such as industrial automation, aviation, automobile,
smartphones, and medical systems. Modern real-time em-
bedded systems frequently interact outside the environment;
consequently, their output must be generated in real time,
i.e., within a certain amount of time or it is rejected and
considered a failure. Therefore, both logical and temporal
correctness are key factors for defining the correctness of
the systems. Being logically correct implies generating an
accurate results typically required in general computing sys-
tems. However, real-time system scheduling imposes ad-
ditional emphasis on temporal correctness, which simply

refers to generating accurate results within a given period.
Real-time systems are reactive systems that must produce
relevant outputs for specific inputs under predetermined time
constraints. For example, the airbag in a vehicle must be
deployed in a fractions of a second, neither too soon nor too
late. Safety-critical applications are primarily based on real-
time systems wherein a controller malfunction can result in
severe casualties, thereby endangering life. Fundamentally,
there are two categories of real-time constraints: hard and soft
constraints. In hard real-time systems, missing a deadline can
result in catastrophic consequences, including fatalities and
loss of resources. Examples include vehicle airbag systems
or high-speed rail signaling systems. Unlike hard real-time
systems, deadlines missed in soft real-time systems such as
surveillance systems or the global positioning system (GPS)
does not cause catastrophic consequences; however, it affects
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the service quality of the system.
Many applications employing real-time systems now ex-

hibit another crucial feature known as criticality level, which
is attributed to the emergence of safety critical systems
with various functionalities such as safety critical, mission
critical, and low critical. The assurance level required to
prevent a safety-critical system component from failing is
referred to as criticality and there can be up to five levels of
criticality. A safety-critical system with two or more levels
of functionalities is commonly known as a mixed criticality
system (MCS). A good example of an MCS with multiple
levels of functionalities is a modern vehicle. The modern
vehicle performs safety-critical functions with a higher level
of criticality, such as in airbag systems or antilock braking
systems, and mission critical functions with a lower level
of criticality, such as in radio or air-conditioning systems.
Because the operational safety of the entire system relies
heavily on safety-critical functionalities, their failure may
have disastrous effects, such as a loss of assets or human life.
Mission-critical functionalities have no effect on the safety
of the system because of its lower criticality level; however,
its failure degrades the overall service quality of the system.
A safety-critical system with the different functionalities of
the various criticality levels operating in a single and reliable
computing environment is referred to as an MCS.

The traditional safety-critical real-time systems had to be
tested and certified in their entirety to show that they were
safe to use. On the other hand, the design of an MCS is
subjected to certification at different criticality levels by the
certification authority (CA) for their successful deployment.
The concern of CA is only the temporal correctness of
the safety-critical part of an MCS under very pessimistic
assumptions (e.g. worst-case execution times (WCETs) cal-
culated from static analysis of a code), while the responsi-
bility of system designer is to ensure that the entire system
operates correctly by guaranteeing the correctness under less
pessimistic assumptions (e.g. WCETs from the measure-
ments of a code). Therefore, for the guaranteed execution
of high critical tasks in any scenario, CAs consider highly
pessimistic cases that are rare and improbable to really occur.
Consequently, exaggerated WCETs are considered for these
highly critical tasks, leading to wastage of resources. Vestal
[1] suggested designating a high critical task with multiple
WCETs to manage this exaggeration. Owing to the optimistic
WCETs of high critical tasks, all high- and low critical tasks
can be successfully scheduled, and hence, they can better
utilize the hardware resources. This operating mode of an
MCS is known as the low criticality mode. The system mode
is changed to a high criticality mode when, in a rare scenario,
the execution of a highly critical task cannot be completed
according to its optimistic WCET. In the high critical mode,
certified pessimistic assumptions are utilized for scheduling
high critical tasks, and this affects the schedulability of low
critical tasks, and therefore, they are dropped in this mode.

The problem of scheduling real-time tasks in overload
conditions refers to those critical situations in which the

computational demand requested by the task set exceeds the
time available on the processor. The primary risk is potential
deadline misses for critical tasks, impacting overall system
behavior. In real-world scenarios, system overloads can arise
due to factors like simultaneous arrival of tasks, malfunction-
ing of input devices, unexpected environmental variations,
and operating system exceptions. For example, the systems
that are designed with inefficient approach might function
well under regular circumstances but collapse during peak
load situations when demands exceed resources. Even well-
designed systems can face load spikes due to multiple simul-
taneous events.

The motivation behind the studied work is to address
the challenges posed by overloaded scenarios in real-time
MCSs. In realistic MCS model [2], the execution of low
criticality tasks in both low and high modes holds signifi-
cant importance. These systems play a vital role in safety-
critical domains such as aerospace, defense, and medical
devices, where timely and dependable task execution is
crucial. The schedulability of MCSs with heavy workloads
is a challenging research problem in the field of real-time
systems. Ensuring the schedulability of high criticality tasks
while guaranteeing partial or complete schedulability of low
criticality tasks in the high mode is difficult because heavy
workloads can lead to deadline misses and system failures.
The significance of this research lies in the development
of an effective MCS scheduling strategy that ensures the
successful execution of high critical tasks while maintaining
system stability and quality by ensuring the execution of low
criticality tasks in both low and high modes. By achieving
this, the proposed approach contributes to enhancing the re-
liability, safety, and performance of MCSs under demanding
workloads, thus advancing the field of real-time systems and
critical applications.

To address the issue of the schedulability of low critical
tasks in both modes, several scheduling strategies were pro-
posed by Burns and Baruah [3]. To enable low criticality
tasks to make progress after the system shifts to high mode,
they suggested retaining the schedulability of these tasks
without affecting the schedulability of high criticality tasks.
In the context of a fixed priority system, this can be achieved
by: (i) adjusting the priority of these tasks to be lower
than any high criticality task, (ii) reducing the execution
time requirements of low criticality tasks to ensure their
execution in the spare capacity available in high mode, or
(iii) extending the period of low criticality tasks to achieve
a similar outcome. The proposed approach in our research
work draws inspiration from the second approach. However,
in the proposed approach, by associating a reward with the
execution of low criticality tasks, their reduced WCET can
be extended to enhance their output quality, leading to an
improvement in overall system performance.

In this research work, we adopted a resource reservation
technique with reward-based scheduling. The resource reser-
vation technique is a class of techniques that can ensure the
schedulability of high criticality tasks in MCSs during peri-

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3384232

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



ods of heavy workload. These techniques work by reserving
system resources such as CPU time, memory, or bandwidth
for high criticality tasks, while still allowing low criticality
tasks to execute when resources are available. The main idea
of the proposed approach is providing high criticality tasks
with sufficient resources to ensure their execution in both
modes, even under heavy system workloads. Reward-based
scheduling is adopted for scheduling low critical tasks. The
basic concept of this technique is to compromise precision
for timeliness when resources are insufficient for achieving
the WCET guarantees. It divides each low critical task into a
pair of logical parts: the mandatory part produces an output
with the minimum acceptable quality, and the execution of
the optional part enhances the quality of the produced output
when there is a sufficient computing capacity; otherwise, it is
discarded.

The performance of the proposed approach is evaluated
through a comprehensive comparison with other state-of-the-
art [3], [4], [5] scheduling algorithms for the IMC model.
The results demonstrate that the proposed technique outper-
forms these approaches in terms of heavy workloads. The
proposed technique effectively ensures the schedulability of
high criticality tasks without being affected by the behavior
of low critical tasks. Three different strategies are provided
to schedule low critical tasks in both modes. The advantages
of the proposed system include improved schedulability,
i.e., reserving sufficient system resources for high criticality
tasks, even in heavy workload situations; providing strong
guarantees for WCETs and response times of high criticality
tasks; and ensuring a predictable and reliable system per-
formance. Further, the proposed technique enables efficient
resource sharing by allowing low criticality tasks to use
unused resources, which increases overall system efficiency
while providing strong guarantees for highly critical tasks.

The main contributions of this study can be summarized as
follows:

• We proposed a modified version of the earliest deadline
first (EDF) approach with a tuned deadline EDF-TD for
high severs that schedule high critical tasks.

• We proposed a resource reservation technique in
the reward-based scheduling paradigm that effectively
schedules high criticality tasks independently of the
behavior of low criticality tasks. Furthermore, low crit-
icality tasks are also provided some service in the high
mode instead of being discarded. The pseudocode for
the proposed technique is also provided.

• We performed extensive experiments to evaluate the
effectiveness of the proposed technique over existing
IMC strategies.

To the best of our knowledge, this is an initial attempt
in MCSs to address a resource reservation based approach
within the paradigm of reward-based scheduling in a single-
core environment. Furthermore, in the context of the mul-
ticore partitioned approach, where tasks are allocated to
different cores, the scheduling behavior of each core closely

emulates that of a single-core system, subject to the exclusion
of various sources of indeterminism within the multicore
paradigm. This is due to the fact that the multicore partitioned
approach lacks task migration between cores. Hence, the
advent of multicore processors can also benefit from their ap-
plicability of single-core algorithms. Moreover, this research
work focuses on periodic task model that are commonly
encountered in various real-world applications, including
industrial automation, automotive systems, and multimedia
processing, where tasks often need to be executed at regular
intervals. For example, in a chemical plant temperatures,
pressure and other attribute are measured periodically and
all information is passed to the controller. By focusing on
periodic task models, we aim to provide a targeted analysis
of the challenges and solutions related to this specific sce-
nario. However, the proposed system holds the potential to
incorporate sporadic task models.

The remainder of the paper is organized as follows: Sec-
tion II discusses the relevant literature. Section III describes
the proposed system model by defining a task model and
discussing the behavior of the system. Section IV describes
the proposed technique and defines server specifications
along with the pseudocode of the proposed technique. The
motivation to support this approach is also discussed. Section
V outlines the necessary conditions required for the schedu-
lability of the proposed technique. Section VI discusses the
schedulability analysis of the proposed technique in both low
and high modes. Section VII analyzes the results obtained
from the experimental evaluation. Section VIII concludes
the study, and Section IX highlights the future work of the
proposed technique.

II. RELATED WORK
The domain of real-time systems on a uniprocessor, wherein
schedulability is the primary concern, has been widely stud-
ied. Most studies investigated overload systems in which it is
difficult to satisfy deadlines for all tasks, and the execution
or abortion of tasks is determined by the system. In such
systems, the primary goal is increasing the performance
factor. To address this problem, imprecise computation with
mandatory and optional semantics for a task were initially
introduced. The primary focus of this approach was to guar-
antee the execution of mandatory parts, while mitigating
the overall system error. The time required to execute an
optional part indicates the accuracy of the system; a complete
execution indicates zero error, whereas abortions indicate the
highest possible error. Another strategy of a similar nature
is described in a framework called increased rewards with
increased service (IRIS), wherein there is no separation of a
task into mandatory and optional parts, and the task can run
for as long as the scheduler permits with no upper bound.
Therefore, an increased reward is associated with increased
services. Aydin et al. [6] developed an optimal reward-based
scheduling algorithm for periodic tasks where the reward
function was associated with the execution of the optional
part of a task beyond its mandatory part. Based on this
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approach, a schedule is considered feasible if each mandatory
part of all tasks is completed by the deadline. If the accrued
reward is equal to the optional portion of all tasks, the sched-
ule is considered precise; that is, all mandatory and optional
parts can be scheduled successfully to provide the maximum
reward function. Another strategy involves defining distinct
quality-of-service (QoS) parameters for various tasks. Based
on the specific QoS measures, the system selects certain QoS
levels for various applications depending on the available
resources for maximizing the overall system utility.

An emerging practice in the design of safety-critical real-
time systems is the integration of different applications with
different criticality levels into a shared computing platform
known as an MCS, which was first introduced by Vestal [1]
in 2007. An MCS is executed in two modes: the low critical
mode and the high critical mode. All low- and high-criticality
tasks are successfully scheduled in low modes for reduced
WCETs for highly critical tasks. The system switches to
highly critical mode when a highly critical task signals for
more computations than their reduced WCETs. Therefore,
to guarantee the schedulability of high criticality tasks with
their pessimistic WCETs, all low criticality tasks are dis-
carded in the high critical mode. Several earlier schedul-
ing strategies, including fixed priority and dynamic priority
scheduling algorithms were expanded to accommodate the
behavior of MCS.

The MCS schedulability problem has recently attracted
considerable research attention. Burns and Davis [2] offer a
comprehensive overview of MCSs designed to handle tasks
with varying levels of criticality, from safety-critical to non-
critical, on a single computing platform. They discuss various
aspects of MCSs, such as their challenges, design principles,
scheduling techniques, and fault tolerance mechanisms, aim-
ing to provide a valuable resource for researchers and practi-
tioners in the field. Most MCS research is based on Vestal’s
[1] mixed criticality model. However, this model significantly
affects the low criticality task services, and therefore, the
vestal mixed criticality model is criticized by certain system
designers [3] [7]. Therefore, operating in the high mode while
serving low critical tasks is very challenging. To address this
problem, several new MC scheduling strategies have been de-
veloped. For example, adjusting the priorities of certain low
criticality tasks [8] or reducing the execution frequency of
low criticality tasks through a period extension [7] for ensur-
ing schedulability. However, some applications may choose
a lower-quality output to avoid missing deadline instead of
achieving a delayed result with precise quality. Consequently,
extending the period of low criticality tasks is ineffective for
such applications. Various techniques have been investigated
to address this problem, including the reduction of a few
or all low critical tasks’ executions times [3] [4] by using
an imprecise mixed criticality (IMC) model [9] [5], or by
efficient controlling the budget [10].

The first paper of Baruah and Vestal [11] on MCS with
EDF Scheduling was published in 2008. A slack-based mixed
criticality technique, criticality-based EDF (CBEDF), was

developed by Park and Kim [12] for EDF scheduled tasks.
They attempt to delay the execution of highly critical tasks
as far as possible by using a series of online and offline
analyses. Delaying high criticality tasks helped acquire free
time slots for scheduling low critical tasks. Su et al. [13] used
the elastic task model, which makes use of available capacity
by altering the task periods. By defining the maximum pe-
riod, they suggested a reduced level of service for each low
criticality task. Lipari and Buttazzo [14] utilized a reservation
model to examine EDF in MCSs wherein sufficient budget
is reserved for the pessimistic and certified WCETs of high
criticality tasks. Some low criticality tasks can be executed
in the slack spared by highly critical tasks using an efficient
reclamation mechanism because the high criticality tasks are
executed in the low mode with optimistic WCETs. Further,
these high criticality tasks are executed as early as possible
by tuning their deadlines to maximize the reclaimed capacity.
Our proposed system is loosely based on this approach .

The IMC model is used by Burns and Baruah [3], and it
helps reduce the execution budget for low criticality tasks
when the system switches to the high criticality mode. They
extended the adaptive mixed criticality (AMC) approach
to test the schedulability of an IMC task set under fixed-
priority scheduling. Via comparison, the schedulability under
EDF with virtual deadlines (EDF-VD) outperforms AMC.
Furthermore, Baruah et al. [4] analyzed the schedulability
of an IMC model under MC-fluid scheduling. However, in
practical scenarios, it suffers from a substantial scheduling
overhead caused by the frequent context switching, signifi-
cantly affecting the scheduling performance of the system.
The initial attempt to analyze the schedulability and perfor-
mance of the IMC model under EDF-VD scheduling was
reported by Liu et al. [5]. This approach is similar to that
of the earlier mixed criticality model. However, unlike the
earlier model, this approach does not discard low criticality
tasks after switching to the high criticality mode. Instead,
they are scheduled at reduced execution times. If a highly
critical task is executed because of its low WCET without
signaling completion, then the high criticality mode is ac-
tivated. After the switch time instant, high criticality tasks
are scheduled using their high criticality WCET whereas
low criticality tasks are scheduled using a reduced execution
time. However, this approach suffers from limitations such
as poor performance in heavy workloads and no guarantee
of executing low criticality tasks beyond its high WCET
in the high mode if resources are available. As previously
mentioned, the IMC model allows controlled performance
reduction for low criticality tasks in high mode due to shorter
WCET.

The following papers demonstrates recent trends in the
IMC framework. The study conducted by Jiang et al. [15]
proposed HIART-MCS introducing a novel hardware proces-
sor enabling task approximation along with an intermediate
system mode for running less critical tasks with reduced
precision. They developed a theoretical model and schedu-
lability analysis to ensure system timing and optimize mode
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switching. HIART-MCS was the first practical framework
for imprecise MCSs. Jiang et al. [16] presented a novel
IMC framework that mitigated computation errors caused
by imprecise computation, achieved real-time performance
near that of a conventional MCS, enhanced system-level
throughput, and provided flexibility for run-time configu-
ration. Zhang et al. [17] studied the energy minimization
problem of non-preemptive dynamic priority scheduling and
developed schedulability tests for non-preemptive earliest
deadline first with virtual deadline (NP-EDFVD) for IMC
tasks. They introduced the uniform single-speed (USS) al-
gorithm based on the schedulability tests of NP-EDFVD.
The USS algorithm aimed to reduce energy consumption
while safeguarding IMC correctness and achieved an average
energy savings of 25.62%. In a study conducted by Zhang et
al. [18], they explored the partitioned scheduling of an IMC
taskset on a uniform multiprocessor platform by employ-
ing EDF-VD as the uniprocessor task scheduling algorithm.
They primarily aimed to address the optimization problem
of identifying a feasible task-to-processor assignment while
optimizing the processor speed in low mode in order to mini-
mize the system’s average energy consumption in low mode.
Zhang [19] introduces an energy-aware mixed criticality real-
time scheduling approach for the IMC task model. Their
work addresses the energy minimization problem by using
dynamic voltage and frequency scaling (DVFS). The pro-
posed energy-aware IMC scheduling algorithm (EA-IMC)
efficiently schedules tasks with the energy-efficient speed of
SLO in low mode and the maximum processor speed Smax in
high mode. Experimental results showed an average 24.55%
energy reduction. Zhang et al. [20] introduced a criticality-
aware EDF (CA-EDF) scheduling algorithm designed to
enhance schedulability by delaying low criticality task exe-
cution. Their work established schedulability conditions for
CA-EDF using the Demand Bound Function. Experimen-
tal results demonstrated about 13.10% improvement in the
schedulability ratio. Zhang and Chen [21] introduced the
energy-efficient allocating algorithm (EEAA), a partitioning
algorithm driven by genetic algorithms. They investigated
a range of parameter combinations to optimize task-to-
processor assignments and minimize energy consumption.
Their experiments demonstrated a substantial energy sav-
ings of 12.56% achieved by EEAA. Another noteworthy
trend is the adoption of precise mixed criticality scheduling
[22] where all tasks receive full execution budget. Inspired
by MC-Fluid and using dynamic voltage and frequency
scaling (DVFS), it minimizes processor speed under nor-
mal conditions and restores full speed during task overruns
(mode switch). The precise MC scheduling is extended to
constrained-deadline tasks using demand-based schedulabil-
ity analysis, allowing flexible virtual-deadline settings [23].

Besides uniprocessor systems, significant research has
also been conducted in MCSs in a multicore environment.
Research related to QoS in the multicore paradigm was
extensively studied under MCSs. Chai et al. [24] provided a
comprehensive survey of the recent research on MCSs. Their

work covers various aspects of MCSs, including the system
architecture, scheduling algorithms, resource allocation, fault
tolerance, and QoS provisioning. Further, they discuss the
challenges and opportunities in the design and implemen-
tation of MCSs, and they provide insights into future re-
search directions. Another study by Pathan [25] proposes a
federated-scheduling algorithm for parallel mixed criticality
tasks on multiple processors that improves the schedulability
and QoS of the system. The proposed algorithm employs
efficient task partitioning technique to maximize system uti-
lization and reduce the interference between tasks of different
criticality levels. Roy et al. [26] proposed a scheduling al-
gorithm called SLAQA, which considers the quality level of
tasks in a task graph and the heterogeneity of the distributed
system to optimize scheduling. SLAQA assigns high-quality
tasks to powerful processing nodes and low-quality tasks to
less powerful nodes, minimizing the execution time while
meeting quality requirements, which makes it useful for
high-performance applications such as video processing and
multimedia.

The motivation behind the proposed approach is to address
the challenges posed by overloaded scenarios in real-time
MCSs. As heavy workloads might result in missed dead-
lines or even system breakdowns, it is challenging even in
low mode to guarantee the schedulability of high criticality
tasks along with the partial or complete execution of low
criticality tasks. The significance of this research work lies
in the development of an effective MCS scheduling strategy
that ensures the successful execution of high critical tasks
while maintaining system stability and quality by ensuring
the execution of low criticality tasks in both low and high
modes even in heavy workloads. In this research work, we
adopted a resource reservation technique with reward-based
scheduling framework. To the best of our knowledge, this
is an initial attempt in MCSs to address heavy workload
scenarios by utilizing a resource reservation based approach
within the paradigm of reward-based scheduling in a single
core environment.

III. SYSTEM MODEL
We utilized a resource reservation-based approach for
scheduling high criticality tasks independent from the behav-
ior of low criticality tasks. Low criticality tasks in the systems
are characterized as soft real-time tasks that allow imprecise
computation. Therefore, reward-based scheduling framework
was used to schedule them. We adopted a uniprocessor archi-
tecture to schedule reward-based mixed criticality workload.

A. TASK MODEL
In our system, we considered n independent periodic and
preemptive tasks set T = (t1, t2, t3, ..tn) scheduled in a
uniprocessor system. A task in the system is represented
by ti which refers to ith task in a tasks set T . However,
a specific job of task is represented by tij which refers to
jth job of the ith task. MCS tasks are scheduled in the low
criticality mode at first, and then, they are switched to the
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high criticality mode when a highly critical task does not
signal completion within its low-mode WCET. Each task ti
in the MCS task set T is specified by a 4-tupled parameter
ti = (Pi, C

LO
i , CHI

i , L) as
• Pi ∈ R+ is the task’s period, defined as the shortest

interval between successive jobs. (The task’s deadline
Di and period Pi are considered equal, and Di = Pi).

• CLO
i ∈ R+ represents the optimistic WCET of a task.

• CHI
i ∈ R+ represents the pessimistic WCET of a task.

• L ∈ (LO,HI) represents the criticality level, with LO
and HI indicating low criticality and high criticality of
a task, respectively.

Reward-based scheduling is only concerned with the ex-
ecution of low criticality tasks in the system which is com-
posed of the mandatory part execution emi , and the optional
part execution eoi . Execution of the mandatory part delivers
the minimum acceptable output, whereas the optional part
enhances the quality of the output. A reward function Ri(xij)
is used to measure the quality of a system, where xij denotes
the optional part of the jth job of the ith task that is being
executed by the CPU. The reward function Ri(xij) of a task
ti is given by (1).

Ri(xij) = wi · fi(xij) (1)

where xij is the amount of CPU time allocated to the ex-
ecution of optional part eoi and w denotes the weight of a
low critical task which allows us to distinguish between the
importance of optional parts of different low criticality tasks.
The function fi is considered to be a continuously differen-
tiable, non-decreasing, and linear function over non-negative
real numbers [6] which means that the benefit to the overall
system increases uniformly during the execution of optional
parts. The overall cumulative reward Rcum

i obtained during a
hyper period H for a low critical task ti is determined using
(2).

Rcum
i =

H/Pi∑
j=1

Ri(xij) (2)

Consider two low criticality tasks with P1 = 6, em1 =
2, eo1 = 2, P2 = 12, em2 = 3, eo2 = 3, and one
high criticality task with P3 = 8, CLO

3 = 2, CHI
3 = 4.

Moreover, lets assume the weight w1 of task t1 to be 5 and the
weight w2 of task t2 to be 3 which highlights the importance
of t1. The schedule produced by the EDF algorithm of the
given task set is shown in Fig. 1.

FIGURE 1: Schedule of a given task set.

As evident from Fig. 1, task t3 which is classified as a
high critical task, consistently achieves successful execution

in each invocation. Conversely, tasks t1 and t2, categorized
as low critical tasks, face challenges in securing complete
execution within the available resources. However, the exe-
cution of low critical tasks is ensured by adopting the reward-
based scheduling framework. In this context, the successful
execution of low critical tasks pertains to the successful
execution of their mandatory parts, while the execution of
their optional parts contribute to enhancing the output quality.
Fig. 1 illustrates this scenario, showcasing the accomplished
execution of mandatory parts of both tasks t1 and t2 during
each invocation, coupled with the additional benefit of exe-
cuting their optional parts as denoted by Oi, resulting in a
reward. The optional part of task t1 receives no CPU time
in its initial invocation due to the absence of an available
time window. However, during the first invocation of task t2
and the second invocation of task t1, a one-unit time window
becomes available, allowing execution of the optional part of
task t1 due to its higher weight. Likewise, during the fourth
invocation of task t1 and the second invocation of task t2, a
three-unit time window is available, facilitating the complete
execution of the optional part of task t1 due to its higher
weight. Subsequently, execution of one unit of the optional
part of task t2 is also carried out. The reward accrued from
the given task set can be calculated by considering the CPU
time consumed by optional parts of jobs for low criticality
tasks. Let the linear reward functions of t1 and t2 be given
by f1(t1) = 5 · x1j and f2(t2) = 3 · x2j . Fig. 1 reveals
that task t1 is invoked 4 times within a 24-unit hyperperiod,
as task t1 has a period of 6 units. In its initial invocation,
the optional part of task t1 does not receive any execution
(i.e., eoi = 0 units), and hence 5 ∗ 0. Subsequently, during
the second, third, and fourth invocations, the optional part
of task t1 receives 1 unit, 0 units, and 2 units of execution,
respectively. Therefore, the total reward for a low criticality
task t1 over a hyperperiod of 24 is given by

∑4
j=1 R1(x1j)

which is calculated as (5∗0)+(5∗1)+(5∗0)+(5∗2) = 15.
Similarly, the total reward for the low criticality task t2 over
the hyperperiod will be

∑2
j=1 R2(x2j) which elaborates into

(3 ∗ 0) + (3 ∗ 1) = 3. This yields the total cumulative reward
for the low critical tasks as 15 + 3 = 18.

In order to more clearly see the reward accrued for a task
during a hyperperiod, we compute the reward in percentage
(RPi) using (3), whereas the total reward in percentage
(TRP ) accrued for all tasks in a particular task set can be
calculated using (4).

RPi =

∑H/Pi

i=1 xi

eoi ·H
· 100 (3)

TRP =
RPi +RPi+1+, · · ·+RPn

n
· 100 (4)

We implemented a server-based technique in our system
where a task or group of tasks is assigned to a server. To
schedule these servers efficiently, we used a novel approach
to the EDF algorithm, i.e., EDF with tuned deadline (EDF-
TD) to schedule these servers. While EDF-VD offers benefits
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in terms of handling varying execution times, its complexity
and overhead makes it less suitable for the specific require-
ments of the proposed system because the proposed system
seeks an approach with optimized efficiency and lower com-
plexity. In the proposed system, we are only interested in
tuning the deadline of high servers. Consequently, the addi-
tional complexity and increased computational overhead of
EDF-VD for the calculation virtual deadlines have an impact
on the overall system performance. Therefore, to effectively
tune the deadline of a high server, we utilize the equation in
(5) to tune Dt as

Dt =
CLO

i

CHI
i /Pi

(5)

The EDF-TD scheduler is used because the bandwidth
assigned to a high critical server is highly pessimistic. There-
fore, when scheduled close to the deadline, it consumes more
bandwidth than required. Therefore, we used a modified EDF
in which the deadline of a high server was tuned to schedule
jobs of high criticality tasks as early as possible. Consider
two tasks with t1 = (4, 2, 0, LO) and t2 = (5, 2, 3.5, HI)
and their schedulability with EDF algorithm is demonstrated
in the Fig. 2. Due to a later deadline, task t2 is scheduled
close to the deadline which leaves only a one unit window.
This available window is not feasible if the system switches
to high mode at time 4 thereby highlighting the significance
of an early deadline.

FIGURE 2: Schedulability of tasks using the EDF algorithm

The early execution of the high server also spares some
unused bandwidth that is reclaimed and utilized for the
execution of a low server. In other algorithms, it is diffi-
cult to achieve such bandwidth reclamation. For example,
in the least laxity first algorithm, the tasks are scheduled
according to their laxity, which is the difference between
the deadline and the time remaining to complete the task.
Tasks with higher minimum laxity were assigned higher
priorities and executed first; this refers to the possibility that
a task with a shorter execution time and a later deadline
may be scheduled before tasks with longer execution times
and earlier deadlines. Therefore, it does not provide an effi-
cient schedulability of tasks. In the maximum urgency first
(MUF) algorithm, priorities are assigned to tasks based on
the maximum urgency of tasks. The maximum urgency is
the ratio of the remaining time to the deadline. The major
drawback of MUF is that it is a nonpreemptive algorithm.
The modified maximum urgency first (MMUF) algorithm is
a modification of the MUF algorithm. The MMUF algorithm
extends MUF by adding preemption threshold to prevent the
starvation of lower priority tasks. The preemption threshold

specifies the minimum urgency level that a task must reach
before it can preempt the task currently being executed.
However, after each instant of execution, the urgency level
of each task is recalculated, and the task with the highest
urgency level is selected for execution by the scheduler. This
dynamic nature of MMUF introduces some overhead because
the priorities need to be recalculated frequently, which affects
system performance.

B. SYSTEM BEHAVIOR
The system schedules all tasks of MCS in a uniprocessor
environment. The system, also known as a dual-criticality
system, has two operational modes that are recognized as
the low criticality and high criticality modes. The system
contains two types of tasks based on their criticality levels:
low and high critical tasks. Each task behaves differently
in each mode. All highly critical tasks are executed with
their optimistic WCETs, or CLO

i , when the system initiates
task execution in the low mode. In the improbable case, the
system is alerted to mode transition using a high critical task
when it fails to complete execution because of its low WCET
CLO

i . Upon changing the mode, all high critical tasks CLO
i

are switched to CHI
i and continue to execute until they are

completed successfully. Afterwards, the system operates in
the high critical mode.

By implementing a resource reservation technique in a
reward-based scheduling framework, our main objective was
ensuring the effective schedulability of low critical tasks in
overloaded settings without compromising the execution of
highly critical tasks in either mode. To schedule highly crit-
ical tasks in low- and high-critical modes, a separate server
was assigned to each highly critical task with a bandwidth
corresponding to the high-mode utilization of all highly
critical tasks. This indicates that highly critical tasks are
independent of the behavior of low criticality tasks because
they have sufficient bandwidth to schedule CLO

i and CHI
i at

low and high-critical modes, respectively. Excess Bandwidth
from high critical task servers are allocated to a server or
servers for scheduling low criticality tasks. It follows that the
the allocated bandwidth will be sufficient for the server to
schedule all low criticality tasks if their bandwidth is greater
than or equal to the utilization of low critical tasks they are
serving. However, if the server bandwidth is less than the
utilization of low critical tasks, then it is difficult to schedule
all low critical tasks in the server with a given bandwidth.

In the low mode, highly critical tasks rarely take longer
than their CLO

i ; the server of the low critical tasks uses this
extra bandwidth from high server to efficiently schedule low
critical tasks at least for their mandatory execution. In addi-
tion, each low critical task additionally executes beyond its
mandatory part to enhance the quality of imprecise outcomes
when the recovered bandwidth is sufficient. The schedulabil-
ity of highly critical tasks is not disturbed by mode transition
or by being in a high mode because the server for low critical
tasks executes only in the bandwidth spared by the server
of the high critical tasks. However, the schedulability of low
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critical tasks is also affected owing to the pessimistic CHI
i of

a highly critical task in the highly critical mode. In contrast
to many earlier techniques that fully discard all low critical
tasks in the high mode, our proposed system attempts to
execute as many low critical tasks as possible within the the
available bandwidth.

C. RESEARCH MOTIVATION
The feasibility problem for a periodic workload of a reward-
based MCS can be solved by simultaneously satisfying two
key factors: guaranteed schedulability of highly critical tasks
with CLO

i and low critical tasks with emi with an additional
effort to enhance the system performance by executing some
or complete eoi .

Our proposed system efficiently satisfies these conditions,
particularly in overloaded situations. As an example, con-
sider the periodic task set T = (t1, t2) listed in Table 1.

TABLE 1
Reward-based Mixed Criticality Task Set

T CLO
i Mandatory CLO

i Optional CHI
i Pi L ULO

i UHI
i

t1 2 2 – 6 LO 0.67 0.67
t2 3 – 4 8 HI 0.38 0.5

The task set summarized in Table 1 makes it apparent
that the total utilization of task set is greater than 1 i.e.,∑n

i=1
CLO

i

Pi
= 1.04, therefore, it cannot be scheduled by

using any fixed or dynamic priority scheduling algorithm, as
depicted in Fig. 3.

FIGURE 3: Schedule of the task set without reward-based
scheduling.

The above task set can be scheduled with an acceptable
result and some additional reward, as shown in Fig. 4, using a
reward-based scheduling approach, which trades off the pre-
cision of low critical tasks with their timeliness. By applying
(4), a total cumulative reward of 87.5% is produced for low
critical tasks over a hyperperiod of 24.

FIGURE 4: Schedule of the task set with reward-based
scheduling.

IV. PROPOSED MIXED CRITICALITY REWARD-BASED
SCHEDULING
In an insufficient number of resources for ensuring worst-
case outcomes for soft real-time tasks, the reward-based
scheduling framework compromises accuracy in the favor of
timeliness. The feasibility of such a workload can be satisfied

by fulfilling only the following conditions for a task between
its arrival time and deadline: Each low critical task either
completely executes or receives at least mandatory execution;
each highly critical task receives sufficient execution such
that in low mode, its CLO

i is executed successfully and when
the system switches to the high mode, and its CHI

i execution
is ensured.

A. SERVER SPECIFICATION
In this study, a server-based technique is proposed for
scheduling tasks. In this approach, a task or a group of tasks
is assigned to the server Si. We used two types of servers,
low server SLO

i and high server SHI
i for the schedulability

of low- and high-criticality tasks, respectively. Specifications
of the low server SLO

i = (QLO
i , Ti), where QLO

i denotes
the budget of the server used to schedule low critical tasks,
and Ti denotes the time period of the server after which the
server replenishes its budget. Likewise, the specifications of
a high server SHI

i = (QLO
i , QHI

i , Ti), where QLO
i denotes

the low budget of the server used to schedule the high-
critical tasks in the low mode, whereas QHI

i denotes the
high budget of the server used to schedule highly critical
tasks in the high mode where Ti denotes the period of the
server after which the server replenishes its budget. The
tuple (QLO

i , QHI
i , Ti) specifies the parameters for SHI

i , in
which QLO

i = CLO
i , QHI

i = CHI
i , Ti = Pi, whereas

low sever SLO
i may be described by only two components,

(QLO
i , Ti), where QLO

i = BLO · Ti and Ti = Pi and
BLO refers to the bandwidth of the low server. These servers
act as a dedicated CPU for schedulabilty of these tasks.
The proposed server-based technique involves dividing the
available resource of a uniprocessor into distinct servers, each
with allocated resources and capacity similar to a dedicated
CPU. The criticality levels of tasks determine the server they
are assigned to, and tasks are executed within their allocated
resources during predefined time slots. This approach ensures
the effective execution of tasks while ensuring critical tasks
receive the required resources in any scenario. Each server
is assigned a portion of the bandwidth, such that the total
bandwidth of all these servers is equal to 1.

In our proposed system, each highly critical task is as-
signed a separate server SHI

i . The bandwidth of this high
server BHI

i corresponds to the high-mode utilization of the
highly critical task. The allocation of such a high fraction of
resources to SHI

i ensures the schedulability of highly critical
tasks at both low and high modes.

BHI
i = UHI

tHI
i

(6)

The notation tHI
i in (5) represents the ith high critical

task, while UHI signifies the high mode utilization. As a
whole, it refers to the high mode utilization of ith high critical
task. Equation (6) indicates adequate bandwidth allocation
to a high server, and as a result, the schedulability of a
highly critical task is ensured in both modes and becomes
independent of the behaviors of low criticality tasks. Now,
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we schedule low critical tasks, and the leftover bandwidth
(BLO) from the high servers is allocated to the low servers
SLO
i , as shown in (7).

BLO = 1−
∑
ti∈T

BHI
i (7)

The server can be in any of the following states: The server
is in the inactive state if no tasks are available for execution
at time t. When a task arrives at time t, the server switches
to an active state. When a certain task begins execution and
consumes the capacity of a server by using (8), the server
shifts from an active state to a running state. Equation (8)
shows the consumption rate of a server’s budget at a certain
time.

dQi = −Uactdt (8)

The bandwidth of the currently active servers is shown
by the variable Uact. At time t, if all servers are active,
then the value of Uact will be 1, meaning that the server
capacity is used as the unit rate. If all the servers are inactive,
the capacity is consumed at a slower rate (i.e., Uact < 1),
allowing for the recovery of the free bandwidth of the system.
The server returns to the active state when a server in a
running state is preempted by another server with an earlier
deadline. Once all the server tasks have been successfully
executed, it shifts to an inactive state.

From (7), we can conclude that all low critical tasks in
the system can be scheduled successfully if utilization of low
critical tasks is less than or equal to BLO. However, not all
low critical tasks can be scheduled successfully if utilization
of low critical tasks exceeds BLO. To overcome this problem,
the proposed technique schedules the mandatory execution
of all low critical tasks. Furthermore, it ensures the maxi-
mum possible execution of the optional parts of low critical
tasks for the maximum reward. As discussed previously, the
execution of a highly critical tasks beyond CLO

i are rare.
Therefore, we reclaimed the excess bandwidth from a high
server using an algorithm called greedy reclamation of the
unused bandwidth (GRUB) [27]. The reclaimed bandwidth is
then allocated to the low servers. By using variable Uact, the
reclaiming mechanism of the GRUB algorithm is used. This
variable determines the current CPU utilization rate by a task
in execution. When a highly critical job within a high server
executes for eij units and eij < CHI

i , then the recovered
bandwidth can be calculated using (9).

Urec =
CHI

i − eij
Pi

(9)

As mentioned previously, each high critical task is as-
signed a separate server. For assigning low criticality tasks
to low server, three different strategies are proposed in this
research. In the first strategy, all low critical tasks are al-
located to a single server. In the second strategy, each low
criticality task is allocated to a single dedicated server, whose
bandwidth should not exceed maximum BLO. In the last

strategy, all low critical tasks are assigned to two separate
servers. Mandatory parts of these low critical tasks are sched-
uled on one server, and their optional parts, on another server.
The sum of the bandwidths of both servers must not exceed
BLO. Consequently, the effectiveness of these strategies are
evaluated and compared.

B. REWARD-BASED RESOURCE RESERVATION
ALGORITHM
The following novel reward-based algorithm (Reward-Based
Resource Reservation (RBRR) uses the discussed server
mechanism in the previous section to schedule tasks of an
MCS in a reward-based scheduling environment.

Algorithm 1: Reward-Based Resource Reservation
Algorithm (RBRR)

Input : A reward-based mixed criticality task set T
Output: Schedulability of the given task set T

1 Uact ← 0
2 L← LO
3 while activeTasks = true do
4 Assign_Server(tij)
5 while Uact ̸= 0 do
6 Schedule Active Servers using EDF − TD
7 Server_Execution()

/* Function for Assigning Server */
8 Function Assign_Server(tij):
9 if tij ∈ THI

i then
10 SHI

i = active
11 dHI

i = floor(CLO
i /(CHI

i /P ))
12 Uact = Uact +BHI

i

13 else
14 SLO

i = active
15 Uact = Uact +BLO

16 return
/* Function for Server Execution */

17 Function Server_Execution():
18 Schedule tasks inside server using EDF
19 while server_capacity ̸= 0 or tasks available

do
20 Execute job with earliest deadline
21 dQi = −Uactdt
22 if server_capacity = 0 then
23 if tij ∈ THI

i then
24 if L = LO and di ̸= P then
25 di = P
26 L = HI
27 else
28 Di = di + P
29 Qi is replenished
30 return

In Algorithm 1, line 1 initializes the active servers to zero.
Line 2 demonstrates criticality modes of the system. In lines
3 and 4, all active tasks are assigned to the servers using
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the function given in lines 8—16. Highly critical tasks were
assigned to dedicated high servers with a tuned deadline,
whereas low critical tasks are assigned to a low server. The
bandwidth of these servers is summed and the the variable
Uact is updated accordingly. Line 6 schedules all active
servers using EDF-TD. In line 7, the server with earliest
deadline is shifted to the running state and its tasks begin
to execute using the function in lines 17–30. In line 18, if
a server contains more than one task, then these tasks are
scheduled based on their deadlines. In line 20, a job with an
earlier deadline is executed. Line 21 shows the consumption
rate of the capacity of the server. If a highly critical task does
not indicate the completion and the capacity of the server is
fully consumed, then the server’s tuned deadline is shifted to
the actual deadline and the criticality mode of the system is
switched to the high-mode in lines 22–27. However, in lines
28–29, when the capacity of a low server is exhausted, its
deadline is postponed, its capacity is replenished, and the
function is returned.

After analyzing the time complexities of the main
loops in the pseudocode, we obtain an approximate up-
per bound on the overall time complexity. The first loop
While activeTasks = true iterates over all tasks in the
task set, and the second loop While Uact ̸= 0 executes
until all tasks have been scheduled and executed. The time
complexity of these loops depends on the number of tasks
and the amount of time it takes to execute operations within
loops.

Assuming that the EDF algorithm used to schedule tasks
has a time complexity of O(nlogn), where n represents the
number of tasks and that the execution of a job with the
earliest deadline takes constant time, the time complexity of
the second loop can be approximated using O(nlogn).

The time complexity of the first loop depends on opera-
tions performed within the loop. Assuming that the opera-
tions within the loop take constant time, the time complexity
can be approximated using O(n). Therefore, the overall
time complexity of a given pseudocode is approximated as
O(nlogn).

V. SCHEDULABILITY TESTS

We employed a series of schedulability tests to ascertain the
schedulability of tasks in different modes and on various
servers. These tests assess whether a given task set can be
executed within specified constraints, ensuring that critical
tasks meet their deadlines while effectively utilizing the
available system resources.

A. SCHEDULABILITY TEST IN LOW MODE

The schedulability of all tasks executed in low mode is as-
sessed in this test. The utilization of all high critical tasks tHI

i

in low mode ULO
tHI
i

and the utilization of the mandatory parts
emi of all low critical tasks is calculated and the following

condition is tested:
n∑

i=1

(ULO
tHI
i

+
emi
P

) <= 1

If this condition holds for all tasks executed in low mode, the
task set is considered schedulable in low mode.

Proof: A necessary and sufficient schedulability condition
for an EDF system [28] is that the total utilization of the task
set must be less than or equal to 1

∑n
i=1(Ui) <= 1. The

feasibility of the proposed system in low mode depends on
the successful execution of all high critical tasks tHI

i as well
as at least the mandatory parts emi of all low critical tasks.
Therefore, the total utilization of tHI

i and emi are equal to∑n
i=1(U

LO
tHI
i

) and
∑n

i=1(e
m
i /P ), respectively. By combining,

we get the schedulability condition of the proposed system in
low mode.

B. SCHEDULABILITY TEST IN HIGH MODE
In this test, we focus on the high critical tasks executed in
high mode. The total bandwidth BHI used by these high
critical tasks in high mode is calculated and the following
condition is tested:

BHI <= 1

If this condition holds for all high critical tasks executed in
high mode, the task set is considered schedulable in high
mode.

Proof: The feasibility of the proposed system in high
mode depends on the successful execution of all high critical
tasks tHI

i for their high mode WCET CHI
i . From (6), the

bandwidth allocated to all tHI
i is equal to

∑n
i=1(U

LO
tHI
i

).
Therefore, the schedulability condition in high mode holds
if the available bandwidth is less than or equal to 1.

C. SCHEDULABILITY TEST OF HIGH SERVER
For each high critical task tHI

i executed on a high server,
their utilizations in low mode ULO

tHI
i

and high mode UHI
tHI
i

are
calculated and the following conditions are tested:

n∑
i=1

ULO
tHI
i

<= BHI

n∑
i=1

UHI
tHI
i

<= BHI

If these conditions are satisfied for all high critical tasks
executed on high servers, the high server is considered
schedulable.

D. SCHEDULABILITY TEST OF LOW SERVER
For a low server, the utilization of the mandatory parts emi
of all low critical tasks is calculated. This calculated value
is then compared with the available bandwidth BLO of low
server along with the reclaimed bandwidth Urec as follows:

n∑
i=1

emi
P

<= BLO + Urec
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If this condition holds for a low server, it is considered
schedulable.

Proof: As the BHI is equal to the total utilization of high
critical tasks in high mode, the BHI is not fully utilized by
high critical tasks in low mode and the remaining bandwidth
is allocated to low server. Therefore, the low server is deemed
schedulable if the total utilization of low critical tasks as-
signed to it are less than or equal to its allocated bandwidth
BHI along with the additional bandwidth reclaimed Urec.

VI. SCHEDULING ANALYSIS
We analyzed the schedulability of our proposed system in
both low and high modes for a reward-based mixed criticality
workload for three alternate strategies. We employed a task
set of three tasks denoted by t1, t2, and t3, where t1 and t2
represent a low critical task and t3 represents a highly critical
task. Table 2 presents the parameters of a given task set.

TABLE 2
Reward-based Mixed Criticality Task Set

T CLO
i Mandatory CLO

i Optional CHI
i Pi L ULO

i UHI
i

t1 2 2 – 6 LO 0.67 0.67
t2 3 3 – 12 LO 0.5 0.5
t3 2 – 6 8 HI 0.25 0.75

A. SCHEDULABILITY IN THE LOW MODE
As mentioned previously, we used the following three strate-
gies to schedule a given task set in the low mode: a single
server with bandwidth BLO is assigned to all low critical
tasks, a single dedicated server with a cumulative bandwidth
less than or equal to BLO is assigned to each low critical
task, and each low critical task is assigned to two servers
i.e., a mandatory server and an optional server, both having a
total bandwidth less than or equal to BLO. High critical task
tHI
3 is assigned to a dedicated server with BHI = 0.5, and

therefore, all low critical tasks are scheduled in the remaining
available bandwidth of 0.5. Note that the color schemes to
depict the analysis of task set schedulability employed in
Figures 5 to 10 are as follows: light green indicates the
mandatory part of task t1, sky blue represents the mandatory
part of task t2, yellow represents task t3, and dark green is
utilized for both tasks t1 and t2 to denote their optional parts.
However, the red color represents the amount of execution
time missed by a task.

1) Single Server for all Low Critical Tasks
In this strategy, we use two servers with BLO = 0.5
and BHI = 0.5 because a single server is allocated to
all low critical tasks. The given task set does not appear
schedulable because utilization of low criticality tasks in low
mode ULO > BLO. Budget Qi and period Ti for SLO

i and
SHI
i will be (6, 12) and (2, 4, 8), respectively. The proposed

schedule is shown in Figure 5.
Because of the availability of all tasks at t = 0, both

servers are in an active state. The capacity of server SLO
i is 6

and that of server SHI
i is 2. Server SHI

i begins executing tHI
3

FIGURE 5: Schedulability with a single server for all low
critical tasks.

because of an earlier deadline. Because all servers are active,
Uact = SLO

i + SHI
i = 1, which is the servers’ capacity

consumed per unit of rate.
At t = 2, t3 is executed completely, and low critical tasks

inside a low server begin to execute at a unit rate because
dHI
i = 4 and SHI

i are active until t = 4. Server SHI
i switches

to the inactive state at t = 4 and its bandwidth BHI is
subtracted from Uact. The server SLO

i capacity is consumed
at a rate of 0.5.

At the current rate, the server’s capacity is consumed at
a 0.5 rate while executing tasks for one unit of time using
the GRUB algorithm [27] reclaiming mechanism. Although
ULO > BLO, the reclaimed bandwidth is what is required
to only satisfy the schedulability of low critical tasks within
the server SLO

i . Thus, all jobs were effectively scheduled by
both servers, and it obtained a total reward of 29.2% for the
low critical tasks.

2) Single Server for Each Low Critical Tasks
In this strategy, the system contains three servers, SLO

1 , SLO
2 ,

and SHI
i , with bandwidths BLO

1 = 0.25, BLO
2 = 0.25, and

BHI = 0.5, respectively. This is because each low critical
task is assigned a separate server. SLO

1 = (1.5, 12), SLO
2 =

(3, 12), SHI
i = (2, 4, 8), shows the parameters of the given

servers. The proposed algorithm’s schedule is shown is Fig.
6.

FIGURE 6: Schedulability with dedicated servers for all low
critical tasks.

When the SLO
2 budget is completely used, at t = 10, it is

recharged at q2 = 3 and calculates its deadline as d2 = 24.
Subsequently, SHI

i preempts SLO
2 to schedule t3, and when

t3 is executed at t = 12, the second job in t1 misses its
deadline. Therefore, the schedule above cannot satisfy the
feasibility constraints for a given task set.

3) Separate Servers for Mandatory and Optional Parts
A low critical task comprises two parts, and therefore, it is
assigned to two servers, SLO

M and SLO
O , to execute its manda-

tory part emi and its optional part eoi , respectively. When
mandatory part emi is completely executed by server SLO

M ,
only then the server SLO

O is activated to execute optional part
eoi . Therefore, in this strategy, there are three servers in the
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system SHI
i , SLO

M , and SLO
O with bandwidths BHI = 0.5,

BLO
M = 0.25, and BLO

LO = 0.25, respectively. SLO
M = (2, 8),

SLO
O = (3, 12), and SHI

i = (2, 4, 8) are the parameters
for the given servers. The proposed algorithm’s schedule is
shown in Fig. 7.

FIGURE 7: Separate servers for the mandatory and optional
parts of low critical tasks.

At time 0, only SLO
M and SHI servers are active and the

capacity utilization rate of servers is 0.75. Task t3 begins
execution within the SHI server due to the server’s earliest
deadline and finishes execution at time 2. The mandatory part
of task t1 inside SLO

M starts executing at 0.75 rate because
server SHI will still be active until its deadline. At time 4,
mandatory part of task t1 finishes due to which the server
SLO
O becomes active and server SHI switches to inactive

state, thus changing the capacity utilization rate to 0.5. At
time 5, the budget of server SLO

M is exhausted. Consequently,
the server SLO

M replenishes its budget and recalculates its
deadline to 16. However, due to the earlier deadline, server
SLO
O preempts server SLO

M to execute the optional part of
task t1. At time 6, server SOLO switches to inactive state as
there are no pending optional parts to execute. Consequently,
server SLO

M remains the only active server within the system,
continuing the execution of task t2 at a rate of 0.25 and
finishing mandatory part of task t2 at time 8, subsequently
triggering the activation of server SLO

O . At time 8, a new
job of task t3 is released and the server SHI becomes
active. With all servers concurrently active in the system,
task t3 begins execution at a unit rate. Task t3 completes
the execution at t = 10, but server SHI

i will remain active
until t = 12 and therefore, the emi of t2 is executed at a unit
rate inside SLO

O because of its earliest deadline. When the
server SLO

O reaches its deadline at t = 12, it stops executing
eo2, recharges its budget q1 = 3, calculates its next deadline
d = 24, and shifts to an inactive state. At this point, the emi
of t2 is not completed by its deadline and the given schedule
is not feasible.

4) Schedulability in High Mode
Schedulability of the task set in the high mode is similar to
that in the low mode with only two differences: a high-budget
QHI

i is used by server SHI
i ; the actual deadlines of highly

critical tasks will be used for server SHI
i instead of shorter

deadlines. Fig. 8, Fig. 9, and Fig. 10 show the schedules
provided by all three strategies in the high mode.

Fig. 8, Fig. 9, and Fig. 10 show that the proposed system
can successfully deliver complete or partial services to low
critical tasks while guaranteeing the schedulability of the
highly critical tasks in the high criticality mode. We observe

FIGURE 8: Single server for all low critical tasks in the high
mode.

FIGURE 9: Dedicated servers for each low critical task in the
high mode.

that the third strategy, depicted in Fig. 10, performs worse
than the other two strategies, as shown in Fig. 8 and Fig. 9.

VII. EXPERIMENTS AND RESULTS
Reward-based mixed criticality task sets were used as the
workload to analyze the effectiveness of the proposed tech-
nique. For a given utilization, the effectiveness was studied
by comparing all three proposed strategies discussed earlier
with studies considering the IMC model, AMC approach
[3], MC-Fluid approach [4], utilization-based test [5], and
demand-bound function test [5] with respect to schedulability
performance. In the experiment, SS, DS, MOS, UTIL, DBF,
AMC, and MCF denote the single-server strategy, dedicated
server strategy, mandatory and optional server strategies,
utilization-based test [5], demand-bound function test [5],
Adaptive Mixed Criticality approach [3], and MC-fluid ap-
proach [4], respectively. The experimental results show that
the SS strategy outperforms all other approaches.

A. TASK SET GENERATION
Task sets of reward-based mixed criticality workloads were
produced randomly for the experimental evaluation, and the
utilization of the initial task being produced was set to
zero. BHI , RHI , RLO, and PMax parameters are adjusted
to create a random task set. The parameter BHI specifies
the bandwidth assigned to the high servers. The ratio of
CLO

i to CHI
i for highly critical tasks is represented as RHI .

Similarly, the ratio of emi to eoi for low critical tasks is
represented by RLO. The maximum task period is denoted as
PMax. A dedicated server for high critical tasks captures the
probability parameter of a generated task in the system to be
a highly critical task because it provides sufficient bandwidth
to each highly critical task to guarantee its schedulability
in both modes. The criticality level, computation time, and
period of a mixed criticality task characterize the random
generation. If L = LO, the task being created is a low critical
task; if L = HI , it is a high critical task. The CLO

i of
a low critical task consists of two parts: emi and eoi , where
emi = eoi · RLO. Similarly, the computation time for high
critical tasks is CHI

i = CLO
i ·RHI . RLO and RHI are fixed

multipliers, ranging from 1 to 1.5. For each mixed criticality
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FIGURE 10: Separate servers for the mandatory and optional
parts of low critical tasks in the high mode.

task ti, period P is determined through a uniform random
distribution with a range of 1ms to PMax.

B. RESULT ANALYSIS
The mixed criticality task set size n ranges from 2 to 6,
RLO and RHI range from 1 to 1.5, BHI ranges from 0.1
to 0.9, and PMax is 30ms. The settings were evaluated
experimentally using various simulation parameters. The n
parameter represents the number of tasks in the task set, RLO

represents eoi /e
m
i , RHI represents CHI

i /CLO
i , and for a high

critical task, BHI represents their servers’ total bandwidth.
For the experimental evaluation, there were at least 100 task
sets at each point in Fig. 11 and Fig. 12, and at least 1000
task sets for each of the points in Fig. 13 and Fig. 14. The
results of the experiments conducted on the behavior of low
critical tasks in a given task set using a single server, multiple
dedicated servers, and mandatory and optional servers were
compared with other IMC approaches.

Percentage of task sets that can be scheduled using all
these methods are shown in Fig. 11, with BHI = 0.5, RHI =
1.5, and target utilizations ranging from 0.1 to 1.8. Target
utilizations beyond 1 indicate overloaded scenarios. The SS,
DS, and MOS strategies had 100% schedulability for 1.1, 0.9,
and 0.8 target utilizations, respectively. Similarly, the DBF,
UTIL, MCF, and AMC strategies had 100% schedulability
with 0.6, 0.55, 0.55, and 0.45 target utilizations, respectively.
The schedulability percentage for all strategies decreases
gradually; however, the SS strategy still outperforms all
other strategies showing higher schedulabilty. Moreover, the
performances of the AMC, MCF, UTIL, and DBF strategies
can can be observed only within the maximum utilization of
1. This is because of the lack of schedulability of task sets
in overloaded scenarios. The significance of the proposed ap-
proach is as follows: observed at a target utilization U = 1.1,
where the SS strategy schedules 100% of the task sets and
DS and MOS strategies schedules 80% and 50% of the task
sets whereas DBF, UTIL, MCF, and AMC strategies had zero
schedulability. Therefore, the approaches are evaluated, and
the results indicate that the SS strategy schedules 20% more
task sets than that using the DS strategy, 50% more tasks
than that using the MOS strategy, and 100% more tasks than
that using the DBF, UTIL, MCF, and AMC strategies for
U = 1.1. Moreover, when U = 1.2, the schedulability of
the SS strategy decreases to 84%, whereas those of DS and
MOS decrease to 56% and 24%, respectively. The SS strategy
has a comparatively 28% and 60% higher schedulability than
that of the DS and MOS strategies, respectively. Further,

the schedulability of all strategies for mixed criticality task
sets decreases with an increase in target utilization, which
highlights the effects of increasing utilization on the overall
system performance.

FIGURE 11: Schedulability analysis of system with BHI =
0.5.

Unlike other approaches, the schedulability of the pro-
posed approach accrues a reward, as shown in Fig. 12. The
SS, DS, and and MOS strategies yield rewards of 100%
for U = 0.9, U = 0.6, and U = 0.4, respectively. The
100% of the reward percentage of a strategy for a given
target utilization reveals that the complete execution of all
low critical tasks (mandatory parts, as well as optional parts).
In terms of accrued rewards, the SS strategy outperforms the
other two strategies. The rewards gained by the DS and MOS
strategies is 76% and 52%, respectively, for U = 0.9. This
indicates that the rewards gained by using the SS strategy
are 24% and 48% higher than those of the DS and MOS
strategies.

FIGURE 12: Reward percentage of system with BHI = 0.5.

Fig. 13 illustrates the influence of the imprecise mixed crit-
icality task sets on the schedulability of all IMC approaches
using the weighted acceptance ratio and varying BHI set-
tings. Fig. 13 reveals that the SS strategy outperforms all
other strategies with varying parameters of BHI . However,
the DS and MOS strategy perform better than the DBF, UTIL,
MCF, and AMC strategies, and after BHI = 0.5, their
difference in performance with DBF becomes negligible.
Moreover, the UTIL and MCF strategies exhibited similar
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trends with different BHI values, whereas the performance
of AMC up to BHI = 0.5 is considered the worst of
all strategies; however, after BHI = 0.5, the difference is
minimal.

FIGURE 13: High server bandwidth BHI vs. weighted
schedulability.

The weighted ratio of the accrued reward when scheduling
reward-based mixed criticality task sets for various param-
eters of BHI are shown in Fig. 14. We observe that the
SS strategy outperforms the other two in terms of providing
services to low critical tasks with different values of BHI .
However, when BHI = 0.6, the difference in the perfor-
mance of SS and DS strategies is minimal, whereas the MOS
strategy performs the worst of all three proposed strategies.

FIGURE 14: High server bandwidth BHI versus weighted
gain reward.

A 3D graph was converted into a 2D graph by utilizing the
weighted schedulability measure [29]. Target utilization set u
and the weighted schedulability ratio Sw(u) is evaluated as
using (10), where S(Ui) represents the schedulability ratio
for target utilization Ui.

Sw(u) =
∑
Ui∈u

Ui · S(Ui)/
∑
Ui∈u

Ui (10)

The weighted schedulability ratio of the gained rewards
Rw(u) can be evaluated using (11), where R(Ui) represents
the reward ratio for target utilization Ui.

Rw(u) =
∑
Ui∈u

Ui ·R(Ui)/
∑
Ui∈u

Ui (11)

Fig. 13 illustrates that weighted schedulability decreases
with an increase in BHI . A higher value of BHI indicates
more highly critical tasks in the task set than low critical
tasks. A higher value of BHI increases the workload uti-
lization to grow, which in turn affects the schedulability and
accrued rewards. For higher workload utilization, the SS
strategy performed better compared with all other strategies.
The dominance of the SS strategy compared with the other
strategies in terms of the weighted schedulability ratio and
the weight obtained reward ratio is shown in Fig. 13 and Fig.
14, respectively.

In the proposed approach, scalability has been a central
consideration during the design and development phases.
The comprehensive evaluations conducted, including sim-
ulations and analysis, assess the performance of the pro-
posed approach as the scale of the system increases. The re-
sults indicate that the resource reservation and reward-based
scheduling approach holds promise for real-time systems like
autonomous vehicles, medical implants, industrial control
systems, and advanced avionics, where high critical tasks
such as collision avoidance, pacemakers, flight control, etc.
are guaranteed execution while low critical tasks such as in-
flight entertainment or cabin temperature control can adapt to
available resources or even delayed if resources are limited.
These considerations are aimed at accommodating the grow-
ing demands and complexities that may be encountered in
practical deployments. The proposed approach has the poten-
tial to maintain a balance between efficiency and scalability
to meet the requirements of real-world applications.

VIII. CONCLUSION
We used a reward-based scheduling framework for real-
time MCS in a uniprocessor paradigm and addressed the
scheduling problems for low- and high-criticality tasks in
both modes under overload conditions. We proposed a re-
source reservation-based system in which the schedulability
of the low critical tasks has no effect on the schedulability
of highly critical tasks in both low and high modes. A
RRBS reflects the concepts of dividing the resource CPU
into server partitions and each task being scheduled inside
the servers with a specified budget and period. Using the
server mechanism, we assigned the dedicated server to each
highly critical task for guaranteed schedulability in both
modes. For scheduling low critical tasks, we applied and
analyzed three strategies in the available bandwidth, along
with the reclaimed bandwidth spared by the servers of highly
critical tasks caused by their optimistic WCET rather than
the certified WCET. In the first strategy, all low critical
tasks were assigned to a single reservation server. In the
second strategy, a single, dedicated reservation server was
allocated to each low criticality task. In third strategy, each
low criticality task was executed on two different servers, i.e.,
the mandatory and optional servers. The proposed technique
was evaluated using extensive experimentations with other
IMC approaches. The experimental evaluation indicated that
the proposed technique outperformed other IMC approaches.
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The proposed technique successfully achieved the schedu-
lability of low critical tasks with no impact on the highly
critical tasks’ schedulability, even in overloaded scenarios.
However, the schedulability of the low critical tasks are
affected by certified WCETs of high critical tasks in the high
mode; however, the proposed system attempts to schedule the
maximum number of low criticality tasks within the available
bandwidth, unlike earlier approaches that completely discard
low critical tasks.

IX. FUTURE WORK
The adoption of more than two criticality levels for mixed
criticality tasks is a recent trend in real-time mixed criticality
systems. Another important tendency is to go beyond the
uniprocessor paradigm and utilize multiprocessor architec-
tures for mixed criticality systems. We aim to investigate a
system with more than two criticality levels in a multicore
environment for our future work. We used a periodic task
model in the proposed method in which tasks are executed
within a specified window and repeated after the specified
period. We are also looking forward to extend the proposed
method to an aperiodic task model, or to a combination
of periodic and aperiodic tasks model. For real-time mixed
criticality systems, the proposed method can be applied to
fault-tolerant and power-aware systems.

REFERENCES
[1] S. Vestal, “Preemptive scheduling of multi-criticality systems with varying

degrees of execution time assurance,” in Proceedings - Real-Time Systems
Symposium, 2007.

[2] A. Burns and R. I. Davis, “Mixed criticality systems-a review:(february
2022),” 2022.

[3] A. Burns and S. K. Baruah, “Towards A More Practical Model for Mixed
Criticality Systems,” Proc. 1st Workshop on Mixed Criticality Systems
(WMC), RTSS, 2013.

[4] S. Baruah, A. Burns, and Z. Guo, “Scheduling Mixed-Criticality Sys-
tems to Guarantee Some Service under All Non-erroneous Behaviors,” in
Proceedings - Euromicro Conference on Real-Time Systems, vol. 2016-
August, 2016.

[5] D. Liu, N. Guan, J. Spasic, G. Chen, S. Liu, T. Stefanov, and W. Yi,
“Scheduling Analysis of Imprecise Mixed-Criticality Real-Time Tasks,”
IEEE Transactions on Computers, vol. 67, no. 7, 2018.

[6] H. Aydin, R. Melhem, D. Mossé, and P. Mejía-Alvarez, “Optimal reward-
based scheduling for periodic real-time tasks,” IEEE Transactions on
Computers, vol. 50, no. 2, 2001.

[7] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele, “Service adap-
tions for mixed-criticality systems,” in Proceedings of the Asia and South
Pacific Design Automation Conference, ASP-DAC, 2014.

[8] S. Iacovelli and R. Kirner, “A lazy bailout approach for dual-criticality
systems on uniprocessor platforms,” Designs, vol. 3, no. 1, 2019.

[9] Z. Jiang, X. Dai, and N. Audsley, “HIART-MCS: High Resilience and
Approximated Computing Architecture for Imprecise Mixed-Criticality
Systems,” in Proceedings - Real-Time Systems Symposium, vol. 2021-
December, 2021.

[10] X. Gu and A. Easwaran, “Dynamic budget management and budget
reclamation for mixed-criticality systems,” Real-Time Systems, 2019.

[11] S. Baruah and S. Vestal, “Schedulability analysis of sporadic tasks with
multiple criticality specifications,” in Proceedings - Euromicro Conference
on Real-Time Systems, 2008.

[12] T. Park and S. Kim, “Dynamic scheduling algorithm and its schedulability
analysis for certifiable dual-criticality systems,” in Embedded Systems
Week 2011, ESWEEK 2011 - Proceedings of the 9th ACM International
Conference on Embedded Software, EMSOFT’11, 2011.

[13] H. Su, D. Zhu, and D. Mosse, “Scheduling algorithms for elastic mixed-
criticality tasks in multicore systems,” in 2013 IEEE 19th International

Conference on Embedded and Real-Time Computing Systems and Appli-
cations, RTCSA 2013, 2013.

[14] G. Lipari and G. Buttazzo, “Resource reservation for mixed criticality
systems,” in Workshop on Real-Time Systems: The past, The present, and
the future, Citeseer, 2013.

[15] Z. Jiang, X. Dai, and N. Audsley, “Hiart-mcs: High resilience and approx-
imated computing architecture for imprecise mixed-criticality systems,” in
2021 IEEE Real-Time Systems Symposium (RTSS), pp. 290–303, 2021.

[16] Z. Jiang, X. Dai, A. Burns, N. Audsley, Z. Gu, and I. Gray, “A high-
resilience imprecise computing architecture for mixed-criticality systems,”
IEEE Transactions on Computers, vol. 72, no. 1, pp. 29–42, 2023.

[17] Y.-W. Zhang, “Energy efficient non-preemptive scheduling of imprecise
mixed-criticality real-time tasks,” Sustainable Computing: Informatics and
Systems, vol. 37, p. 100840, 2023.

[18] Y.-W. Zhang, R.-K. Chen, and Z. Gu, “Energy-aware partitioned schedul-
ing of imprecise mixed-criticality systems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pp. 1–1,
2023.

[19] Y.-W. Zhang, “Dvfs-based energy-aware scheduling of imprecise mixed-
criticality real-time tasks,” Journal of Systems Architecture, vol. 137,
p. 102849, 2023.

[20] Y.-W. Zhang, J.-P. Ma, H. Zheng, and Z. Gu, “Criticality-aware edf
scheduling for constrained-deadline imprecise mixed-criticality systems,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, pp. 1–1, 2023.

[21] Y.-W. Zhang and R.-K. Chen, “Energy-efficient scheduling of imprecise
mixed-criticality real-time tasks based on genetic algorithm,” Journal of
Systems Architecture, vol. 143, p. 102980, 2023.

[22] A. Bhuiyan, S. Sruti, Z. Guo, and K. Yang, “Precise scheduling of mixed-
criticality tasks by varying processor speed,” in Proceedings of the 27th
International Conference on Real-Time Networks and Systems, pp. 123–
132, 2019.

[23] T. She, Z. Guo, and K. Yang, “Scheduling constrained-deadline tasks
in precise mixed-criticality systems on a varying-speed processor,” in
Proceedings of the 30th International Conference on Real-Time Networks
and Systems, pp. 94–102, 2022.

[24] H. Chai, G. Zhang, J. Sun, A. Vajdi, J. Hua, and J. Zhou, “A Review
of Recent Techniques in Mixed-Criticality Systems,” Journal of Circuits,
Systems and Computers, vol. 28, no. 7, 2019.

[25] R. M. Pathan, “Improving the schedulability and quality of service for fed-
erated scheduling of parallel mixed-criticality tasks on multiprocessors,” in
Leibniz International Proceedings in Informatics, LIPIcs, vol. 106, 2018.

[26] S. K. Roy, R. Devaraj, A. Sarkar, and D. Senapati, “SLAQA Quality-
level Aware Scheduling of Task Graphs on Heterogeneous Distributed
Systems,” ACM Transactions on Embedded Computing Systems, vol. 20,
no. 5, 2021.

[27] G. Lipari and S. Baruah, “Greedy reclamation of unused bandwidth in
constant-bandwidth servers,” in Proceedings - Euromicro Conference on
Real-Time Systems, 2000.

[28] C. Liu and J. Layland, “ªscheduling algorithms for multiprogramming in a
hard real-time environment, º j,” ACM, Jan, 1973.

[29] A. Bastoni, B. Brandenburg, and J. Anderson, “Cache-related preemption
and migration delays: Empirical approximation and impact on schedula-
bility,” Proceedings of OSPERT, vol. 10, pp. 33–44, 2010.

VOLUME 4, 2016 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3384232

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



APPENDIX.

TABLE 3
List of Equations

Equation Meaning

Ri(xij) = wi · fi(xij) A reward function of an optional
part of the jth job of the ith

low critical task along with its
weight/importance denoted as wi

Rcum
i =

H/Pi∑
j=1

Ri(xij) A cumulative reward function of
a low critical task tLO

i during a
hyper period H

RPi =

∑H/Pi
i=1 xi

eoi ·H
· 100 The reward accrued for a low crit-

ical task tLO
i denoted in terms of

percentage

TRP =
RPi + RPi+1+, · · · + RPn

n
· 100 The total reward accrued for all

low critical tasks denoted in per-
centage

Dt =
CLO

i

CHI
i /Pi

Tuning the deadline of a high
server

BHI
i = UHI

tHI
i

Bandwidth allocation to a high
server

BLO = 1−
∑
ti∈T

BHI
i Bandwidth allocation to a low

server

dQi = −Uactdt The consumption rate of a
server’s budget at a certain time

Urec =
CHI

i − eij

Pi
Calculation of the spare band-
width recovered from a high criti-
cal task tHI

i

Sw(u) =
∑
Ui∈u

Ui · S(Ui)/
∑
Ui∈u

Ui Calculation of the weighted
schedulability ratio for the target
utilization set u

Rw(u) =
∑
Ui∈u

Ui ·R(Ui)/
∑
Ui∈u

Ui Calculation of the weighted
schedulability ratio of the gained
rewards for the target utilization
set u

TABLE 4
List of Acronyms

Acronym Meaning

T Task set

ti ith task

tij jth job of ith task

R+ Non-negative real numbers

Pi Period of an ith task

Di Deadline of an ith task

CLO
i Low mode WCET of ith task

CHI
i High mode WCET of ith task

emi Mandatory execution time of ith low criticality task

eoi Optional execution time of ith low criticality task

H Hyperperiod: LCM of periods of all the tasks

Dt Tuned deadline of a high server SHI

BHI Cumulative bandwidth of high servers SHI

BLO Cumulative bandwidth of low servers SHI

Urec Reclaimed bandwidth from high server SHI

Uact The cumulative bandwidth of the active servers in the
system

ULO Utilization of tasks in low mode

UHI Utilization of tasks in high mode

AMJAD ALI received his BSc and MS degrees in
computer science from the University of Peshawar
in Pakistan in 1997 and 2010, respectively. In
2000, he obtained his MS degrees in computer
science from Gomal University in Pakistan. He
worked as a lecturer at the University of Peshawar
from 2001 to 2011. Since 2012, he has been an
Assistant Professor in the Department of Com-
puter and Software Technology at the University
of Swat. In 2013, he joined a real-time systems

lab at Gyeongsang National University, South Korea, as a PhD candidate
and received a PhD degree in 2016. His research interests include real-time
systems, power-aware computing, and fault-tolerant computing.

16 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3384232

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



MADALLAH ALRUWAILI received a bachelor’s
degree (Hons) from Jouf University, KSA, in
2005, an M.S. degree from the University of Sci-
ence, Malaysia, in 2009, and a Ph.D. degree from
Southern Illinois University, Carbondale, Illinois,
USA, in 2015. The Ph.D. dissertation entitled
“Enhancement and Restoration of Dust Images “.
He is currently working as an Associate Professor
of Computer Engineering and Networks at Jouf
University. His research interests include Health-

care, Data Analysis, Image Processing, Image Quality Analysis, Pattern
Recognition, Computer Vision, and Biomedical Imaging.

SHAH ZEB received his BS and MS degrees
in computer science from the University of Swat
Pakistan in 2017 and 2023, respectively. His re-
search interests include real-time systems, impre-
cise computation, power awareness, and fault tol-
erance.

ASAD MASOOD KHATTAK is an Associate Pro-
fessor at the College of Technological Innova-
tion, Zayed University in Abu Dhabi, UAE that
he joined in August 2014. He received his M.S.
in Information Technology from National Univer-
sity of Sciences and Technology (NUST), Islam-
abad, Pakistan in 2008 and received his Ph.D.
degree in Computer Engineering from Kyung Hee
University, South Korea in 2012. He worked as
Post-Doctoral Fellow at Department of Computer

Engineering, Kyung Hee University, South Korea and later joined the
same college as Assistant Professor. He is currently leading three research
projects, collaborating in four research projects, and has successfully com-
pleted five research projects in the fields of Data Curation, Context-aware
Computing, IoT, and Secure Computing. He is IEEE member and has
authored/coauthored more than 120 journal and conference articles in highly
reputed venues. He is serving as reviewer, program committee member and
guest editor of many conferences and journals. He has delivered keynote
speeches, invited talks, guest lectures and has delivered short courses in
many universities. He and his team have secured several national and
international awards in different competitions.

BASHIR HAYAT is Faculty member at Institute of
Management Sciences Peshawar, Pakistan that he
joined in 2011. He received his M.S. in Computer
Science from Shaheed Zulfiqar Ali Bhutto Insti-
tute of Science and Technology (SZABIST), Is-
lamabad, Pakistan in 2010 and received his Ph.D.
degree in Informatics from Gyeongsang National
University, Jinju, South Korea in 2020.

KI-IL KIM received the MS and PhD degrees
in computer science from Chungnam National
University, Daejeon, Korea, in 2002 and 2005,
respectively. He is affiliated with the Depart-
ment of Computer Science and Engineering at the
Chungnam National University, Daejeon, Korea.
He has been with the Department of Informatics
at Gyeongsang National University since 2006.
His research interests include machine learning for
networks, wireless/mobile networks, fog comput-

ing, MANET, QoS for wireless, multicast and sensor networks.

VOLUME 4, 2016 17

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3384232

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


	Mixed Criticality Reward-Based Systems Using Resource Reservation
	Recommended Citation
	Author First name, Last name, Institution

	Mixed Criticality Reward-Based Systems using Resource Reservation

