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ABSTRACT
The authors introduce new classes of analytic function with respect 
ðη; τÞ-symmetric points subordinate to a domain that is not 
Carathéodory. To use the existing infrastructure or framework, 
usually, the study of analytic function have been limited to 
a differential characterization subordinate to functions which are 
Carathéodory. Here, we try to obtain various interesting properties 
of functions which are not Carathéodory. Integral representation, 
interesting conditions for starlikeness and inclusion relations for 
functions in these classes are obtained.
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1. Introduction, definitions and preliminaries

Let A be the class of function of the form 

which are analytic in the unit disc U ¼ ω : jωj< 1f g. Let S denote the class of functions 
φ 2 A which are univalent in U . We call P to denote the class of functions with 
normalization pð0Þ ¼ 1 which satisfies Re pðωÞð Þ> 0, ω 2 U . Starlike and convex func
tions, the well-known geometrically defined subclasses of S have the following analytic 
characterizations respectively 

We denote the class of starlike and convex functions by S� and C respectively. Ma-Minda 
(Ma and Minda 1992) studied an analytic function ψ which satisfies the conditions

(i) Re ψ > 0; U ;

(ii) ψð0Þ ¼ 1; ψ0 ð0Þ> 0;
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(iii) (iii) ψ maps U onto a starlike region with respect to 1 and symmetric with respect 
to the real axis.

Also, they assumed that ψðzÞ has a series expansion of the form 

and introduced and studied the following subclasses of using subordination of analytic 
functions: 

and 

By choosing ψ to map unit disc on to some specific regions like parabolas, cardioid, 
lemniscate of Bernoulli, booth lemniscate in the right-half of the complex plane, 
various interesting subclasses of starlike and convex functions can be obtained. For 
detailed study, refer to (Gandhi 2020; Dziok et al. 2011b, 2011a, 2013; Mendiratta 
et al. 2014; Raina and Sokół 2015, 2016, 2019; Srivastava et al. 2019, 2019, 2019, 2019; 
Mustafa and Murugusundaramoorthy 2021; Khan et al. 2022; Mustafa and Korkmaz  
2022; Araci et al. 2023).

From the above discussion, it can be seen that the entire architecture supports the 
study of analytic functions that are subordinate to Carathéodory function. Here in this 
study, we will deviate by introducing certain differential characterization subordinate to 
a non-Carathéodory functions.

To begin with, we let NP to denote the class of functions that are analytic in the unit 
disc and equals 1 at ω ¼ 0. Both Carathéodory and non-Carathéodory functions satisfy 
the same normalization pð0Þ ¼ 1, the only difference is that the requirement of the 
function to map the unit disc onto a right-half plane is relaxed in case of non- 
Carathéodory functions. Recently, Karthikeyan et al. (2023) introduced a class belonging 
to a class of non-Carathéodory functions NP defined by 

with α; β 2 0; π½ � and pðωÞ 2 P. Here, in this paper, we slightly modify the equation (1.3) 
to accommodate or unify the studies of well-known classes of analytic functions, which 
we define as follows. 

It can be easily seen that for a choice of α ¼ β ¼ π
2, Λ�½α; β; pðωÞ� ¼ pðωÞ 2 P. 

Figure 1a,b illustrates the impact of Λ�½π3 ; 0; pðωÞ� on the regions pðωÞ ¼ 1þω
1� ω and 

pðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω
p

respectively. Further, the images shows that function Λ�½α; β; pðωÞ�
belongs to the class which is not Carathéodory.
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Mittag-Leffler function, a special transcendental function has been on the spot
light due to its role in treating problems related to integral and differential equa
tions of fractional order. Refer to Srivastava (2021c, 2021a, 2021b), Srivastava 
(1968), Srivastava and Tomovski (2009) and Srivastava et al. (2018, 2019, 2022) 
for detailed studies which involved Mittag-Leffler function. The function Eρ

θ; #ðωÞ is 
popularly known as Prabhakar function or generalized Mittag-Leffler three para
meter function. Explicitly, the generalized Mittag-Leffler three parameter function is 
defined by 

where C denotes the sets of complex numbers and ðxÞn will be used to denote the usual 
Pochhammer symbol.

Using the Mittag-leffler function, Murat et al. (2023) defined the following operator 
Dm

r ðθ; #; ρÞφ : U ! U by 

The operator Dm
r ðθ; #; ρÞφ was motivated by the operator Dm

r φðωÞ defined by Ibrahim 
and Darus (2019) and Ibrahim (2020).

It is well known that if φðωÞ given by (1.1) is in S, then φðωτÞ½ �
1=τ , (τ is a positive 

integer) is also in S. For every integer η, a function φ 2 A is said to be ðη; τÞ-symmetrical 
if for each ω 2 U 

Figure 1. Mapping of jωj< 1 under Λ�½π=3; 0; pðωÞ�.
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where τ � 2 is a fixed integer, η ¼ 0; 1; 2; . . . ; τ � 1 and ε ¼ expð2πi=τÞ. The family of 
ðη; τÞ-symmetrical functions denoted by F η

τ was defined and studied by Liczberski and 
Po ubin0ski in Liczberski and Połubiński (1995). We observe that F 1

2, F 0
2 and F 1

τ are well- 
known families of odd functions, even functions and τ-symmetrical functions 
respectively.

Also, for every integer η, let φη; τðωÞ be defined by the following equality 

Obviously, φη; τðωÞ inherits the all linearity properties φðωÞ. The characterization (1.8) 
was first presented by Liczberski and Po ubin0ski in (Liczberski and Połubiński 1995).

The following identities can be derived from (1.8), provided ν is an integer,: 

We assume that τ 2 N , ε ¼ expð2πi=τÞ and 

From (1.10), we can get 

where 

We will define a comprehensive subclass of analytic functions involving the well-known 
Mittag-Leffler function. The major deviation of this paper is that, we have obtained 
coefficient inequalities, inclusion relationships, integral representation and closure prop
erty using differential subordination for a subclass of non-Carathéodory functions.

Motivated by (Srivastava et al. 2018; Karthikeyan et al. 2021), we now define the 
following:

Definition 1.1. For 0 � δ � 1, θ; # 2 C;ReðθÞ > 0 and m 2 N 0 ¼ N [ f0g, φ 2 A is 
said to be in the class Cm

ðη;τÞðθ; #; ρ; δ; ψÞ if it satisfies  
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where Dm
r ðθ; #; ρÞφ is defined as in (1.6) and ψ 2 P is defined as in (1.2).

Remark 1.1. The defined class of functions involves lots of parameters, so we can obtain 
several classes as its special case. Here, we will present a few of them: 

(1) If we let θ ¼ τ ¼ m ¼ 0 and ρ ¼ 1, the class Cm
ðη;τÞðθ; #; ρ; δ; ψÞ will reduce to the 

classes Sðη;τÞs ðψÞ and Cðη;τÞs ðψÞ by choosing δ ¼ 0 and δ ¼ 1 respectively. The class 
Sðη;τÞs ðψÞ and Cðη;τÞs ðψÞ were recently introduced and studied by Karthikeyan in. 
(Karthikeyan 2013)

(2) If we let α ¼ β ¼ π
2, θ ¼ τ ¼ m ¼ 0, ρ ¼ 1 and ψðωÞ ¼ 1þ Fω=1þ Gω in 

Definition 1.1, then the class Cm
ðη;τÞðθ; #; ρ; δ; ψÞ reduces to the class Sðη; τÞ½F; G�

defined and studied by Al Sarari et al. [2016, Definition 5]
(3) If we let α ¼ β ¼ π

2, θ ¼ τ ¼ m ¼ 0, η ¼ ρ ¼ 1 and ψðωÞ ¼ 1þ Fω=1þ Gω in 
Definition 1.1, then the class Cm

ðη;τÞðθ; #; ρ; δ; ψÞ reduces to the class SðτÞs ½F; G�
defined and studied by Kwon, and Sim. (Kwon and Sim 2013)

The analytic characterization of Cm
ðη;τÞðθ; #; ρ; δ; ψÞ is very similar to the one that was 

defined by Karthikeyan et al. in (Karthikeyan et al. 2021). The major deviation here is that 
we have defined the class with respect to ðη; τÞ-symmetric points whereas the class 
studied by Karthikeyan et al. (2021) involved the odd function. The class 
Cm
ðη;τÞðθ; #; ρ; δ; ψÞ neither unifies nor generalizes the study of Karthikeyan et al. (2021) 

Further, we have deviated in obtaining the results like subordination condition of 
starlikeness.

2. Coefficient inequalities

In this section, we impose another condition that the first coefficient of the series namely 
L1 in (1.2) to be real. To obtain our main results, we need the following Lemma.

Lemma 2.1. Let the function Λ�½α; β; ψðωÞ� be convex in U where the function ψ is 

defined as in (1.2). If pðωÞ ¼ 1þ
P1

n¼1
pnωn is analytic in U and satisfies the subordination 

condition  

then 
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Proof. If the function ψ has the power series expansion (1.2), then 

The equation (2.1) is equivalent to 

Since the convexity of Λ�½α; β; ψðωÞ� remains unaffected by translation, from 
a well-known Lemma of Rogosinski ([1943, Theorem VII]) it follows the conclu
sion (2.2).                                                                         □

Here we present the coefficient inequality of Cm
ðη;τÞðθ; #; ρ; δ; ψÞ.

Theorem 2.2. If φ 2 Cm
ðη;τÞðθ; #; ρ; δ; ψÞ, then for n � 2, 

where 

Proof. By the definition of Cm
ðη;τÞðθ; #; ρ; δ; ψÞ, we have 

where pðωÞ 2 P is subordinate to pðωÞ � Λ�½α; β; ψðωÞ�.

With a1 ¼ Φ1 ¼ Γ1;η ¼ 1, (2.4) can be written as 

From the above equality, we have 

The assertion of 2.1 implies jpnj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 cos2 βþ L2

1 sin2 α
p

; n � 1. On computation, we 
have 
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Let n ¼ 2 in (2.5), then 

Letting n ¼ 2 in (2.3), we get 

From (4.2) and (2.7), we conclude that (2.3) is correct for n ¼ 2. Now let n ¼ 3 in (2.5), 
we have 

If we let n ¼ 3; in (2.3), we have 

Hence the hypothesis is correct for n ¼ 3. Assume that (2.3) is valid for n ¼ 2; 3; . . . r. So 
from (2.3), we have 

By induction hypothesis, we have 
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Now letting n ¼ r þ 1 in (2.5), we have 

Using (2.8) in (2.9), we can obtain 
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implies that inequality (2.3) is true for n ¼ r þ 1. Hence, the proof of the 
Theorem.                                                                          □

If we let α ¼ β ¼ π
2, θ ¼ τ ¼ m ¼ 0, λ ¼ ρ ¼ 1 and ψðωÞ ¼ ð1þ FωÞ=ð1þ GωÞ in 

Theorem 2.2, then we get the following result.

Corollary 2.3. [Al Sarari et al. 2016, Theorem 2] If φ 2 Sðη; τÞðF; GÞ (see Remark 1.1), 
then for n � 2; � 1 � F<G � 1,  

For F ¼ 1 � 2� cos %, 0 � �< 1, G ¼ � 1 and η ¼ 1, the Corollary 2.3 reduces to the next 
special case:

Corollary 2.4. [Libera. 1967, Theorem 1] If φ 2 A satisfy the inequality  

then  

The coefficient estimates of (2.10) are sharp
If we let α ¼ β ¼ π

2, θ ¼ τ ¼ m ¼ 0, λ ¼ ρ ¼ 1 and ψðωÞ ¼ ðFþ1ÞpαðωÞ� ðF� 1Þ
ðGþ1ÞpαðωÞ� ðG� 1Þ in 

Theorem 2.2, then we get the following result.

Corollary 2.5. [Karthikeyan et al. 2020, Corollary 6] If φ 2 A satisfy the condition  

with pαðωÞ ¼ ð1þ 2αÞ
ffiffiffiffiffiffiffiffi
1þbω
1� bz

q

� 2α, b ¼ bðαÞ ¼ 1þ4α� 4α2

ð1þ2αÞ2
, α> 0. Then for 

n � 2; � 1 � H <G � 1,  

Remark 2.1. Several well-known results can be obtained as special case of 
Theorem 2.2.
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3. Inclusion relationships and integral representations of the  
classes Cmðη;τÞðθ; #; ρ; δ;ψÞ

If Cm
ðη;τÞðθ; #; ρ; δ; ψÞ, then by Definition 1.1 there exist a Schwatrz function σðωÞ such 

that 

If we replace ω by ενωðν ¼ 0; 1; 2; . . . ; τ � 1Þ in (3.1), then (3.1) will be of the form 

Using (1.9) in (3.2), we get 

Let ν ¼ 0; 1; 2; . . . ; τ � 1 in (3.3) respectively and summing them, we get 

Or equivalently, 

On summarizing the above discussion, we have the following.

Theorem 3.1. Let the function Λ�½α; β; ψðωÞ� 2 NP satisfy the subordination condi
tion 1

τ
Pτ� 1

ν¼0 Λ�½α; β; ψ σðενωÞð Þ� � Λ�½α; β; ψðωÞ�. If φ 2 Cm
ðη;τÞðθ; #; ρ; δ; ψÞ, then  
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Let GðωÞ¼ ð1 � δÞDm
r ðθ; #; ρÞφðωÞ þ δωDm

r ðθ; #; ρÞφ0 ðωÞ and HðωÞ ¼ ð1 � δÞDm
r 

ðθ; #; ρÞφη; τðωÞ þ δωDm
r ðθ; #; ρÞφ0η; τðωÞ. If φ 2 Cm

ðη;τÞðθ; #; ρ; δ; ψÞ, then following the 
steps as in Theorem 3.1, we have 

Alternatively, the above equality can be rewritten as 

Integrating this equality, we get 

or equivalently, 

We have two cases namely
(1) For δ ¼ 0, trivially we have 

Summarising the above discussion, we have

Theorem 3.2. If φ 2 Cm
ðη;τÞðθ; #; ρ; δ; ψÞ, then

(i) for 0< δ � 1,  
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(ii) for δ ¼ 0,  

If we let θ ¼ τ ¼ m ¼ δ ¼ 0, λ ¼ ρ ¼ 1 and α ¼ β ¼ π
2 in Theorem 3.2, we get

Corollary 3.3. [13, Theorem 2.3] Let φ 2 Sðη; τÞs ðψÞ, then we have 

where φη; τðωÞ defined by equality (1.8), σðωÞ is analytic in U and σð0Þ ¼ 0, jσðωÞj< 1.
If we let θ ¼ τ ¼ m ¼ 0, δ ¼ λ ¼ ρ ¼ 1 and α ¼ β ¼ π

2 in Theorem 3.2, we have the 
following Corollary.

Corollary 3.4. [13, Theorem 2.4] Let φ 2 Cðη; τÞs ðψÞ, then we have 

where φη; τðωÞ defined by equality (1.8), σðωÞ is analytic in U and σð0Þ ¼ 0, jσðωÞj< 1.

4. Subordination conditions for the classes Cmðη;τÞðθ; #; ρ; δ;ψÞ

Note that the function Λ�½α; β; ψðωÞ� in general does not belong to the class P and is not 
convex. However, if we restrict the radius of the domain or by choosing appropriate 
values of the parameter, we can see that Λ�½α; β; ψðωÞ� will belong to class P.

Motivated by the results presented in Chapter 4 of (Bulboacã 2005), here we obtain 
some conditions for starlikeness. We now state the following result which will be used in 
the sequel.

Lemma 4.1 ([8]). Let g be convex in U , with gð0Þ ¼ a, γ�0 and ReðγÞ> 0. Suppose that 
hðωÞ is analytic in U , which is given by  

If  

then 

where 
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The function q is convex and is the best ða; nÞ-dominant.
For convenience, we denote GðωÞ ¼ ð1 � δÞDm

r ðθ; #; ρÞφðωÞ þ δωDm
r ðθ; #; ρÞφ0 ðωÞ

and HðωÞ ¼ ð1 � δÞDm
r ðθ; #; ρÞφη; τðωÞ þ δωDm

r ðθ; #; ρÞφ0η; τðωÞ.

Theorem 4.2. Let the function Λ�½α; β; pðωÞ� be defined as in (1.4) be convex univalent 
in U . Let φ 2 A satisfy 

then 

and qðωÞ is the best dominant.

Proof. Let pðωÞ be defined by 

Then the function pðωÞ is of the form pðωÞ ¼ 1þ p1ωþ p2ω2 þ � � � and is analytic in U . 
Differentiating both sides of (4.4) and by simplifying, we have 

By hypothesis (4.2), we have 
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Applying Lemma 4.1 to the above equation with γ ¼ 1 and a ¼ n ¼ 1, we get the 
assertion (4.2) Hence, the proof of the Theorem 4.2                                                  □

Remark 4.1. In Lemma 4.1, there is no need for the superordinate function to be in class 
P. Hence, the choice of Λ�½α; β; ψðωÞ� 2 NP is admissible.

Theorem 4.3. Let the function Λ�½α; β; ψðωÞ� 2 P be convex univalent in U and let 
κðωÞ :¼ Λ�½α; β; ψðωÞ�ð Þ

2
þ ω Λ�½α; β; ψðωÞ�ð Þ

0

. If the function φ 2 A satisfies the 
conditions 

then φ 2 Cm
ðη;τÞðθ; #; ρ; δ; ψÞ. Moreover, the function Λ�½α; β; ψðωÞ� is the best dominant 

of the left-hand side of (1.12).

Proof. If we define the function pðωÞ by 

then from the hypothesis, it follows that p is analytic in U . By a straight forward 
computation, we have 

and thus, the subordination (4.7) is equivalent to 

Setting ΩðσÞ :¼ σ2 and ΥðσÞ :¼ 1, then Ω and Υ are analytic functions in C , with 
Υð0Þ�0. Therefore 

and 

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 279



and using the assumption that Λ�½α; β; ψðωÞ� is a convex univalent function in U , it 
follows that 

hence Q is a starlike univalent function in U . Further, the convexity of Λ�½α; β; ψðωÞ�
together with <½Λ�½α; β; ψðωÞ��> 0 (assumed) implies 

Since the conditions of the well-known Miller- Mocanu lemma (see [3, Theorem 3.6.1.]) 
are satisfied it follows that (4.8) implies pðωÞ � Λ�½α; β; ψðωÞ�, and Λ�½α; β; ψðωÞ� is the 
best dominant of p, which prove our conclusions.                                                    □

Remark 4.2. Several special cases of Theorem 4.2 and Theorem 4.3 can be obtained by 
assigning some fixed values to the parameter involved in it.

5. Conclusion

We have obtained the interesting coefficient bounds involving analytic functions with 
respect to ðη; τÞ-symmetric points. Indeed, very few researchers have attempted the 
coefficient problems pertaining to analytic functions with respect to ðη; τÞ-symmetric 
points, as it is computationally tedious. Further, most of the studies in this area by various 
other authors involved the differential characterization subordinate to a Carathéodory 
function. But in this study, we have obtained interesting subordination conditions, 
inclusion and integral representation of the functions defined for a class of non- 
Carathéodory function.

Assertion of the Lemma 2.1 is true only if the superordinate function in (2.1) is 
convex, so the results that we obtained in Section 2 cannot be applied to functions that 
are subordinate to non-convex functions. Hence, there is a need to develop some tools or 
methods to obtain the coefficients for the functions subordinate to non-convex func
tions. In addition, we note that the impact of Λ�½α; β; ψðωÞ� is not the same in all conic 
regions. So, the following question arises: Are there any specific specialized regions in 
which the impact of Λ�½α; β; ψðωÞ� will be the same?

The study should be interesting when the ordinary derivative in Definition 1.1 is 
replaced with a multiplicative derivative. However, the presence of second order deriva
tive in (1.12) will make such a study very complicated. Further, this study can be 
extended by replacing pðωÞ in (1.4) with a Legendre polynomial, q-Hermite polynomial, 
Fibonacci sequence, or Chebyshev polynomial.
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