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1  Background

Understanding the behaviour of cancer cells is crucial to 
developing novel therapies. In melanoma, the mitogen-acti-
vated protein kinase (MAPK) signalling pathway is activated 
in more than half of melanoma patients. This activation is 
driven by the mutation on v-Raf murine sarcoma viral onco-
gene homolog B1  (BRAFV600) [1]. Accordingly, the cur-
rent approved form of therapy is through monotherapy of 
BRAF inhibitors or in combination with mitogen-activated 
protein kinase kinase (MEK) inhibitors which ultimately 
act on kinases in the pathway [2]. Despite treatment, how-
ever, 50% of patients develop resistance to these inhibitors, 
resulting in disease progression within 6 to 7 months [3]. 
Similarly, in advanced squamous cell carcinoma (SCC), 
epidermal growth factor receptor (EGFR) activation results 
in further tumour progression. EGFR is overexpressed in 
35–100% cases. Treatment options are limited but clinical 
trials using an EGFR inhibitor, Gefitinib, have only provided 
partial benefit [4].

An alternative therapeutic approach is to focus on tran-
scription factors, which are key regulators of gene expres-
sion in cancer cells via their control over critical processes 
such as cell survival, invasion and proliferation [5]. Moreo-
ver, in cancer cells, transcription factors are mediators of 
oncogenic events that occur upstream in the signalling 

pathway, and their altered expression levels can be critical 
to tumorigenesis.

cAMP-regulatory element-binding protein (CREB) 
is a basic leucine zipper (bZIP) transcription factor that 
is located in the nucleus. Activated CREB is able to bind 
to cAMP-response elements (CREs) within the promoter 
region of target genes. The CREB–CRE interaction results 
in the recruitment of CREB-binding protein (CBP) which 
initiates transcription. This sequence of events is essential 
for critical processes such as cell proliferation and survival 
[6]. Overactivation of CREB, however, results in enhanced 
proliferation and survival of cancer cells, emphasising the 
critical role of CREB in cancer [7, 8]. This relationship has 
been observed in many cancers including glioblastoma, 
non-small-cell lung carcinoma, breast carcinoma and even 
melanoma [9]. Therefore, it is evident that CREB plays a 
significant role in cancer progression and is worthy of inves-
tigation to develop novel prophylactic agents and therapeu-
tics for skin cancers.

2  Skin cancer

Herein, we focus on the role of CREB in skin carcinogen-
esis. Skin cancer consists of both non-melanoma and mela-
noma skin cancers. Non-melanoma skin cancers (NMSC), 
derived from keratinocytes, include basal cell carcinoma 
(BCC) and SCC. NMSC is the most commonly diagnosed 
cancer in Australia with over one million paid Medicare ser-
vices for patients requiring NMSC treatment [10]. The inci-
dence for NMSC was reported to be 49 per 100,000 in 2016 
[11]. Indeed, NMSC cases are often not recorded by cancer 
registries due to the large number of people affected.[11]. 
Melanoma on the other hand is the second most commonly 
diagnosed cancer in men and the third most commonly 
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diagnosed cancer in women in Australia. Melanoma inci-
dence has steadily increased from 54 cases per 100,000 
people recorded in 2000 to 69 cases per 100,000 people in 
2023 [12]. With the significant amount of NMSC cases and 
the increasing number of melanoma cases, it is crucial to 
identify more successful therapeutic targets for skin cancer.

3  UV activates CREB in normal skin cells

One of the main causes of skin cancer is exposure of skin to 
ultraviolet radiation (UVR) which causes DNA photolesions 
and immunosuppression, both of which have been associated 
with skin carcinogenesis [13, 14]. UVR is also capable of 
modulating CREB levels. In both melanocytes and keratino-
cytes, ultraviolet B radiation (UVB) induces the stress-sig-
nalling pathway which results in the phosphorylation of p38 
MAPK and thereafter CREB at the serine133 residue [15]. 
In addition, in keratinocytes, ultraviolet A radiation (UVA) 
is capable of activating p38.

In melanocytes, the process of melanogenesis results in 
the upregulation of CREB. UVR-induced DNA damage 
in keratinocytes results in the formation of α-melanocyte 
stimulating hormone (α-MSH) and adrenocorticotropic 
hormone (ACTH) which are agonists of melanocortin 1 
receptors (MC1R) located on melanocytes. Once bound, 
MC1R-induced signalling results in the activation of the 
cAMP–PKA–CREB pathway [16, 17]. Activation of CREB 
results in the expression of proteins associated with melanin 
synthesis [18]. In addition, through the activation of this 
pathway, elevated cAMP levels are capable of activating 
Mitogen-activated protein kinases (MAPK) such as extra-
cellular signal-regulated kinase (ERK) [19]. Studies have 
shown that phosphorylated ERK 1/2 can activate mitogen- 
and stress-activated protein kinase 1 (MSK1). MSK1 is a 
kinase that is ultimately capable of phosphorylating CREB 
during melanogenesis. [20, 21] Studies have emphasised the 
importance of cAMP/PKA and the ERK signalling pathway 
in regulating CREB in the melanogenesis pathway through 
the introduction of inhibitors and promoters [22, 23].

Alternatively, melanin synthesis regulated by CREB can 
be stimulated upon stem cell factor (SCF) binding to tyros-
ine- protein kinase (c-kit). Binding results in p38 MAPK 
pathway activation which then results in CREB phospho-
rylation [24, 25]. Studies have shown that UVB increases 
protein levels of c-kit and SCF in cultured keratinocytes and 
melanocytes (Fig. 1) [26].

In keratinocytes, UVR results in the activation of the p38 
MAPK pathway, p38α and p38β, and ultimately CREB at 
the serine133 residue [27, 28]. UVR-induced DNA damage 
or reactive oxygen species (ROS) are also capable of acti-
vating the p38 signalling pathway [27]. UVR also activates 
the extracellular signal-regulated kinase (ERK 1/2) pathway 

in keratinocytes resulting in CREB activation [29]. Specifi-
cally, UVB irradiation leads to the generation of ROS which 
in turn mediates EGFR phosphorylation [30]. EGFR phos-
phorylation causes activation of ERK 1/2 via the activa-
tion of upstream substrates such as ras [31]. Once activated, 
ERK1/2 can activate CREB (Fig. 2).

ERK activation in a delayed and sustained manner. Spe-
cifically, UVA activates ERK via PKCα which is then able 
to activate Ras and then ERK. This pathway also involves 
phospholipase C (PLC) and calcium (Fig. 2) [32].

4  The effects of UVR‑activated CREB

The presence of melanin might be necessary for the malig-
nant transformation of melanocytes. Studies have shown 
the ability of UVA to induce melanoma in the presence of 
melanin whereas UVB-induced melanoma is independent of 
melanin [33, 34]. Indeed, the presence of melanin suggests 
the ongoing activation of melanogenesis in contributing 
to melanoma. CREB plays an integral role in melanogen-
esis. Upstream events include common mutagenetic events 
that occur in melanoma such as  BRAFV600 mutation and 
NRAS mutation which can result in the overstimulation of 
CREB. Downstream events include the ability of CREB to 
activate MITF that induces various proteins associated with 
melanin synthesis [35]. Though CREB is not directly acti-
vated by UVR, the secondary effects of UVR can activate 
CREB and result in melanoma progression.

Similarly, UVR-activated CREB occurs in keratinocytes 
and is involved in the transcriptional activity of c-Fos. Stud-
ies have demonstrated a clear relationship between UVB 
phosphorylated CREB and c-Fos in the human keratinocyte 
cell line, HaCaT. Moreover, studies in c-Fos deficient mice 
have demonstrated that expression of c-FOS is necessary for 
benign to malignant progression in skin tumours [36]. UVB 
induction appears to mediate CRE and FAP1 cis elements 
to a greater extent as compared to the other elements in the 
promoter region resulting in c-Fos transcription.

5  CREB and melanoma

In melanoma, CREB overexpression has been reported to pro-
mote tumour growth and metastasis. One study showed that 
CREB negatively regulates cellular communication network 
factor 1/ cysteine-rich angiogenic inducer 61 (CCN1/CYR61) 
expression [37]. Unlike its ability to usually act as a transacti-
vator, in the case of CCN1/CYR61, CREB acts as a repressor. 
Indeed, the overexpression of CREB hinders the role of CCN1/
CYR61 as a suppressor of tumour progression and metastasis 
in melanoma. In melanoma cell lines A375SM and C8161-c9, 
the overexpression of CCN1/CYR61 resulted in a significant 



Photochemical & Photobiological Sciences 

decrease in melanoma tumour growth [37]. Furthermore, the 
overexpression of CCN1/CYR61 reduces MMP-2 expression. 
The reduction of MMP-2 expression decreases cell motility 
and invasion of melanoma cells, angiogenesis and increases 
apoptosis. The study shows that in melanoma, where CREB is 
overexpressed, CCN1/CYR61 is downregulated which in turn 
upregulates MMP-2 expression [37]. This highlights the criti-
cal role of CREB as a transcription factor that is responsible 
for interacting with genes associated with tumour growth and 
metastasis in melanoma.

6  CREB and non‑melanoma cancers

It has been demonstrated in mice that CREB is essential to 
initiate papilloma formation, the precursor lesion to SCC 
in this model [38]. One study showed that a transcription 

factor complex, made of CREB and regulatory factor X1 
(RFX1), is stabilised by cell cycle and apoptosis regulator 
2 (CCAR2). The study suggested a role for this complex 
in maintaining cell cycle progression and promoting SCC 
tumorigenesis [39]. The importance of each individual com-
ponent of the complex was further shown by introducing 
shRNA-mediated knockdown of CREB which then resulted 
in a significant increase in G2 phase cell cycle arrest and as 
such a reduction in tumorigenic activity. The role of CREB 
in SCC is further highlighted in another study that showed 
that CREB is a downstream modulator of β-catenin ensuring 
the development and preservation of the human squamous 
carcinoma cell line (SCC13). This study suggested potential 
crosstalk between protein kinase A (PKA) signalling and 
the β-catenin pathway [40]. These studies collectively high-
light the importance of CREB in promoting and maintaining 
tumorigenesis in SCC.

Fig.1  Melanogenesis involves the phosphorylation of CREB 
(activated CREB). Upon UVR exposure, keratinocytes release 
α-melanocyte stimulating hormone (α-MSH) and adrenocorticotropic 
hormone (ACTH) which are agonists of melanocortin 1 receptors 
(MC1R) located on melanocytes. Once bound, the cAMP–PKA path-
way is activated resulting in the phosphorylation of CREB. Elevated 
cAMP levels, upon the activation of the cAMP-PKA pathway, are 
capable of activating extracellular signal-regulated kinase (ERK). 

Activated ERK is capable of activating mitogen-and stress-activated 
protein kinase 1 (MSK1) that phosphorylates CREB. Alternatively, 
CREB can be stimulated upon SCF binding to tyrosine- protein 
kinase (c-kit). Binding results in the activation of the p38 MAPK 
pathway which then results in CREB phosphorylation. pCREB results 
in the sequential activation of MITF. MITF is capable of increasing 
the expression of proteins associated with melanin synthesis. Created 
using BioRender
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7  Diagnostic or prognostic role for pCREB

Studies have shown that nuclear pCREB levels correlate 
with the proliferative status of human melanoma tissue. 
Specifically, Rodriguez and colleagues (2018) have shown 
that pCREB expression has a moderate positive correlation 
with the proliferative status in early stages of melanoma. The 
same study showed that later stages of melanoma have low 
proliferative status and low pCREB levels. This aligns with 
the fact that melanoma cells undergo a phenotypic switch 
from a proliferative status to an invasive status in vivo. Inter-
estingly, the same study showed that low pCREB levels in 
patients with melanoma have been associated with tumour 
aggressiveness and metastasis recurrence. Overall, this sug-
gests that pCREB can be a valuable prognostic tool to pre-
dict the aggressiveness of melanoma [41]. However, there is 
a lack of information available on pCREB levels in relation 
to patients with non-melanoma skin cancers. Nevertheless, 
studies have shown the importance of CREB in the devel-
opment, especially in the early stages, and maintenance of 

SCC suggesting a possible role for pCREB as a diagnostic 
marker [36, 42].

8  Future therapies to reduce CREB levels

From this review, it is evident that the overactivation/over-
expression of CREB in skin cancer represents a potential 
target for future therapies. A possible therapeutic approach 
would be to inhibit the biological function of CREB as a 
transcription factor.

A promising compound that could inhibit the tran-
scriptional activity of CREB is the vitamin D metabolite, 
1,25-dihydroxyvitamin D (1,25D). This compound has been 
shown to reduce skin carcinogenesis in mice [14]. In addi-
tion, 1,25D has been shown to reduce UVR upregulated 
pCREB in human keratinocytes [43, 44]. It was suggested 
by De Silva and colleagues (2018) that decreased levels 
of pCREB induced by 1,25D could be due to its ability to 
suppress phosphorylation of ERK 1/2 after UVR exposure 

Fig. 2  UVA and UVB induce the RAF-MEK-ERK pathway that 
phosphorylates CREB (activated CREB). UVA activates the pathway 
via phospholipase C (PLC) and calcium. UVB activates the pathway 
by producing ROS in the skin which then results in the phosphoryla-

tion of EGFR. Activated EGFR then activates the pathway. Activa-
tion of the pathway results in the formation of phosphorylated CREB. 
Created using BioRender
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[45]. Taking into account that ERK1/2 can activate CREB in 
keratinocytes, this suggests that 1,25D could inhibit CREB 
activity by targeting kinases upstream of CREB. Further-
more, 1,25D has been shown to increase phosphatase and 
tensin homolog (PTEN) levels after UVR exposure in mel-
anocytes and in mouse epidermis [46]. This is likely due to 
the binding of 1,25D to the vitamin D receptor (VDR) which 
is thereafter able to bind to the promoter region of PTEN 
[47]. Indeed, PTEN dephosphorylates CREB at Ser133, reg-
ulating pCREB activity and ultimately preventing the over 
transcription of genes associated with CREB [48]. Although 
promising, 1,25D is not light stable and may cause hyper-
calcaemia [49]. However, studies have shown low calcaemic 
vitamin D analogue, 1α,25(OH)2-lumisterol has similar pho-
toprotective functions to 1,25D in decreasing DNA damage, 
immunosuppression and photocarcinogenesis [14].

Another approach to inhibit the transcriptional activ-
ity of CREB is to introduce an inhibitor that prevents the 
pCREB- CBP/P300 interaction which is necessary to initiate 
CREB-dependent gene transcription. The binding involves 
kinase- inducible domain (KID) in pCREB and the KID 
interacting domain (KIX) in CBP/p300. A study in HEK293 
cells identified that a potent CREB inhibitor, 666–15, at 
concentrations that provided CREB inhibition, did not 
inhibit other transcription factors that also required CBP 
recruitment, such as Gal4-MLL. In addition, in vivo stud-
ies in C57BL/6 mice injected intraperitoneally with 666–15 
showed no alterations in blood chemistry profiles and no 
functional deterioration of vital organs. Interestingly, unlike 
other forms of CREB inhibitors which resulted in complete 
CREB inhibition, the administration of 666–15 resulted in a 
pulsatile inhibition system of CREB [50]. Moreover, 666–15 
was shown to have anti-proliferative activity in breast cancer 
cell lines [51]. Whilst these studies were carried out in dif-
ferent models, they suggest that inhibition of CREB is viable 
and could be applicable to skin.

To the best of our knowledge, there are limited studies 
focussed on inhibiting CREB in skin cancer but extensive 
studies in other cancers including leukaemia. CREB is a 
potential target in leukaemia cells and has been a focus 
in a number of preclinical studies [52, 53]. An interesting 
study by Illiano and colleagues (2020) showed that a his-
tone demethylase (KDM) inhibitor, GSKJ4, is capable of 
significantly decreasing CREB protein levels but not CREB 
mRNA expression levels. GSKJ4 is able to decrease CREB 
levels by altering the ubiquitin/proteasome system which 
affects the stability of CREB. Their studies have shown that 
PKA is required in GSKJ4-induced CREB phosphorylation 
and protein downregulation [54]. In relation to melanoma 
specifically, this inhibitor shows promise considering the 
importance of the overactivation of the cAMP/PKA signal-
ling pathway in increasing CREB levels, and warrants fur-
ther investigation in melanoma cells.

9  Conclusion and final remarks

It is evident that most studies of signalling pathways 
involved in UVR-induced CREB activation in skin cells 
utilised either UVA or UVB. Though insightful, exposure 
of skin to the combined effects of UVA and UVB in a 
ratio that mimics the solar spectrum would provide a more 
accurate representation of solar UVR and will account for 
the interactive effects of the different UV wavelengths 
[55].

This review highlights the significant role of CREB in 
cancer progression, warranting its investigation as a poten-
tial prognostic and diagnostic marker of skin cancer and a 
possible target for future therapeutic intervention.
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