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Abstract: Clustering is an effective statistical data analysis technique; it has several applications,
including data mining, pattern recognition, image analysis, bioinformatics, and machine learning.
Clustering helps to partition data into groups of objects with distinct characteristics. Most of the
methods for clustering use manually selected parameters to find the clusters from the dataset.
Consequently, it can be very challenging and time-consuming to extract the optimal parameters for
clustering a dataset. Moreover, some clustering methods are inadequate for locating clusters in high-
dimensional data. To address these concerns systematically, this paper introduces a novel selection-
free clustering technique named data point positioning analysis (DPPA). The proposed method
is straightforward since it calculates 1-NN and Max-NN by analyzing the data point placements
without the requirement of an initial manual parameter assignment. This method is validated using
two well-known publicly available datasets used in several clustering algorithms. To compare the
performance of the proposed method, this study also investigated four popular clustering algorithms
(DBSCAN, affinity propagation, Mean Shift, and K-means), where the proposed method provides
higher performance in finding the cluster without using any manually selected parameters. The
experimental finding demonstrated that the proposed DPPA algorithm is less time-consuming
compared to the existing traditional methods and achieves higher performance without using any
manually selected parameters.

Keywords: clustering; parameter-free algorithm; unsupervised learning; data mining; DPPA

1. Introduction

Clustering has become a useful technique in many fields, including science, engi-
neering, medicine, and our everyday lives. The term “clustering” refers to the process of
grouping a collection of elements so that they are more comparable to other elements in
their own cluster (group) than those in other clusters. A clustering theory needs to provide
a unified framework for various approaches. Firstly, it should have foundations and limits
of applicability. Secondly, it has to show connections between ideas and methods inside
and outside of clustering. Finally, it should offer a cornerstone for resolving the emerging
challenges in data processing and developing applications.

In the last few decades, clustering techniques for data mining have come a long way.
Researchers have developed several methods [1–3] to effectively cluster data. Despite
some successful clustering method applications, there are still some challenges in data
mining. For instance, most of the conventional clustering approaches function well with
low-dimensional data but encounter difficulties with high-dimensional data. The term
“dimensionality curse” refers to this phenomenon [4]. Moreover, the overfitting problem
occurs due to the high dimensionality of the feature space, and the model being recorded
is too complicated [5]. Furthermore, the available data could not accurately reflect the
whole ground-truth model. When this occurs, learning algorithms tend to fit a model to the
available data samples, overlooking the underlying structure. In other words, memorizing
takes the place of learning in some way. Tasks involving practical signal processing and
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learning must also contain noise and outliers. Non-Gaussian noise is particularly prevalent
in applications involving measurements. On the other hand, outliers are incongruous ob-
servations with the overall population. These idiosyncrasies provide significant hurdles for
issues involving both linear and non-linear systems, especially when coupled with specific
output requirements. Effective investigations into the consequences of these extra concerns
are found in several recent works, e.g., [6,7]. Moreover, the raw data are often in crude
formats. Clustering techniques need a preprocessing phase to deal with high dimensions
and undesirable sampling problems. In circumstances involving large dimensions, pre-
processing strategies [8–10] have been proposed to improve performance. To observe the
dataset more precisely and make it more suited for subsequent processing, these methods
often restructure the sample space using transformations or eliminations. For example,
the principal component analysis (PCA) converts sample characteristics into a form with
the largest variance, making it more appropriate for classification tasks with the added
bonus of decreased dimensions [11]. This idea may be immediately extended as feature
transformation in general. It is crucial to remember that these strategies keep all traits and
restructure them using (non-linear) combinations rather than discard unimportant ones.
The expanded method of dimensionality reduction by feature selection eliminates unim-
portant features and considers the subset of features that seems to be the most crucial while
adhering to predetermined optimality criteria. Future classification or clustering problems
may benefit from using any of these strategies to provide more accurate representations.

Despite the fact that feature selection may be utilized as an efficient solution to high-
dimensional challenges, the elimination process may result in a loss of critical information
with great significance in diverse contexts. After considering the difficulties of handling
high-dimensional data, it is vital to list a few methods for avoiding overfitting. To address
the issue of high-dimensional datasets, researchers have proposed various techniques. For
instance, Yan et al. [12] presented a novel supervised multi-view hash model that utilized
deep learning and a multi-view stability evaluation method to enhance hash learning. The
approach included multi-data fusion methods and a memory network to reduce computing
resources during retrieval. The proposed method outperformed state-of-the-art single-view
and multi-view hashing methods on three datasets, showing its potential for improving
hash learning. In [13], the authors proposed a group-based nuclear norm and learning
graph (GNNLG) model for image restoration, which exploits patch similarity and low-
rank properties. An optimized learning strategy was developed to impose smoothing
priors on the denoised depth image. The authors used the alternating direction method
of multipliers to improve speed and convergence. Experimental results showed that the
proposed method outperformed state-of-the-art denoising methods. In Reference [14],
the authors proposed a task-adaptive attention module for image captioning that learned
implicit non-visual clues and alleviated misleading problems. The authors also introduced
diversity regularization to enhance the expression ability of the module. The experiments
on the MSCOCO captioning dataset showed that using the proposed module with a vanilla
Transformer-based image captioning model improved performance. The authors of [15]
proposed a precise NR IQA scheme with two steps: distortion identification and targeted
quality evaluation. They used Inception-ResNet-v2 to train a classifier and designed a
specific approach to quantify image distortion. The method outperformed state-of-the-art
NR IQA methods in the experiments, indicating its potential for practical applications.
A popular strategy for dealing with overfitting in clustering is to reduce within-cluster
variation. In the case of clustering, a common way to deal with overfitting is to minimize
within-cluster variance [16].

The authors of [17] proposed a technique where they merged DBSCAN with affinity
propagation (APSCAN), enabling users to benefit from both methods. The density contains
two pieces of data: radius and number. Radius is the average distance from the exemplar
to all points, and the number is the number of points that are located inside the radius
neighborhood. Both parameters—radius and number—have been employed in the strategy
as an alternative to Eps and MinPts. The evolutionary parameter-free clustering algorithm
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(EPFC) was developed by Ding and Li [18]; the average value of nearest neighbor points is
calculated based on all datasets. Depending on the computed distance between each data
point and its closest neighbor, one of two decisions will be determined, i.e., to divide the
group or combine the data points. In [19], a parameter-free approach was described, where
the radius was determined automatically based on the window size and data distribution.

It may be more efficient to sample a group of solutions rather than search for the
solution space entirely when faced with all obstacles at once, including high dimensionality,
high nonlinearity, parameter interaction, and disturbances due to randomness. Most of the
previously investigated clustering methods for data mining used manual parameter selec-
tion to find the cluster from the raw data. Moreover, the methods used in high-dimension
datasets provided comparatively lower performances. To address this concern, this study
developed a novel clustering method (DPPA) to find the cluster from the raw dataset. The
proposed method has been tested using the well-reputed publicly available dataset.

The key contributions of this paper are as follows:

1. In this study, we propose a new non-parametric clustering algorithm (DPPA), which
can calculate 1-NN and Max-NN by analyzing the positions of data in the dataset
without any initial manual parameter assignment.

2. We use two well-known publicly available datasets to evaluate the proposed method
to find clusters. In addition, the proposed method is not time-consuming because it re-
duces the dependence of analysis on the selection of artificial parameters. Finally, four
popular algorithms (DBSCAN algorithm, K-means algorithm, affinity propagation
algorithm, and Mean Shift algorithm) are implemented to compare the performance
of the proposed model.

The rest of the manuscript is arranged as follows: an overview of existing clustering
algorithms is presented in Section 2. A detailed description of the proposed algorithm
is described in Section 3. Section 4 describes details about the dataset. The experimental
performance is described in Section 5. Section 6 presents the conclusion of the present study.

2. Related Work

Numerous clustering algorithms have been introduced in past years, as evidenced
by the literature [20,21]. For instance, in Reference [22], a method utilizing association
rules is proposed to cluster customer transactions within a market database. The study
conducted in [23] focused on exploring algorithms for clustering categorical databases
using non-linear dynamical systems.

According to Rokach [24], the process of clustering splits data patterns into subsets in
such a manner that patterns with comparable characteristics are grouped in the same cluster.
Therefore, the patterns are organized into a well-formed assessment, which identifies the
population from which the sample was selected. For clustering, the data, K-means algo-
rithm was implemented in [25,26]. Likas et al. [27] presented a global k-means algorithm, an
incremental concept to clustering that dynamically adds one cluster center at a time using
a deterministic global search technique, consisting of the sizes of the dataset executions
of the k-means algorithm from suitable initial positions. The authors of [28] presented an
affinity propagation clustering technique for pattern recognition. In their approach, each
data point exchanges signals (called responsibility and availability) in an iterative manner
to identify acceptable examples. To ascertain the affinities of the exemplars in the network,
certain preferences for criteria must be established. The success of this algorithm relies on
well-defined criteria to attain its ideal aim, even if there are no beginning parameters that
must be set. Its inability to handle groups of arbitrary forms is another issue.

The DNo, DNg, and DNs indices have been recognized as simple internal validity
measures for clustering [29–31]. These indices assess the relationship between cluster size
and inter-cluster distance. Specifically, they calculate the ratio of the minimum distance
between two clusters to the size of the largest cluster, aiming to maximize the index values.
The DB index, proposed by Davies and Bouldin [32], quantifies the average similarity
between each cluster and its most similar one. It aims to maximize the distances between
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clusters while minimizing the distance between the cluster centroid and other data objects.
The silhouette value, introduced by Rousseeuw [33], measures the similarity of an object
to its own cluster (cohesion) compared to other clusters (separation). Ranging from −1 to
+1, a higher silhouette value indicates a better fit to the object’s own cluster and a poorer
fit to neighboring clusters. Positive and negative large silhouette widths (SWs) signify
proper and improper clustering, respectively. Objects with a SW value close to zero indicate
a lack of clear discrimination between clusters. Another cluster validity measure is the
gap statistic, which is based on a statistical hypothesis test [34]. It assesses the change in
within-cluster dispersion relative to the expected change under an appropriate reference
null distribution.

In Reference [35], a comparative study was conducted to evaluate five different cluster-
ing algorithms using gene expression time series datasets of the Saccharomyces cerevisiae
yeast. The experiments employed a k-fold cross-validation procedure to compare the
performance of the algorithms. The results showed that k-means, dynamical clustering,
and SOM consistently achieved high accuracy across all experiments. In Reference [36],
the performances of k-means, single linkage, and simulated annealing (SA) were assessed
using various partitions obtained through validation indexes. They introduced a novel
validation index called the I index, which measured separation based on the maximum
distance between clusters and compactness based on the sum of distances between objects
and their respective centroids. The study concluded that the I index demonstrated the
highest reliability among the considered indices, attaining its maximum value when the
number of clusters was appropriately chosen.

It is worth noting that most existing clustering methods often require some form of
supervision or expert knowledge, such as specifying the number of clusters or setting
similarity thresholds and algorithm-specific hyperparameters. The research gap in the
provided passage is that most previously investigated clustering methods for data mining
relied on manual parameter selection to identify clusters from raw data. However, these
methods often faced challenges in high-dimensional datasets and provided relatively
lower performance. This suggests a need for a clustering method that can overcome these
limitations and offer improved performance in high-dimensional settings.

To address this research gap, this study extends the work on developing the novel
clustering method, called DPPA, developed by [37]. This method is non-parametric and can
calculate 1-NN and Max-NN by analyzing the positions of data in the dataset, eliminating
the need for initial manual parameter assignments. The proposed method is evaluated
using well-known publicly available datasets and offers the advantage of being less time-
consuming by reducing the dependence on artificial parameter selection. Furthermore, the
performance of the proposed method is compared with four popular clustering algorithms
(DBSCAN, K-means, affinity propagation, and Mean Shift) to assess its effectiveness.

In summary, the research gap pertains to the limitations of existing clustering methods
in high-dimensional datasets, while the proposed solution is the development of the DPPA
algorithm that addresses these limitations and provides improved performance.

3. Overview of Clustering Algorithms
3.1. DBSCAN

DBSCAN, which stands for density-based spatial clustering of applications with noise,
is widely used in machine learning and data science [38]. The algorithm is capable of
identifying clusters of points in a dataset based on their density and has the ability to
handle noise and outliers effectively. DBSCAN is particularly useful for datasets with
non-linear or complex structures and can detect clusters of different shapes and sizes.

The main idea behind DBSCAN is to identify regions in the dataset where the data
points are densely packed together. The algorithm works by defining two key parameters,
epsilon (ϵ) and minimum points (MinPts). The epsilon parameter defines the radius of a
neighborhood around each data point, and the MinPts parameter specifies the minimum
number of points required to form a dense region.
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The DBSCAN algorithm starts by randomly selecting a data point that has not yet
been assigned to a cluster. It then identifies all the neighboring points within the radius
of ϵ and checks if the number of neighboring points is greater than or equal to the MinPts
parameter. If the number of neighbors is greater than or equal to MinPts, the algorithm
considers the data point as part of a cluster and explores its neighboring points to find all
other data points that belong to the same cluster. This process continues until no more
points can be added to the cluster, and then the algorithm selects a new unassigned point
and repeats the process.

If the number of neighboring points is less than MinPts, the algorithm marks the data
point as a noise point or an outlier, which means that it does not belong to any cluster. The
algorithm then moves on to the next unassigned data point and repeats the process until
all data points have been assigned to a cluster or marked as noise.

One of the advantages of DBSCAN is that it can detect clusters of different shapes and
sizes, including clusters that are not linearly separable. The algorithm can also handle noise
and outliers effectively, as they are simply marked as noise points and do not interfere with
the clustering process. DBSCAN is also relatively easy to implement and requires only two
input parameters, ϵ and MinPts.

However, DBSCAN also has some limitations. One of the main challenges is setting
the appropriate values for the ϵ and MinPts parameters. Choosing the right values can be
difficult, especially for large and complex datasets, and may require some trial and error.
DBSCAN is also sensitive to the choice of the distance metric used to calculate the distance
between data points, and some distance metrics may perform better than others, depending
on the dataset.

In summary, DBSCAN is a powerful clustering algorithm that can detect clusters of
different shapes and sizes in complex datasets. It is capable of managing noise and outliers
effectively, making it particularly useful for real-world applications. However, choosing
the appropriate values for the ϵ and MinPts parameters can be challenging, and the choice
of distance metric can also impact the performance of the Algorithm 1.

Algorithm 1: DBSCAN clustering algorithm.
Input: X: dataset of n data points, EPS: radius of the neighborhood, MinPts: the

minimum quantity of points necessary to produce a dense region
/ Output: labels: cluster assignments for each data point (0 = noise)
. Initialize all data points as unvisited and with cluster assignment 0; for each
unvisited data point p do

Mark p as visited; find all points within distance EPS of p and add them to the
current cluster; if the number of points is less than MinPts then

Mark p as a noise point;
end
else

Mark all added points as visited and expand the cluster;
end

end
Expand the cluster by adding points to it; for each point q in the cluster do

Find all points within distance EPS of q and add them to the current cluster; if
The number of points is at least MinPt or higher then

Mark them as visited;
end
if q has not already been assigned to a cluster then

Assign it to the current cluster;
end

end
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3.2. Affinity Propagation

The affinity propagation (AP) technique, mentioned in [28,39], is a distance-dependent
approach that can identify exemplars in a dataset. AP can cluster facial images, locate
genes, and cluster spatial datasets on a map, among other tasks [40–42]. Unlike K-means,
AP selects existing points as exemplars and does not generate new points. It does not need
a predetermined number of clusters or initial candidate exemplars. Instead, AP considers
every point in the dataset and chooses exemplars through competitive iterations.

AP employs two types of “messages” to compute responsibility and availability, based
on the distance between any two distinct points, xi and xk, in the dataset. Responsibility,
represented by r(i, k), is a “message” sent from xi to its candidate exemplar point xk and
indicates how well xk can represent xi as an exemplar. Availability, represented by a(k, i), is the
“message” sent from xk to xi and represents the accumulated evidence for how suitable xk is
for being selected as an exemplar by xi. AP initializes the values of these “messages” between
any two distinct points, and then iteratively updates the values of responsibility and availability.
Finally, AP selects the point xk′ with the highest sum of responsibility r(i, k′) and availability
a(k′, i) as the exemplar for each point xi. Thus, AP clusters xi and xk′ into the same cluster and
assigns xi a label based on the sequence index number of xk′ in the dataset. As a result, AP
can identify exemplars and assign class labels to each point based on its exemplar’s sequence
index number.

Here is a detailed description of the affinity propagation algorithm:

1. Initialization: The algorithm begins by initializing two matrices: the “similarity matrix”
and the “responsibility matrix”. The similarity matrix contains the pairwise similarity
scores between all data points. The responsibility matrix is a matrix of the same size
as the similarity matrix and is initialized to 0.

2. Calculate responsibility matrix: In this step, the algorithm iteratively updates the
responsibility matrix. The responsibility matrix represents how well-suited each
data point is to be an “exemplar” or representative of a cluster. The update rule is
as follows:

r(i, k) = s(i, k)−max
k′ ̸=k

a(i, k′) + s(i, k′) (1)

where r(i, k) is the responsibility of point i to exemplar k, s(i, k) is the similarity score
between point i and exemplar k, and a(i, k) is the “availability” of point i to exemplar
k, which is updated in step 3.

3. Calculate availability matrix: In this step, the algorithm updates the availability matrix.
The availability matrix represents how much “support” a data point receives from
other data points for being an exemplar. The update rule is as follows:

a(i, k) = min 0, r(k, k) + ∑
i′ ̸=i,i′ ̸=k

max 0, r(i′, k) (2)

where a(i, k) is the availability of point i to exemplar k, r(k, k) is the self-responsibility
of exemplar k, and the summation term represents the total responsibility that other
points have assigned to exemplar k.

4. Calculate cluster exemplars: The algorithm uses the responsibility and availability
matrices to calculate which data points are the best exemplars for each cluster. The
exemplars are chosen as the data points with the highest sum of their responsibility
and availability scores:

e(k) = argmaxi(r(i, k) + a(i, k)) (3)

5. Assign data points to clusters: Finally, the Algorithm 2 assigns each data point to its
nearest exemplar, which forms the final clusters.
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Affinity propagation algorithm has advantages: Automatic cluster number determina-
tion and handling of non-spherical clusters. However, it can be computationally expensive
and sensitive to the initial exemplar choice.

Algorithm 2: Affinity propagation algorithm.
Inputs:
- Similarity matrix s
- Damping factor damping
- Maximum number of iterations max_iter
- Tolerance tol
Outputs:
- Cluster assignments
Initialize:
- Responsibility matrix r = zeros(n_samples, n_samples)
- Availability matrix a = zeros(n_samples, n_samples)
for iter = 1 to max_iter do

for i in range(n_samples) do
max_val = -inf
max_idx = -1
for k in range(n_samples) do

val = a[i, k] + s[i, k] if val > max_val then
max_val = val
max_idx = k

end
end
for k in range(n_samples) do

if k != max_idx then
r[i, k] = damping * r[i, k] + (1 - damping) * (s[i, k] - max_val)

end
end

end
for k in range(n_samples) do

max_val = -inf
max_idx = -1 for i in range(n_samples) do

if i != k then
val = max(0, r[i, k]) if val > max_val then

max_val = val
max_idx = i

end
end

end
for i in range(n_samples) do

if i != k then
val = max(0, r[max_idx, k])
a[i, k] = damping * a[i, k] + (1 - damping) * min(r[i, k], val)

end
end

end
if abs(r + a - s).max() < tol then

break
end

end
exemplars = argmax(r + a, axis=1)
clusters = [[] for _ in range(n_samples)]
for for i in range(n_samples) do

clusters[exemplars[i]].append(i)
end
Output: Finally, the cluster output is a list of lists, where each sub-list contains the indices of the data

points in the corresponding cluster.

3.3. Mean Shift Algorithm

The authors of [43,44] explored kernel-based clustering for a dataset X (where
X = {x1, . . . , xn}) in an s-dimensional Euclidean space Rs. This approach transforms
the data space into a high-dimensional feature space F using a kernel function to represent
inner products. Another kernel-based clustering method in the data space is the kernel
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density estimation, which estimates the density over X and identifies modes that corre-
spond to the densest regions [45]. These modes can serve as estimates of cluster centers. To
identify the modes in kernel density estimation, the mean shift, a basic gradient approach,
is used. In the following section, we will delve into the mean shift procedure.

3.3.1. Mean Shift Procedures

Mean shift techniques are utilized to identify the modes of the kernel density estima-
tion. The kernel, denoted as H : X → R, is defined by H(x) = h(

∣∣x− xj
∣∣2). The estimation

of the kernel density is derived using the following equation [46]:∫̂
H(x) =

n

∑
j=1

h(
∣∣x− xj

∣∣2)w(xj) (4)

In this equation, w(xj) is a weight function. Fukunaga and Hostetler [47] first intro-
duced the statistical properties of the gradient of the density estimation using a uniform
weight, which includes asymptotic unbiasedness, consistency, and uniform consistency.

▽
∫̂

H
(x) = 2

n

∑
j=1

(x− xj)h′(
∥∥x− xj

∥∥2
)w(xj) (5)

Assume the existence of a kernel K : X → R, such that h′(r) = ck(r), where c is a
constant. If kernel H is considered a shadow of kernel K, as defined in Ref. [48], then the
following equation holds:

▽
∫̂

H
(x) =

n

∑
j=1

k(
∥∥x− xj

∥∥2
)(xj − x)w(xj)

=

[
n

∑
j=1

k(
∥∥x− xj

∥∥2
)w(xj)

]
×

∑n
j=1 k(

∥∥x− xj
∥∥2
)w(xj)xj

∑n
j=1 k(

∥∥x− xj
∥∥2
)w(xj)


=

∫ ′
K(x)[mK(x)− x]

(6)

The generalized mean shift is expressed by the formula mK(x)− x = ▽ ˆfH(x)/ f̂K(x),
which measures the estimated density gradient. This equation was first introduced in
Reference [49] under the assumption of uniform weights. When the gradient estimator
▽ ˆfH(x) is zero, the mode estimation can be determined by:

x = mK(x) =
∑n

j=1 k(
∥∥x− xj

∥∥2
)w(xj)xj

∑n
j=1 k(

∥∥x− xj
∥∥2
)w(xj)

(7)

Here, K is the kernel, and H is its shadow. Equation (6) is known as the sample
weighted mean using kernel K”. The mean shift can be implemented in three ways. The
first method involves assigning initial values to each data point and updating each data
point’s xj with mK(xj), called blurring mean shift, where each data point and the density
estimate f̂H(x) are modified with each iteration. The second method, called non-blurring
mean shift, updates only the data point x with mK(xj), while keeping most data points and
the density estimate unchanged. The third method, called general mean shift, involves
selecting c starting values, which can be more or less than n, and updating the data point x
with mK(xj). Cheng [48] discussed the convergence properties of blurring mean shift using
Equation (6), while Comaniciu and Meer [49] presented various mean shift properties for
discrete data and their relationship with the Nadaraya–Watson estimator through kernel
regression and the robust M-estimator.

If a kernel K has a shadow H, the mean shift method can identify the modes of a
known density estimate f̂H(x), allowing for direct identification of the estimated density
shape modes. In cases where the shadow for the kernel K is unknown or does not exist,
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the mean shift method can still be useful for estimating alternative modes, such as cluster
centers, for a dataset with an unknown density function.

3.3.2. Some Special Kernels and Their Shadows

In this section, the main focus will be on investigating special kernels that possess
shadows. More specifically, we delve into Gaussian kernels Gp(x), which are the most
frequently utilized kernels that possess their own shadows [46].

Gp(x) = [g(
∥∥x− xj

∥∥2
)]p = [exp

{
−
∥∥x− xj

∥∥2/β
}
]p (8)

with their shadows SGp defined as

SGp(x) = Gp(x), p > 0 (9)

The process of mean shift, where x is reassigned as mGp(xj), is utilized to identify
the modes of the density estimate f̂ SGp(x). Cheng conducted a study on the behavior of
mean shift in cluster analysis by employing a Gaussian kernel. The maximum entropy
clustering algorithm is a specialized weight function-based Gaussian kernel mean shift.
Chen and Zhang employed a Gaussian kernel-induced distance measure to perform robust
image segmentation using spatially constrained fuzzy c-means (FCM). Yang and Wu
utilized f̂ SGp(x) as an objective function for total similarity and derived a similarity-based
clustering method (SCM) that could autonomously organize the number and size of clusters
based on the data structure [46].

Cp(x) = [c(
∥∥x− xj

∥∥2
)]p = [1 +

∥∥x− xj
∥∥2/β−1]p (10)

The Cauchy kernels, which are obtained from the Cauchy probability density function
f (x) = (1/π)(1 + x2)−1, where −∞ < x < ∞, are noteworthy kernels. Their shadows are
defined in the following manner [46]:

SCp(x) = Cp−1(x), p > 1 (11)

The process of mean shift using x ← mCp(xj) is used to locate the modes of the density
estimate f̂SCp(x). The use of Cauchy kernels is not as prevalent as other types of kernels. To
address the limitations of FCM in noisy environments, Krishnapuram and Keller proposed
the possibilistic c-means (PCM) clustering algorithm by relaxing the constraint of the fuzzy
c-partition’s summation to 1. The possibilistic membership functions were subsequently
utilized as Cauchy kernels. This is the only instance of Cauchy kernels being utilized in
clustering that we are aware of.

The flat kernel is the most basic kernel and is defined as follows [46]:

F(x) =

{
1 i f

∥∥x− xj
∥∥2 ⩽ 1,

0 i f
∥∥x− xj

∥∥2
> 1

(12)

with the Epanechnikov kernel E(x), as its shadows

E(x) =

{
1−

∥∥x− xj
∥∥2 i f

∥∥x− xj
∥∥2 ⩽ 1,

0 i f
∥∥x− xj

∥∥2
> 1

(13)

In addition, the Epanechnikov kernel’s shadow is the biweight kernel B(x).

B(x) =

{
(1−

∥∥x− xj
∥∥2
)2 i f

∥∥x− xj
∥∥2 ⩽ 1,

0 i f
∥∥x− xj

∥∥2
> 1

(14)

To provide a more general explanation, we generalize the Epanechnikov kernel E(x) into the
form of generalized Epanechnikov kernels Kp

E(x) with the parameter p defined as follows [46]:
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Kp
E(x) = [kE(

∥∥x− xj
∥∥2
)]p =

{
(1−

∥∥x− xj
∥∥2/β)p i f

∥∥x− xj
∥∥2 ⩽ β,

0 i f
∥∥x− xj

∥∥2
> β

(15)

As a result, the generalized Epanechnikov kernels Kp
E(x) have corresponding shadows

SKp
E(x), defined as [46]:

SKp
E(x) = Kp+1

E (x), p > 0 (16)

When β = 1, functions K0
E(x), K1

E(x), and K2
E(x) become F(x), E(x), and B(x), re-

spectively. To identify the modes of the estimated density function f̂ SKEp(x), we employ
the mean shift process using x replaced by mKp

E
(xj). In total, we have three categories of

kernels and their corresponding counterparts, namely Gaussian kernels Gp(x) and their
shadows SGp(x) = Gp(x), Cauchy kernels Cp(x) and their shadows SCp(x) = Cp−1(x),
and generalized Epanechnikov kernels Kp

E(x) and their shadows SKp
E(x) = Kp+1

E (x). The
corresponding density estimates can be found using the mean shift process with any of
these three kernel categories. The performance of the mean shift procedure for kernel den-
sity estimation is significantly affected by the normalization and stabilization parameters,
denoted by β and p, respectively. We will explore this topic in the next section.

3.4. K-Means

K-means clustering is a popular unsupervised machine learning algorithm used for
clustering data points into groups based on their similarity [50,51]. The algorithm aims to
minimize the sum of squared distances between the data points and their assigned cluster
centers. Here are the main steps of the algorithm:

1. Choose the number of clusters K that you want to identify and randomly initialize K
cluster centers.

2. Assign each data point to its nearest cluster center. This can be done using Euclidean
distance or other distance measures.

3. Calculate the mean of the data points in each cluster to obtain the new cluster centers.
4. Repeat steps 2 and 3 until the cluster centers converge, i.e., when the assignments of

the data points to clusters no longer change or change minimally.

Here are the equations for the steps:

Step 2: Assign each data point xi to its nearest cluster center cj:

argmin
j ||xi − cj||2 (17)

where |.| denotes the Euclidean distance.
Step 3: Calculate the mean of the data points in each cluster to obtain the new cluster centers:

cj =
1∣∣Cj
∣∣ ∑

xi∈Cj

xi (18)

where Cj is the set of data points assigned to cluster j.
Step 4: Repeat steps 2 and 3 until convergence.

The algorithm may converge to a local optimum rather than a global one, so it is often
run multiple times with different random initializations to find the best result.

K-means clustering can be extended to handle different data types and distances, as
well as more complex clustering problems, such as non-convex clusters or variable cluster
sizes. However, the algorithm is sensitive to the choice of K and the initial cluster centers,
and it may not work well with noisy or high-dimensional data.
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4. Data Point Positioning Analysis Algorithm

The DPPA algorithm is required because clustering is an essential data analysis tech-
nique that is used in various fields, such as data mining, machine learning, and pattern
recognition. Clustering helps to identify patterns, group similar data points, and extract
useful information from large datasets. However, traditional clustering algorithms, like
k-means, DBSCAN, Mean Shift, and affinity propagation, have some limitations that DPPA
aims to address.

The k-means algorithm requires the number of clusters to be specified beforehand,
which may not be known in advance. The DBSCAN algorithm assumes that the clusters
have similar densities, which may not be valid in all cases. The Mean Shift algorithm
is sensitive to the choice of the bandwidth parameter and may lead to overfitting or
underfitting. The affinity propagation algorithm requires the selection of a damping factor,
which can significantly affect the clustering results.

In contrast, the DPPA algorithm does not require any prior knowledge of the number
of clusters or the density of the data. The algorithm works by calculating the distances
between each pair of adjacent data points, and then using this information to identify
neighborhoods of data points. For each data point, the algorithm counts the number of
neighboring data points that fall within a specified distance range and builds a neighbor-
link (Table 1) that includes information about the 1-NN and Max-NN of each data point.
The algorithm then sorts the data points based on the number of neighbors in ascending
order, and clusters the data points, starting with the data point with the fewest neighbors
and following its Max-NN, until no more points can be added to the cluster. The algorithm
repeats this process for all remaining data points until all have been assigned to a cluster.
The Algorithm 3 presented below outlines the complete set of steps involved in the DPPA
clustering algorithm:

1. d(pi, pi+1) =

( 2
√
(px

i − px
i+1)

2 + (py
i − py

i+1)
2 + (pz

i − pz
i+1)

2)

2. For ∀pi determine min(d(pi, pi+1)), i = {1 . . . m} stores−−−→ ϕ(min(d(pi)), . . . , min(d(pm)))
3. Calculate the range of radius, denoted by λ, between the minimum and maximum

values of a scalar value ϕ.
4. For each point piϵδ,

(a) Compute npi, which is the count of neighboring data points within the specified
radius range λ, for a given data point pi. The calculation involves summing up
a series of ones or zeros, depending on whether the distance between pi and a
particular neighboring data point is within or outside the specified range.

(b) Construct a table (Table 1) that shows the nearest neighboring data points for
each data point dpi, including the nearest neighbor (1-NN) and maximum neigh-
bor (Max-NN):

Table 1. Details about the nearest neighboring data points.

Data Point 1-NN Max-NN

pi pa where a is some index pi → pa → pd → pe

pi pb where b is some index

pi pc where c is some index

pi pd

pi pe

Note: In the context of this statement, 1-NN refers to a data point pi , where the distance d(pi) falls within a
certain range defined by the scalar values min(ϕ) and max(ϕ). This condition applies to each data point pi , where
i is an index ranging from 1 to m. Max-NN refers to a process of linking data points, starting with a particular
point pi , including the 1-NN of pi , and continuing the linkage process until pi has no 1-NN left to be included in
the linkage.
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5. Arrange the data points pi in the neighbor-link table in a manner such that they are
sorted in ascending order based on the value of their corresponding npi.

(a) To form a cluster Ci, first place the data point pi, and then add all the data points
pk that are in the Max-NN linkage of pi.

(b) Add all the data points pj that are 1-NN (nearest neighbors) of pi to the cluster Ci.
(c) If the next data point pi+1 belongs to cluster Ck, then assign Ck to Ci and set pi

to pi+1, and repeat the process, starting from step a.
(d) Continue the process until there are no more data points left.

Algorithm 3: Data point positioning analysis algorithm.
Data: D = x1, x2, x3..., xn
AllDataPoint=[Array declare]
AllMinValue=[Array declare]
for each position i in D do

for each position j in D do
if i is not equal to j then

findPoint= 2
√
(px

i − px
j )

2 + ... + (pn
i − pn

j )
2

AllDataPoint.append([findPoint, i, j])
end

end
findMin=min(D[findPoint]) AllMinValue.append(findMin)

end
minP=min(AllMinValue)
maxP=max(AllMinValue)
FinalData=[Array declare]
for each position k in AllDataPoint do

findPoint=AllDataPoint[k][0]
if (minP ≤ f indPoint and maxP ≥ f indPoint) then

FinalData.append(AllDataPoint[k])
end

end
for each position m in FinalData do

Find the relations based on i and j in FinalData with the data point value.
There will be separate relations; every relation is a cluster.

end
Output: Cluster Labels (Class ID or “noise”) of Dataset D

5. Dataset
5.1. Dataset 1

The dataset was collected by the University of California, Irvine (UCI), and was
acquired by S. Moro, R. Laureano, and P. Cortez at the 2011 European Simulation and Mod-
eling Conference [52]. The dataset can be downloaded from [53]. The data were obtained
from a Portuguese financial institution and relate to their direct marketing campaigns,
which relied on phone calls to potential customers. Multiple calls were often required to
determine whether a customer had subscribed to the bank term deposit product or not. The
dataset contains 45,211 samples, each with 17 characteristics and no missing values [52].

Table 2 displays the features of the dataset, which are classified into three types of
attributes: numeric attributes that have a range, such as balance, campaign, Age, Pdays,
day, duration, and previous; categorical attributes that are classified into sets, such as
marital, outcome, job, contact, month, and education; and binary-categorical features that
have only two classes, represented as yes or no, such as job, marital, education, contact,
month, outcome (default, housing, loan, output).
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Table 2 shows the number of classes associated with each attribute’s name. For
example, the second attribute, titled “Job”, has several types of employment, including
unknown, management, technician, entrepreneur, self-employed, student, blue-collar,
admin, unemployed, retired, housemaid, and services. The “Marital” attribute has three
classes, which are represented by single, divorced, and married with divorce, representing
those who are divorced or widowed. The “Education” attribute has four classes, namely
unknown, secondary, primary, and tertiary. However, the “Default”, “output Loan”,
and “Housing” attributes have only two classes each. The “Contact” attribute has three
classes, including unknown, telephone, and cellular. The “Month” attribute has classes
that correspond to the names of the months, such as January and February. The “outcome”
attribute reflects the outcome of the previous marketing campaign, such as unknown, other,
failure, and success. The last column of Table 2 shows the duration for each range of
numerical-type attributes, such as the “Age” attribute, which has a duration of (18:95),
indicating that all customers or sample ages lie between 18 and 95 years.

Table 2. Details about the bank marketing dataset.

Attributes Type Kind Attributes illustration

Age Range Numeric

Job Set Categorical

(“admin”, “unknown”, “unemployed”,
“management”, “housemaid”, “entrepreneur”,

“student”, “blue-collar”, “self employed”, “retired”,
“technician”, “services”)

Marital Set Categorical marital status (“married”, “divorced”, “single”;
note: “divorced” means divorced or widowed)

Education Set Categorical (“unknown”, “secondary”, “primary”, “tertiary”)

Default Flag Binary (Categorical) Has defaulted on credit? (Yes/No in binary)

Balance Range Numeric Typical annual balance, in euros

Housing Flag Binary (Categorical) Has a mortgage loan? (Yes/No in binary)

Loan Flag Binary (Categorical) Individual loan? (Yes/No in binary) # pertaining
to the most recent campaign interaction.

Contact Set Categorical Kind of contact communication (categorical:
“unknown”, “telephone”, “cellular”)

Day Range Numeric Last contact day of the month

Month Set Categorical Year’s last month of contact (categorical: “jan”,
“feb”, “mar”, . . . , “nov”, “dec”)

Duration Range Numeric Length of the last contact, in seconds

Campaign Range Numeric Number of contacts made for this customer during
this campaign (includes the last contact)

Pdays Range Numeric
Number of days since the last contact with the

client from a prior campaign (−1 means the client
was not previously contacted)

Previous Range Numeric Number of contacts performed for this customer
prior to this campaign.

Poutcome Set Categorical
Result of the preceding marketing effort

(categorical: “unknown”, “other”,
“failure”, “success”)

Output Flag Binary (Categorical) Output variable (desired outcome): y—has the
customer made a term deposit? (Yes/No in binary)
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Likewise, the dataset includes attributes, such as the day of the month, which ranges
from 1 to 31, and the duration of the last contact made with the client, which ranges from
0 to 4918 s. However, the Pdays attribute has a domain that ranges from −1 to 871, indicating
the number of days that have passed since the client was last contacted during a previous
marketing campaign (−1 indicates that the client has not been contacted). Lastly, the previous
attribute shows the number of previous contacts made with the client, ranging from 0 to 275.

Typically, there are two primary types of methods used for analyzing and modeling
data: supervised and unsupervised learning. In supervised learning, the data input must
contain both independent predictor characteristics as well as a dependent target attribute
whose value must be estimated. The method learns how to create a model that can predict
the value of the target attribute based on the predictor attributes. Decision trees and neural
networks are some examples of supervised learning. Generally, supervised learning is most
suitable for studies where the goal is to predict a specific attribute [54].

Unsupervised learning differs from supervised learning as it does not aim to predict a
specific target attribute, but instead treats all attributes equally. The objective of unsuper-
vised learning is to recognize patterns, clusters, or other approaches for differentiating the
data, which may help uncover the relationships between the data rather than predict the
value of a target attribute. Unsupervised learning involves techniques such as correlation
analysis, statistical measures, and cluster analysis [54].

5.2. Dataset 2

The subsequent dataset was obtained from Northwestern University’s Center for Ultra-
scale Computing and Information Security (CUCIS). The synthetic-cluster datasets were
created using the IBM synthetic data generator mentioned in previous studies [55,56]. The
dataset can download from [57]. In these datasets, a predetermined number of random points
was initially selected as distinct clusters, followed by the random addition of points to these
clusters. The dataset comprises 500,000 data points distributed across 10 dimensions.

6. Results and Discussion

In this section, the experimental outcomes of the proposed data point positioning
analysis (DPPA) method are presented. Furthermore, four popular clustering methods
(Mean Shift, K-means, affinity propagation, DBSCAN) are implemented to validate and
compare the effectiveness of the proposed approach. The implemented methods are tested
on higher-dimensional datasets to examine the ability of DPPA to find the clusters. The
experimental results are illustrated as follows.

6.1. Proposed Data Point Positioning Analysis

This experiment is conducted on two publicly available datasets to validate the pro-
posed model. The performance of the proposed model is illustrated in Figures 1 and 2.
To visualize the outcomes of the proposed model, the t-SNE Python library is used. Both
figures show the number of clusters achieved with the proposed method, with different
colors representing different clusters. Figure 1 displays the experimental outcomes of the
proposed model with dataset 1, while Figure 2 displays the experimental outcomes with
dataset 2. The proposed method successfully identifies a total of 8 clusters for dataset 1 and
50 clusters for dataset 2, demonstrating its ability to handle higher-dimensional datasets,
handle noisy data, and identify the correct number of clusters. Moreover, we calculate the
silhouette coefficient for performance evaluation. With the proposed approach, a maximum
coefficient value of 0.288 is achieved for dataset 1, while a coefficient value of 0.832 is
achieved for dataset 2. We also compare the outcome of the proposed method with the
popular clustering methods. From Figure 3 and Table 3, it is evident that our proposed
method outperforms the other clustering algorithms.

Furthermore, the proposed method does not require manual parameter selection, as it
automatically determines the optimal cluster from the dataset without analyzing different
parameter combinations. To compare and validate the performance of the proposed algo-
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rithm, this study also implements four popular algorithms with the higher-dimensional
dataset. The experimental outcomes of these algorithms are presented below.

Figure 1. Data point positioning analysis clustering result for dataset 1.

Figure 2. Data point positioning analysis clustering result for dataset 2.
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Figure 3. Performance comparison of the algorithms.

Table 3. Performance evaluation of the algorithms for two datasets.

Dataset 1 Dataset 2

Methods Cluster Number Silhouette Coefficient Cluster Number Silhouette Coefficient
Mean Shift 1 N/A 1 N/A
K-means 8 0.226 50 0.832

Affinity Propagation 976 0.195 1525 0.0745
DBSCAN 8 0.288 50 0.832

Fuzzy K-means 8 0.158 50 0.832
JBOS 8 0.259 50 0.584

K-Mean++ 8 0.262 50 0.60
ECA* 8 0.001 50 −0.12
DPPA 8 0.288 50 0.832

6.2. Comparison with Four Popular Methods
6.2.1. DBSCAN

In this experimental analysis, we implement the popular DBSCAN algorithm with
two higher-dimensional datasets. The performance of DBSCAN depends on two supplied
parameters (Eps and MinPts). It is evident that a small change in Eps or MinPts can result
in a different number of clusters and a varying amount of noisy data. When Eps is too small
or MinPts is too large, DBSCAN is unable to separate nearby clusters (e.g., MinPts = 3,
Eps = 0.5 vs MinPts = 3 and Eps = 0.7). Therefore, it is necessary to search for different
parameter values to find the most optimal ones, where the algorithm provides the optimal
number of clusters without noise from the dataset. Initially, Eps is set to 0.5, and MinPts
is set to 3. In this case, DBSCAN produces a total of 89 clusters, but the noise is high
(440). For (MinPts = 4 and Eps = 0.5), DBSCAN provides 81 clusters, but the noise remains
high. Hence, it is crucial to analyze different parameter combinations to achieve optimal
noise-free clusters. For example, when the parameters (MinPts = 3 and Eps = 1.0) are used,
the algorithm produces a total of 8 clusters with no noise. In some cases, the noise is also
zero, but the algorithm fails to determine the clusters from the dataset (e.g., Eps = 1.1 and
MinPts = 3). In a similar way, we obtain a total of 50 clusters for dataset 2. In addition,
we evaluate the performance using the silhouette coefficient. By employing DBSCAN, we
obtain a coefficient value of 0.288 for dataset 1, whereas, for dataset 2, the coefficient value
reaches 0.832, which is the same as the proposed method. Although the algorithm provides
optimal outcomes with the dataset, searching and analyzing different parameter values can
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be challenging and time-consuming. In our experiment, we evaluated nearly 40 parameter
combinations to achieve optimal noise-free clusters.

6.2.2. Affinity Propagation

The affinity propagation (AP) algorithm, known for its power in clustering data, oper-
ates by considering similarities between pairs of data points and simultaneously evaluating
all data points as potential exemplars (cluster centers). It employs an iterative technique to
recursively search for clusters, where real-valued data are exchanged between data points
until a set of high-quality exemplars and their associated clusters are established. In our
experimental analysis, we implemented the AP algorithm to cluster higher-dimensional
datasets. The algorithm yielded a total of 976 clusters for dataset 1 and 1525 clusters for
dataset 2. In addition, we assess the performance using the silhouette coefficient. Employ-
ing affinity propagation, dataset 1 achieves a maximum coefficient value of 0.195, whereas
dataset 2 attains a coefficient value of 0.0745.

6.2.3. Mean Shift

Mean Shift is a powerful unsupervised clustering algorithm (non-parametric). The
Mean Shift algorithm distributes data points to clusters repeatedly by shifting data points
toward clusters with the highest data point density. This algorithm has been implemented
in this experimental analysis and is being tested with the higher-dimensional dataset.
However, in this analysis, Mean Shift is unable to find clusters from the raw higher-
dimensional datasets. For both datasets, this algorithm considers the entire dataset as a
single cluster. Since this algorithm provides only one cluster with both datasets, it is not
possible to calculate the silhouette coefficient.

6.2.4. K-Means

K-means is one of the simplest and most well-established unsupervised learning
algorithms that solves the clustering problem. It follows a basic and straightforward
method for classifying a given dataset into a defined number of clusters (assuming k
clusters). Therefore, it requires providing how many clusters are needed from the dataset.
The central concept is to identify k centroids, one for each cluster. These centroids are
positioned ingeniously as their placements affect the outcome. With this algorithm, we
achieve a total of 8 clusters for dataset 1 and 50 clusters for dataset 2. Here, we set the values
of K to 8 and 50, respectively. Since it provides the required clusters, prior knowledge of the
dataset is required. Therefore, finding the optimal number of clusters from a new dataset
is also very challenging. As each iteration produces different results, the random initial
center clustering outcomes are the average of 100 iterations. Furthermore, the evaluation of
performance is conducted by utilizing the silhouette coefficient. When applying K-means,
dataset 1 demonstrates a relatively low coefficient of 0.226, whereas dataset 2 achieves
a significantly higher coefficient of 0.832. Although the maximum coefficient value is
achieved with dataset 2, the parameter of K-means (K value = 50) is set manually.

6.2.5. Performed on Other Methods

In this study, we propose a novel clustering algorithm and compare it with four popular
clustering methods: DBSCAN, affinity propagation, Mean Shift, and K-means. These methods
are widely used by researchers to compare their algorithms. Additionally, we implemented
four state-of-the-art algorithms: evolutionary clustering algorithm star (ECA*) [58,59], fuzzy
K-means [60], junction based on object similarity (JBOS) [61], and K-means++ [62]. However,
these algorithms have some drawbacks, such as the need for manual parameter selection and
instability in producing different cluster points each time they are run. The fuzzy K-means
method may also result in a large number of missing data points for dataset 1, although it
achieves the maximum silhouette coefficient value for dataset 2. The number of clusters and
silhouette coefficients are shown in Table 3. JBOS, ECA*, and K-means++ methods provide
comparatively lower silhouette coefficient values for both datasets. The main advantage of
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using our proposed algorithm is that it is completely parameter-selection-free, eliminating the
need for prior knowledge about the datasets.

7. Conclusions

This study proposed a novel clustering algorithm (DPPA) to efficiently cluster the
higher-dimensional dataset. The proposed algorithm does not depend on any predefined
parameter value, meaning no need to analyze the values of the different parameters, like
DBSCAN. For this purpose, this approach calculates 1-NN and Max-NN without requiring
the initial manual parameter assignment by examining the positions of data points in the
dataset. Therefore, it is no longer required to define the appropriate radius Eps and the
minimum number of points MinPts, since the radius range, λ, is automatically computed
by evaluating the position and distance of the data points. The proposed algorithm
was validated using two publicly available higher-dimensional datasets. To compare the
performance of the proposed model, this study also implemented four popular clustering
algorithms. The experimental outcomes demonstrated that the proposed algorithm could
identify the right number of clusters from the higher-dimensional dataset.

The following are the main benefits of our proposed method over previous non-
parameter-free techniques:

• This study proposed a novel approach for clustering data, called data point positioning
analysis (DPPA), to enhance the efficiency of high-dimensional dataset clustering.

• In this method, there is no need to pre-specify the number of clusters; whereas tra-
ditional clustering methods often require the number of clusters to be determined
beforehand. This makes parameter-free methods more flexible and adaptable to
different datasets.

• This proposed parameter-free clustering algorithm is better able to handle noisy or
outlier data points since it uses density-based clustering techniques that do not depend
on distance measures alone.

• The study compared the proposed method to four popular clustering algorithms and demon-
strated that the proposed method achieves superior performance in identifying clusters.

In the future, we intend to compare the performance of the proposed method with
various datasets. Future research directions for decision-dependent uncertainty in cluster-
ing algorithms in critical fields, such as electricity grids and petroleum offshore platforms,
include exploring ensemble clustering techniques to improve the reliability of results, and
incorporating prior knowledge or domain expertise to enhance the accuracy and effective-
ness of the results. Developing methods for quantifying and evaluating uncertainty, as well
as investigating the impacts of different evaluation metrics on decision-making processes,
are also important areas of future work. Furthermore, applying clustering in other critical
fields and evaluating its effectiveness would contribute to the advancement of clustering
algorithms and improve decision-making processes in these fields.
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