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Abstract
This paper explores the advancements and achievements of artificial intelligence (AI) in 
computer vision (CV), particularly in the context of diagnosing and grading age-related 
macular degeneration (AMD), one of the most common leading causes of blindness and 
low vision that impact millions of patients globally. Integrating AI in biomedical engineer-
ing and healthcare has significantly enhanced the understanding and development of the 
CV application to mimic human problem-solving abilities. By leveraging AI-based mod-
els, ophthalmologists can improve the accuracy and speed of disease diagnosis, enabling 
early treatment and mitigating the severity of the conditions. This paper presents a compre-
hensive analysis of many studies on AMD published between 2014 and 2024, with more 
than 80% published after 2020. Various methodologies and techniques are examined, par-
ticularly emphasizing utilizing different retinal imaging modalities like color fundus pho-
tography and optical coherence tomography (OCT), where 66% of the studies used OCT 
datasets. This review aims to compare the efficacy of these AI-based approaches, includ-
ing machine learning and deep learning, in detecting and diagnosing different stages and 
grades of AMD based on the evaluation of different performance metrics using different 
private and public datasets. In addition, this paper introduces some suggested AI solutions 
for future work.

Keywords  Age-related macular degeneration · Artificial intelligence · Color Fundus 
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1  Introduction

Artificial intelligence (AI) and its sub-fields are rapidly expanding, playing a crucial role 
with significant implications. They are revolutionizing many sectors and driving innovation 
and advancement across various fields, from everyday routines to cutting-edge develop-
ments. AI-based technologies are becoming integral to our daily activities and are trans-
forming everything from our routine tasks to complex professional endeavors. Notable pro-
gress has been recorded in areas such as self-driving cars (Caleffi et al. 2024), physics and 
dynamics (Bilal and Sun 2020; Raja et al. 2019), farming and agriculture (Attri et al. 2024; 
Bilal et al. 2023; Vani et al. 2023).

In the biomedical sector, AI-based models analyze genetic data and improve gene impu-
tation spot (Arisdakessian et al. 2019; Feng et al. 2024), identify DNA methylation  (Bai 
et al. 2023; Yu et al. 2024; Zheng et al. 2023) that is important to regulating gene expres-
sion without changing the DNA sequence. In the healthcare sector, they automatically 
detect and diagnose diseases and identify disease risks, improving clinical service qual-
ity, patient satisfaction, and medical resource efficiency (Lee and Lee 2020; Yoon and Lee 
2018), such as detecting lung cancer (Bilal et al. 2022a, b; Elsharkawy et al. 2021; Hus-
sain Ali et al. 2023; Naseer et al. 2023; Suresh and Mohan 2022), breast cancer (Almutairi 
et al. 2023; Bilal et al. 2024a, b; Elkorany and Elsharkawy 2023; Elkorany et al. 2022), skin 
cancer (Alam et al. 2022), recognition of finger vein (Bilal et al. 2021), HIV infection (Bilal 
et al. 2021; Sabir et al. 2024; Umar et al. 2021), diabetic retinopathy (DR) (Anoop 2022; 
Bilal et al. 2021; Bilal et al. 2022; Bilal et al. 2024a, b; Elsharkawy et al. 2022a, b; Khan 
et al. 2024; Mohan et al. 2023; Sandhu et al. 2020; Sharafeldeen et al. 2021), classifying 
vision-threatening diabetic retinopathy (VTDR)  (Bilal et al. 2023; Bellemo et al. 2019; Ipp 
et al. 2021), where AI outperforms human clinical specialists in detecting and diagnosing 
different diseases, allowing for earlier treatment and prevention of disease progression.

Traditionally, detecting and diagnosing retinal disorders clinically involves patient 
screening, recording their medical history, examining their eyes, and evaluating medical 
imaging such as Color Fundus Photography (CFP), optical coherence tomography (OCT), 
and spectral domain optical coherence tomography (SD-OCT). The clinical decision is 
based on the doctor’s analytical conclusion after assessing the imaging exams, which is 
subject to human interpretation. Finally, the doctor recommends a specific prescription to 
the patient based on their condition. Figure 1 shows an overview of traditional detecting 
and diagnosing retinal disorders.

Machine learning (ML) (Mahmoudi et al. 2021) is a sub-field of AI where the machine 
learns how to imitate human behavior  (Ongsulee 2017). It plays a vital role and already 
has a significant impact on healthcare research using medical imaging. Particularly, imag-
ing technologies such as CFP, fundus auto-fluorescence imaging, OCT supplemented by 
fluorescein angiography, and OCT angiography (OCTA) without requiring any dye injec-
tion have improved the ability to identify and diagnose retinal disorders  (Ferris  III et al. 
2013). ML trains machines to develop their intelligence by learning from large amounts of 
collected data without being explicitly programmed  (Carbonell et al. 1983). The growing 
demand for tools that can assist doctors in diagnosing and treating patients more effec-
tively, along with the availability of medical imaging devices and ML, has spurred the 
development of health-related AI applications in healthcare research areas that were previ-
ously believed to be only detected by human experts (Lee and Yoon 2021).

Vision is a crucial human sense, as the predominant source of information we receive 
is acquired through visual perception. Retinal disorders are well-known causes of vision 
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impairment and blindness; they have sparked countless studies and investigations. In 2020, 
cataract, glaucoma, under-corrected refractive error, age-related macular degeneration 
(AMD), and DR were the top five main causes of visual impairment that may lead to com-
plete vision loss in the world (Bourne et al. 2021; Elsharkawy et al. 2022; Haggag et al. 
2022; Lim et al. 2012; Sleman et al. 2021; Steinmetz et al. 2021).

In the literature, ML approaches, including deep learning (DL) and transfer learning 
(TL) techniques, for producing powerful AI models that simulate human physiology have 
recorded significant successes in detecting retinal diseases and classifying grades of sever-
ity. DL, as a subset of ML, is an approach that mimics the human visual system by using 
multiple layers of convolutional neural networks (CNNs). It has been widely used for vari-
ous CV applications due to its capability of identifying patterns in images. TL techniques 
use a pre-trained model to solve a new problem. This includes transferring knowledge 
from the selected pre-trained model to a medical imaging domain rather than starting the 
learning process from scratch, which results in accelerating the training of new models 
and reducing computational resources. Figure 2 shows an overview of disease classifica-
tion and lesion detection utilizing any of the AI-based approaches, starting by inputting 
any image modalities to the chosen AI approach, where the model can either recognize 
the given disease’s various grades or determine whether the disease occurred or not. The 
input is one of many different image modalities, such as fundus and OCT images, where 
both have been utilized in the detection and identification of different retinal disorders such 
as AMD and DR. According to the trained model, the output is either binary classifica-
tion, where the model can distinguish between a normal and affected retina, or multi-way 
classification, where the model can identify the various grades of the disease. DL-based 
models have demonstrated their capabilities in different medical domains for data analy-
sis, segmentation, automated diagnosis, and potential result prediction (Chan et al. 2020; 
Elsharkawy et al. 2023).

Our primary goal is to compare different models and systems that use different AI 
approaches and techniques to detect and classify AMD based on medical imaging, such as 
CFP and OCT, to help understand AI-based models’ future role in retinal disorder diagno-
ses, especially AMD, and their significant impact on enhancing patient’s life quality and 
halting disease progression. Moreover, other retinal disorders leading to blindness typically 
require further examinations to confirm the diagnosis. We compiled tables summarizing 

Fig. 1   An illustrative figure for the flow diagram of the traditional steps for diagnosing and grading retinal 
diseases
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the detection and classification of different grades of AMD using various imaging modali-
ties. These tables include key details such as the first author of each study, the year of pub-
lication, the methods and techniques employed, performance evaluations, relevant metrics 
like accuracy, the datasets used for training and testing, and the advantages and limitations 
of the proposed models.

In this paper, we present a comprehensive survey of recent research on the detection and 
diagnosis of AMD using CFP and OCT. We analyze and discuss the advancements in CAD 
systems, evaluating their impact on patient well-being by examining their advantages and 
limitations. Furthermore, we offer clear recommendations for future research directions, 
aiming to inspire academic studies and practical initiatives. Additionally, we propose alter-
native methodologies and approaches to advance the field of AMD diagnosis, leveraging 
the potential of CFP, OCT, and OCTA technologies to enhance diagnostic accuracy and 
patient care.

This paper is organized as follows: in section Age-related Macular Degeneration, we 
introduce the prevalence and the statistical analysis of AMD, its pathophysiology and grad-
ing, different imaging modalities and diagnosis, AI approaches, and datasets used. The lit-
erature works related to AMD detection and grading are presented in section AMD Detec-
tion and Classification Approaches, showing the AI-based approaches used for diagnosing 
and distinguishing between its grades. The discussion and future directions are discussed in 
section Discussion and section Future Direction, respectively. The conclusion is presented 
in section Conclusion.

Fig. 2   An illustrative figure for the flow diagram of any CAD system for diagnosing and grading retinal 
diseases
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2 � Age‑related macular degeneration

AMD is the leading cause of irreversible blindness in developed countries, particularly in 
people over the age of 60 (Gehrs et al. 2006; Wong et al. 2014). AMD develops due to the 
dynamic interrelationship between the aging process, genetic predisposition, and diverse 
environmental risk factors such as smoking (Fleckenstein et al. 2021).

AMD affects the macula, the central part of the retina, a thin layer of tissue lining the 
inside wall of the back of the eye (Apte 2021; Hobbs and Pierce 2022). Early detection of 
AMD is essential for controlling its progression and complications, permitting a faster start 
to treatment and thus improving the overall prognosis (Schwartz and Loewenstein 2015). 
AMD grades can be determined by the quantity and size of drusen, defined as yellow reti-
nal deposits, and the presence of other retinal abnormalities, as shown in Table 1. AMD 
is diagnosed and monitored using various imaging techniques, including fundus images 
that help in detecting retinal abnormalities such as drusen and retinal pigment epithelium 
(RPE) abnormalities, whereas OCT shows changes and alterations in the composition and 
structure of retinal tissues. OCT can also be used as a measurement indicator for retinal 
thickness and reflectivity, showing changes and alterations in the composition and structure 
of retinal tissues  (Elsharkawy et  al. 2021). Retinal thickness and reflectivity can also be 
used as biomarkers for AMD, where thickening or thinning of retinal layers can indicate 
disease progression, while the presence of focal hyperreflective RPE undulation is an indi-
cator for the presence of drusen (Flores et al. 2021).

2.1 � AMD prevalence and statistical analysis

Based on three large population-based studies, the Beaver Dam Eye Study (BDES) in the 
United States, the Blue Mountains Eye Study (BMES) in Australia, and the Rotterdam 
Study (RS) in the Netherlands, the prevalence of late AMD prediction was 0.2% for people 
between 55 and 64 years, expanding to 13.1% for people over 85 years old (Mitchell et al. 
2018). According to BDES’s ten years of follow-up (Klein et al. 2007), the prevalence of 
AMD in adults older than 43 years and younger than 54 years increased by an average of 
4.2% and by 46.2% in those aged 75 and above.

The incidence of early and late AMD stages fluctuated depending on population, 
regional, and residential variables  (Deng et  al. 2022). According to Rein et  al. (2022) 
using Bayesian meta-regression on the overall findings from the Centers for Disease Con-
trol and Prevention’s (CDC) Vision and Eye Health Surveillance System (VRHSS), it was 
estimated that 12.6% of Americans aged 40 and older had AMD in 2019. It is estimated 
that the number of patients with AMD will increase to 196 million in 2020 and 288 mil-
lion in 2040  (Wong et  al. 2014), where Fig.  3 shows the predicted global prevalence in 
2040 according to  (Wong et  al. 2014). As a chronic retinal disorder causing irreversible 
vision loss, no grade of AMD can be completely cured; however, early diagnosis allows 
for sooner medical intervention, which can help in preserving eyesight and slowing its pro-
gression (Wang et al. 2022).

The most significant risk factor is age, especially among Caucasians (National Institutes 
of Health 2021). Elderly Caucasians with a family history of AMD, who are also smokers, 
are advised to improve their lifestyle. This includes quitting smoking, engaging in regu-
lar exercise, adopting a healthy diet, undergoing routine eye examinations, and addressing 
other medical issues such as hypertension and hypercholesterolemia.
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2.2 � Pathophysiology and grading

The exact pathophysiology involved in the development of AMD is unclear; however, it 
is known that the formation of drusen is a result of aging and environmental factors such 
as oxidative stress, chronic inflammation, and lipid deposition that result in changes to the 
extracellular environment (Fleckenstein et al. 2021). Drusen, presenting as focal extracel-
lular deposits, can cause vision impairment. The size and number of these deposits can 
be used to characterize AMD and estimate the risk of disease progression (Thomas et al. 
2021).

Dry AMD is classified into three grades: early, intermediate, and late dry AMD, also 
known as geographic atrophy (GA), where blind spots appear first in the parafoveal area, 
then consolidate and grow to include the foveal center, resulting in significant central vision 
loss (Fletcher et al. 2012). Dry AMD can develop into wet AMD at any point (Hobbs and 
Pierce 2022). Wet AMD is always considered a late stage, where visual loss may occur and 
develop rapidly. This occurs when choroidal neovascularization (CNV) develops under-
neath the macula  (Elsharkawy et  al. 2021). A patient diagnosed with wet AMD will be 
classified as having either active or inactive wet AMD. Inactive wet AMD has no leakage 
of blood or fluid behind the retina, but it requires periodic checks as it might become active 
again (Elsharkawy et al. 2021; Klein et al. 2002). Retinal angiomatous proliferation (RAP) 
is a subtype of wet AMD in which anastomosis forms between the choroidal and retinal 
vasculature, resulting in hyperfluorescence and hemorrhage as early and late hallmarks of 
the disease, respectively (Hobbs and Pierce 2022). Late presentation and diagnosis of RAP 
may be due to difficulty visualizing pathological changes and a complex clinical picture 
that is similar to other types of neovascularization such as polypoidal choroidal vasculopa-
thy (PCV) (Ciardella et al. 2004; Dansingani et al. 2015; Polito et al. 2006). PCV patho-
physiology is rooted in microaneurysms in the inner choroidal vessels, which can cause 
endothelial thinning and retinal epithelial detachment, resulting in visual symptoms such as 
metamorphopsia, central scotoma, and elevated orange-red lesions (Ciardella et al. 2004).

The hallmarks of AMD are the production of drusen, which are accumulations of 
proteins and lipids, and pigmentary abnormalities at the macula that are a predictor of 

Fig. 3   The predicted global prevalence of AMD in 2040
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the progression of AMD  (Hernández-Zimbrón et  al. 2018; Klein et  al. 2002; Thomas 
et  al. 2021). Changes in drusen size and density indicate a high risk of AMD develop-
ment  (Thomas et  al. 2021) and grade progression  (Ferris et  al. 2005). AMD grades are 
classified according to the evidence of soft drusen, size of the drusen, and RPE abnormali-
ties (Asia et al. 2022; Ferris III et al. 2013). Risk assessment and severity of AMD are pri-
marily dependent on the patient’s age, lifestyle factors such as smoking and nutrition, and 
family history of AMD (Al-Zamil and Yassin 2017; Ferris III et al. 2013). Figures 4 and  5 
show different fundus and OCT images to differentiate between the normal retina and 
AMD-affected retina with different grades, respectively. Table 1 shows the characteristics 

Fig. 4   Samples of retinal fundus image where A presents normal health retinal, B presents Early dry AMD 
grade where few small-sized drusen appear, C presents Intermediate dry AMD multiple intermediate-sized 
drusen and at least one large drusen appear, D presents Late dry AMD where there is evidence of GA, E 
presents Late Wet where CNV appears

Table 1   AREDS Classification of AMD

AMD grading AREDS 
category

Characteristics (shown by Fundus images and OCT scans)

No AMD 1 Almost no or few (1–5) small drusen ( < 63 μm in diameter)
Early AMD 2 Combination of multiple small drusen

(< 63 μm in diameter)
few intermediate drusen (63–125 μm ) in diameter or mild RPE abnormali-

ties
Intermediate AMD 3 Numerous intermediate drusen At least one large drusen ( > 125 μm in 

diameter)
Geographic atrophy: not involving center of fovea

Advanced AMD 4 Geographic atrophy involving fovea
Neovascular maculopathy in the form of a CNV membrane or a disciform 

scar
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and grading of AMD according to the Age-Related Eye Disease Study (AREDS)  (Al-
Zamil and Yassin 2017; Dong et al. 2021; Ferris III et al. 2013; Hobbs and Pierce 2022; 
Keel et al. 2019).

2.3 � Prevention and treatment

Strategies to prevent the development of AMD primarily target environmental risk factors. 
In addition to commonly recommended practices such as regular eye examinations, main-
taining a balanced, healthy diet, and engaging in regular exercise, protecting the eyes from 
UV light-induced oxidative stress is a key measure for preventing AMD. Smoking cessa-
tion is highly advised, given that the likelihood of developing AMD is two to three times 
higher in smokers than in non-smokers (Thornton et al. 2005). Studies have supported the 
idea that the risk of early AMD can be decreased through dietary supplementation with 
nutrients such as beta-carotene, omega-3 fatty acids, and zinc  (Di Carlo and Augustin 
2021).

Treatment options for AMD are limited, with injectable therapies predominantly tar-
geting neovascular signaling agents such as vascular endothelial growth factor (VEGF). 
These therapies were approved for use in wet AMD in 2006 and have been the mainstay in 
disease management (Maguire et al. 2016; Stahl 2020). However, the impact of anti-VEGF 
injections varies among patients, leading to reported differences in efficacy in the short 
and long term. Furthermore, central vision loss that results from irreversible photoreceptor 
atrophy does not respond to anti-VEGF injections (Fleckenstein et al. 2021).

2.4 � Imaging modalities and diagnosis

Diagnosis of AMD requires medical imaging assessment using either CFP, SD-OCT scan, 
or fluorescein angiography (Gehrs et al. 2006; Lim et al. 2012). CFP involves capturing a 
high-resolution, color image of the retina, including the macula. Follow-up imaging can 

Fig. 5   Samples of retinal OCT images where A presents normal health retina, B, C present early dry AMD 
grade where few small-sized and intermediate-sized drusen appear, D presents intermediate dry AMD, 
where multiple intermediate-sized and one large-sized drusen appear; E presents late dry AMD, where 
there is choroidal hypertransmission under the area of absent RPE, F presents inactive wet AMD where 
RPE detachment occurred, and G presents active wet AMD showing the presence of intra-retinal fluid (IRF)
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assist in tracking disease progression; however, retinal changes seen in AMD, such as atro-
phy, may be difficult to identify on fundus imaging, and studies have attempted to automate 
detection with ML (Keenan et al. 2019).

SD-OCT differs from fundus photography in that it provides detailed cross-sectional 
images of the retina and its layers. SD-OCT measures reflections from low-coherence light 
that are reflected from the retina to create depth profiles of the macula (A-scans) (Le and 
Patel 2020). The cross-sectional view of the retina allows for numerous benefits in diagnos-
ing and tracking AMD progression. The high-resolution scans contribute to the improved 
detection rates of AMD at an earlier stage, allowing for timely identification of retinal 
thickness, edema, and structural alterations (Regatieri et al. 2011).

Three-dimensional Fourier-domain OCT (3D-FD-OCT) can also be used in diag-
nosing and following patients with AMD; however, its use is not common in clinical 
practice(Menke et al. 2008). 3D-FD-OCT differs from SD-OCT in that it provides a higher 
number of acquired B-scans, yielding high-definition 3D images  (Bouma et  al. 2009). 
3D-FD-OCT can provide isolated 3D images of certain retinal layers for visualization of 
the presence and extent of drusen, RPE detachment, and CNV.

CFP is widely used for retinal disease detection. It is available in clinical settings, faster, 
and lower in cost than OCT. CFP detects the retinal surface abnormality and visualizes 
retinal disease lesions, while OCT provides more detailed information, assessing the retinal 
thickness and giving more details about retinal morphology and layers. The limitations of 
CFP are due to its 2D image production, lack of visualization details (Saleh et al. 2022), 
and having lower sensitivity than OCT in identifying CNV of the lesion of wet AMD (Vic-
tor 2019). Meanwhile, OCT has limitations in grading CNV, therefore combining other 
imaging modalities with OCT.

2.5 � AI approaches in AMD

Nowadays, developing healthcare-related AI applications to detect disease is encouraged 
due to the need for developing tools to assist doctors in the early diagnosis of diseases, as 
well as the availability of medical imaging technologies and the success records of using 
ML approaches architecture in developing powerful models. Applying AI approaches, par-
ticularly via computer vision (CV), affects ophthalmology and plays an important role in 
scientific research. Whereas AI-based CAD systems analyze medical images with high 
accuracy, assisting in diagnosing and detecting retinal disorders such as AMD through 
examining different medical imaging modalities such as CFP and OCT scans. These sys-
tems provide consistent, accurate outcomes, helping in the early diagnosis of the disease, 
detecting its severity level, and identifying its different biomarkers and lesions, enhancing 
the patient’s everyday living conditions.

In ML, the machine learns how to imitate human behavior  (Ongsulee 2017). Its 
approaches include Support Vector Machine (SVM) (Hearst et al. 1998) , K-nearest neigh-
bor (k-NN) (Peterson 2009) , decision tree (DT) (Song and Ying 2015) , logistic regres-
sion (LR), and Naive Bayes (NB) (Rish et al. 2001) methods. ML approaches have shown 
promising outcomes, nevertheless, they have time-consuming constraints due to extract-
ing features that require identifying and selecting meaningful features from data manu-
ally. Meanwhile, DL, a subset of ML, uses a deep neural network composed of multiple 
layers of interconnected neurons, inspired by the basic functionality of human brain neu-
rons. DL models learn from large datasets where the training phase adjusts the weights 
of interconnection between neurons, after which the trained model can make its own 
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decisions without human intervention. DL approaches include CNN, recurrent neural net-
works (RNN)  (Salehinejad et  al. 2017) , TL techniques, generative adversarial networks 
(GANs) (Creswell et al. 2018), vision transformers (ViTs) (Dosovitskiy et al. 2020), and 
autoencoders (AE)  (Bank et  al. 2020). AE are versatile tools in data processing tasks. 
They extract informative features and filter out noise by converting input data into minimal 
distortion outputs. They compress and reconstruct the input data through three stages: an 
encoder that compresses the input’s dimensional representation, a latent space that han-
dles the dimensionality reduction, and a decoder that reconstructs the original data. AE 
are useful for data compression, image-to-image translation, denoising, and anomaly detec-
tion. Although AE are useful for compression and dimensionality reduction challenges, we 
risk losing fine feature details and information; therefore, it requires careful tuning to avoid 
overfitting.

With the ability to generate synthetic images, GAN can help augment datasets and 
improve model robustness by generating synthetic retinal images, hence overcoming the 
limitation of the available dataset samples. Meanwhile, ViTs are DL models that use self-
attention mechanisms inspired by transformer models developed to solve natural language 
processing (NLP) challenges, offer scalability to larger input sizes, and offer flexibility in 
handling diverse input modalities. In CV, the image dataset is input to a multi-layer trans-
former encoder model, which includes self-attention layers and feedforward neural network 
layers, where the input image is divided into fixed-size patches and treated as sequences.

These techniques are powerful and effective approaches for detecting and diagnosing 
retinal disorders. However, each has its limitations. AI requires high processing costs. DL 
and ViTs require large datasets to perform efficiently with high precision; however, we can 
overcome this constraint by utilizing GAN. (Oliveira et  al. 2024) proposed StyleGAN2 
model to generate synthetic fundus images with and without AMD using CFP from iChal-
lenge-AMD, ODIR-2019, and RIADD public datasets recording Fréchet inception distance 
(FID) of 166.17. It should be considered that the generated images may not correspond to 
real-world images, even unintentionally.

Generally, CAD systems with AI-based approaches are useful for automatic data analy-
sis, segmentation, retinal disorder detection, and severity level classification. Researchers 
anticipate developing systems to diagnose AMD, predict its progression, and suggest cus-
tomized prescriptions.

2.6 � AMD datasets

Datasets are essential for training, validating, and testing models. Datasets are either pub-
lic or private (local) datasets, each with limitations and benefits that impact research out-
comes depending on the size of the data and its availability. Public datasets are accessible 
and may be large enough for training a model. However, samples may be of low quality 
and represent multiple diseases. Private datasets are accessibility restricted and tailored to 
specific disease research. Both types of datasets may be geographically biased and lack 
population diversity. Their size limitation may require applying different techniques, such 
as data augmentation, to increase dataset size artificially.

This review encompasses studies focused on diagnosing and grading AMD using pub-
licly available datasets for fundus photography and OCT scans, as listed in Table 2, includ-
ing iChallenge-AMD , ARIA , AREDS AREDS1 (2006), STARE , and OCT-based data-
sets such as Duke (Srinivasan et al. 2014), Mendeley  (Hassan et al. 2019), NOOR , and 
OCTID (Gholami et al. 2020).
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3 � AMD detection and classification approaches

Early detection of AMD can help prevent its progression; however, dry AMD may become 
wet AMD without any indications (Hobbs and Pierce 2022). In the literature, several stud-
ies have tried to classify and discriminate between AMD’s different grades and normal 
retinas  (Al-Zamil and Yassin 2017; Dong et  al. 2021; Ferris  III et  al. 2013; Hobbs and 
Pierce 2022; Keel et al. 2019; ). Different automated approaches have been researched and 
developed to identify and classify different gradings of AMD from various medical imag-
ing checks, adopting diverse ML, DL, and TL techniques.

A clinical examination conducted by a healthcare professional marks the first step in 
identifying an illness. This examination involves a thorough analysis of the patient’s medi-
cal history, symptoms, and signs, in addition to performing different imaging modalities 
to establish a diagnosis. Timely detection of an illness is crucial, allowing for prompt 
treatment and effective management, thereby mitigating its progression and potential con-
sequences. ML and AI-based techniques to identify diseases have shown potential and 
promising approaches. By evaluating massive patient information and medical records 
databases, AI systems may detect patterns and signals that humans may overlook.

(Peng et  al. 2019) developed the DeepSeeNet DL model and used a dataset consist-
ing of 58,402 fundus images for training and testing on 900 fundus images from AREDS. 
The model recorded better performance compared to human retinal specialists for detecting 
AMD and differentiating between its grades, as it recorded an accuracy of 67.1%. In con-
trast, human retinal specialists recorded an accuracy of 59.9%.

(Burlina et al. 2017) used TL with a linear support vector machine (LSVM) (Tang 2013) 
classifier and compared the performance between computer and physician grading using 
the NIH AREDS dataset consisting of 5664 fundus images. Performing the 4-Class clas-
sification experiment to detect whether it is no AMD, early AMD, intermediate AMD, or 
advanced AMD recorded an accuracy of 79.4%, whereas physician grading recorded an 
accuracy of 75.8% while the 3-Class classification experiment to discriminate between 
no or early AMD, intermediate AMD, or advanced AMD recorded an accuracy of 81.5%, 
whereas physician grading recorded an accuracy of 85.0%. On the other hand, the binary 

Table 2   Available public datasets for fundus and OCT images used for AMD analysis

Imaging type Clinical dataset Number of images Resource link

Fundus iChallenge-AMD 1200 https://​tinyu​rl.​com/​iChal​lenge​
PubDS

AREDS AREDS1 , 
AREDS2  (Clemons et al. 
2003)

72K https://​tinyu​rl.​com/​areds​
PubDS

STARE  (STARE ) 400 https://​tinyu​rl.​com/​stare​
PubDS

OCT Duke  (Srinivasan et al. 
2014)

1407 Normal, 723 AMD https://​tinyu​rl.​com/​dukeP​
ubDS

Mendeley  (Hassan et al. 
2019)

84K https://​tinyu​rl.​com/​mende​
lyPub​DS

OCTID  (Gholami et al. 
2020)

206 Normal, 55 AMD https://​tinyu​rl.​com/​octid​
PubDS

NOOR  (Rasti et al. 2017) 50 Normal, 48 AMD, 50 
DME

https://​tinyu​rl.​com/​noorP​
ubDS

https://tinyurl.com/iChallengePubDS
https://tinyurl.com/iChallengePubDS
https://tinyurl.com/aredsPubDS
https://tinyurl.com/aredsPubDS
https://tinyurl.com/starePubDS
https://tinyurl.com/starePubDS
https://tinyurl.com/dukePubDS
https://tinyurl.com/dukePubDS
https://tinyurl.com/mendelyPubDS
https://tinyurl.com/mendelyPubDS
https://tinyurl.com/octidPubDS
https://tinyurl.com/octidPubDS
https://tinyurl.com/noorPubDS
https://tinyurl.com/noorPubDS
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classification experiment recorded an accuracy of 93.4%, whereas physician grading 
recorded an accuracy of 95.2%.

3.1 � AMD detection using OCT scans

Table 3 shows several studies that implemented the binary classification for AMD detec-
tion according to the presence of different biomarkers using OCT scans. Ogundokun et al. 
(2023) implemented Inception-V3 (Szegedy et al. 2015) and applied data augmentation to 
avoid any problem related to using imbalanced OCT dataset scans, recording an overall 
accuracy of 96.41%, precision of 94.24%, AUC of 0.9633, and specificity of 94.82%. Wang 
et al. (2023) proposed an improved VGG16 (Simonyan and Zisserman 2014). The model 
recorded an accuracy of 96.62%, a sensitivity of 96%, a specificity of 96%, and an AUC of 
0.9458 using 32k OCT scans for testing and training the model. He et al. (2022) proposed 
a TL-CNN based on ResNet50 (He et al. 2016) and local outlier factor (LOF) algorithm for 
classification training the model on OCT scans, recording accuracy of 99.87%, and AUC 
of 1.00 using the UCSD dataset and accuracy of 97.56% and an AUC of 0.9954 using the 
Duke dataset. An et al. (2019) proposed two stages for classification using the VGG16 pre-
trained model. The first stage recorded an accuracy of 99.2% and an AUC of 0.999, while 
the second stage recorded an accuracy of 95.1% and an AUC of 0.992, where a private 
dataset of 1625 OCT scans was used. The first stage performed a binary classification of 
whether AMD was detected or not, while the second stage succeeded in classifying AMD 
into AMD with fluid or AMD without fluid. Thomas et  al. (2021) implemented a CNN 
composed of 7-layers. The model recorded accuracy ranging from 96.66% to 99.73% using 
four different OCT datasets for training and testing scans, with OCT scans from the Men-
deley dataset used for training and OCT scans from the OCTID, Noor, and Duke data-
sets used for testing. Hwang et al. (2021) performed a binary classification to differentiate 
between RAP and PCV, proposing a novel model for detecting neovascular AMD (nAMD) 
and distinguishing between retinal RAP and PCV. The model recorded an accuracy of 
89.1%, a sensitivity of 89.4%, and a specificity of 88.8% compared to VGG16, ResNet50, 
and Inception-V3 using a private dataset from Hangil Eye Hospital consisting of OCT 
scans for normal retina, RAP, and PCV. Wang et al. (2020) proposed a model combining 
Mel Frequency Cepstral Coefficient (MFCC) and Haralick texture features with a random 
forest classifier, recording an overall accuracy of 70.11% using a dataset consisting of 437 
OCT scans from Northwestern Memorial Hospital. Lee et al. (2017) proposed a modified 
version of the VGG16 model. The proposed model recorded an accuracy of 87.63%, and 
an ROC of 92.78%, using a dataset composed of 101,002 OCT scans. Sahoo et al. (2023) 
proposed weighted majority voting (WMV) that evaluates the weight of four different clas-
sifiers based on SVM, k-NN, DT, and LR to differentiate between dry AMD and normal 
OCT scans. The model was trained using the OCTID, recording an accuracy of 96.15%, a 
sensitivity of 95.45%, a specificity of 96.43%, a precision of 91.3%, and an AUC of 0.985. 
The proposed model used the Noor dataset for testing and recorded an accuracy of 96.94%, 
a sensitivity of 97.87%, a specificity of 96.08%, a precision of 95.83%, and an AUC of 
0.988. Although WMV improves performance by combining different models, it may con-
front limitations due to the complexity of implementation difficulties, and sensitivity to 
inadequate models that lead to overfitting risk. Motozawa et al. (2019) succeeded in detect-
ing AMD and differentiating between exudative AMD and non-exudative AMD by propos-
ing two models for classification using 20k OCT images from the Doheny Eye Centers, a 
private dataset composed of 1621 OCT scans. The first model is a CNN, and the second 
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model performed a TL-CNN based on using their already constructed pre-trained CNN 
model, recording an accuracy of 93.9%, a sensitivity of 98.4%, and a specificity of 88.3%. 
Zang et  al. (2023) proposed a DL framework composed of semi-sequential classifiers to 
perform multiple binary classifications among AMD, DR, and glaucoma to differentiate 
between the normal retina and the presence or absence of the respective diseases, recording 
accuracy of 94.53%, a sensitivity of 88.28%, a specificity of 96.88%, and an AUC of 0.95 
for detecting AMD and accuracy of 90.19%, a sensitivity of 90%, a specificity of 90.27%, 
and an AUC of 0.91 for detecting DR, using a dataset composed of 526 OCT images. Chen 
et al. (2021) proposed a TL-CNN based on using different pre-trained models to perform 
binary classification to differentiate between AMD and diabetic macular edema (DME), 
where VGG19, ResNet101, and ResNet50 recorded the highest accuracy rates of 99.42%, 
99.19%, and 99.09%, respectively. Additionally, for multi-class classification to differenti-
ate between OCT scans of no-AMD grade, CNV, Drusen, and DME, both models recorded 
accuracy rates of 99.48%, 99.28%, and 99.28% respectively. Chen et al. (2023) proposed a 
TL-CNN based on using the ResNet50 pre-trained model to detect normal and abnormal 
OCT scans from a dataset consisting of 37,138 images gathered from Fujian Provincial 
Hospital, recording accuracy of 98.5%, a sensitivity of 98.7%, a specificity of 98.4%, and 
an F1-score of 97.7%. Although using YOLO-V3  (Redmon and Farhadi 2018) struggles 
to identify small objects, the model performed multi-class multi-label classification and 
succeeded in detecting 10 different retinal lesions, predicting and differentiating between 
AMD lesions and vitreomacular traction syndrome (VMT), and recorded an overall accu-
racy of 99%, sensitivity of 98%, specificity of 98% and f1-score of 97%. For VMT pre-
diction, the model recorded an accuracy of 99.3%, a specificity of 99.5%, a sensitivity of 
98.4%, and an F1-score of 98.4%. For AMD detection, the model recorded an accuracy of 
99.5%, a specificity of 98.3%, a sensitivity of 98.3%, and an F1-score of 97.9%.

3.2 � AMD detection using Fundus photography

Table 4 shows several studies that implemented the binary classification for AMD detection 
according to the presence of different biomarkers using fundus photography. Chakraborty 
and Pramanik (2022) implemented DCNN composed of 13 layers and applied data aug-
mentation using the iChallenge-AMD dataset. The model recorded an accuracy of 89.75% 
without data augmentation, whereas it recorded 91.69% with 4-time data augmentation 
and 99.45% with 16-time data augmentation. When using the ARIA dataset, the model 
recorded an accuracy of 90% without data augmentation, 93.03% with 4-time data aug-
mentation, and 99.55% with 16-time data augmentation. Pečiulis et  al. (2021) proposed 
a TL-CNN based for detecting AMD according to segmenting its lesion zone using dif-
ferent pre-trained models: ResNet50, ResNet101, UNet, and MobileNetV3 (Howard et al. 
2019), which recorded the best accuracy of 93.55% using a dataset from the Lithuanian 
University of Health Sciences Department of Ophthalmology. Keel et al. (2019) developed 
a DL algorithm for detecting AMD using a dataset consisting of 56,113 fundus images 
collected from the Chinese population, recording an AUC of 0.995, a sensitivity of 96.7%, 
and a specificity of 96.4%. Tan et al. (2018) implemented a DCNN composed of 14 lay-
ers and used data augmentation to avoid overfitting. The proposed model recorded an 
accuracy of 91.17%, sensitivity of 92.66%, and specificity of 88.56% by applying blind-
fold and an accuracy of 95.45%, sensitivity of 96.43%, and specificity of 93.75% when 
applying ten-fold cross-validation strategies using a dataset composed of 402 normal and 
708 AMD fundus images. Burlina et al. (2017) proposed two DCNN implementations; the 
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first DCNN-A method used the AlexNet model, and the second DCNN-U method used 
the OverFeat DCNN model. Using 13,000 fundus images from the National Institutes of 
Health (NIH) AREDS dataset, the proposed model recorded accuracy of 91.6% and 83.7% 
for the DCNN-A and DCNN-U models, respectively. Pham et al. (2022) proposed a GAN-
based model called Multi-Modal GAN (MuMo-GAN), capable of generating synthetic fun-
dus images of detecting drusen changes over time. The proposed model cannot monitor 
the progression from early to late AMD. MuMo-GAN employs a generator with 6 ResNet 
blocks, and the discriminator is implemented using PatchGAN, recording the best accuracy 
and the best FID scores of 55% and 69.6, respectively, in comparison to PAN and Pix2Pix 
models, using a dataset composed of 8196 fundus images.

3.3 � AMD grading and classification using OCT scans

Table 5 shows several studies that implemented the multi-class classification for different 
gradings of AMD using OCT scans. Yan et al. (2021) proposed ResNet34 integrated with 
convolutional block attention (CBAM) for detecting the CNV activity and distinguishing 
between a normal retina, drusen, active wet AMD, and inactive wet AMD recording pre-
cision of 93.7%, 84.3%, 81.2%, and 97.7% for normal retina, drusen, active wet AMD, 
and inactive wet, respectively, sensitivity of 96.5%, 87.3%, 80%, and 90.2% for normal 
retina, drusen, active wet AMD and inactive wet, respectively, and AUC of 0.9925, 0.9395, 
0.9476, and 0.9880 for normal retina, drusen, active wet AMD, and inactive wet, respec-
tively. The system of Elsharkawy et al. (2024) is capable of differentiating between a nor-
mal retina, AMD grades (early, intermediate, GA, inactive wet, and active wet), and non-
AMD retinal disorder. They recorded an overall accuracy of 90.82% and a kappa score of 
0.891, proposing an explainable artificial intelligence (xAI) system using the DeepLabV3+ 
network with the ResNet50 model, using a private OCT dataset composed of 1285 images. 
Their proposed model recorded sensitivity of 93.5%, 83.33%, 92.04%, 92.04%, 90.47%, 
91.35%, 91.11%, and 90.4% for normal retina, early AMD, intermediate AMD, GA, inac-
tive wet AMD, active wet AMD, and non-AMD retinal diseases, respectively, and recorded 
precision of 91.13%, 80.45%, 94.18%, 86.36%, 88.09%, 91.11%, and 95.76% for normal 
retina, early AMD, intermediate AMD, GA, inactive wet AMD, active wet AMD, and non-
AMD retinal diseases, respectively. The limitation of this study is that recording precision 
and sensitivity are lower than 84% for early AMD and intermediate AMD, respectively. 
Saha et al. (2019) proposed a TL-CNN based on using different pre-trained models, Incep-
tion-V3, ResNet50, and Inception-ResNet50, to detect and classify early AMD biomarkers 
such as intraretinal hyperreflective foci (IHRF), hyporeflective foci (hRF) within drusenoid 
lesion, and subretinal drusenoid deposit (SDD), where Inception-ResNet50 recorded good 
performance for detecting the presence of IHRF, hRF, and SDD, recording accuracy of 
89%, 88%, and 86%, respectively, using 20k OCT images from the Doheny Eye Centers. 
Azizi et al. (2024) used pre-trained medical vision transformer (MedViT) model to differ-
entiate between a normal retina, drusen, and CNV using UCSD and NEH public datasets. 
They used stitchable neural networks to select an ideal MedViT model from two MedViT 
family models (micro and tiny MedViT). Both recorded similar findings: micro MedViT 
recorded an accuracy, specificity, and sensitivity of 97.7%, 98.9%, and 97.5%, respec-
tively, using 12k samples of the NEH dataset, and recorded an accuracy, specificity, and 
sensitivity of 82.8%, 92.8%, and 80.8% respectively, using 96k samples of UCSD dataset. 
Sotoudeh-Paima et al. (2022) proposed a multi-scale CNN based on the Feature Pyramid 
Network (FPN) combined with pre-trained models VGG16, ResNet50, DenseNet121, and 
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EfficientNet-B0. When VGG16 was combined with FPN, the model recorded the best per-
formance with an accuracy of 92%, a specificity of 95.8%, and a sensitivity of 91.8%, using 
OCT images from Noor Eye Hospital (NEH) for performing a 3-class classification to dif-
ferentiate between normal, drusen, and CNV. When tested on the UCSD dataset, the model 
recorded an accuracy of 98.4%, a specificity of 97.4%, and a sensitivity of 100% for per-
forming a 4-class classification to differentiate between a normal retina, drusen, AMD, and 
DME. Leingang et al. (2023) used ResNet18 integrated with ResNet34 for detecting and 
differentiate between normal retinal and AMD grades (intermediate, GA, nAMD) accord-
ing to the presence of the biomarkers; macular atrophy (MA), and macular neovascular-
ization (MNV), drusen recording accuracy of 88.3%, sensitivity of 83.5%, specificity of 
89.9%, F1-score of 83.1%, and AUC: 0.944. Their proposed model is biased toward OCT 
images produced from the Topcon OCT scanner. Gueddena et  al. (2024) propose a cus-
tom CNN model for differentiating between normal retina, DME, and AMD, recording an 
accuracy of 99.6% using a Tunisian private dataset composed of 934 OCT images and the 
public DUKE dataset. Their proposed model recorded better accuracy than InceptionV3, 
VGG16, and VGG19. Han et  al. (2022) proposed 3 different TL-CNN pre-trained mod-
els: VGG16, VGG19, and ResNet. VGG16 recorded the best accuracy of 87.4% using a 
private dataset composed of 4749 OCT images to differentiate between normal retina and 
different grades of nAMD (PCV, RAP, and typical AMD). Akça et  al. (2024) proposed 
three different ViT-based models to differentiate between normal retina, drusen, CNV, and 
DME using a 34k OCT image from the Mendely dataset, where Mobile-ViT recorded the 
highest accuracy of 99.17%, while Tokens-To-Token Vision Transformer (T2T-ViT) and 
ViT recorded accuracy of 96.07% and 95.14%, respectively. Li and Quan (2020) proposed 
an attention mechanism for a deep residual network (Atten-ResNet), an attention-based 
deep ResNet50. This was compared to applying a TL-CNN based on 3 different pre-trained 
models: VGG16, ResNet50, and a multi-scale oriented gradient histogram using a sup-
port vector machine (HOG-SVM). The model succeeded in differentiating between CNV, 
DME, Drusen, and normal retina, recording an overall accuracy of 95.7%, and a precision 
of 95.2%, using the Mendeley dataset. Wang et al. (2020) proposed a TL-CNN based on 
using a VGG19 pre-trained model to differentiate between wet AMD, GA, drusen, and nor-
mal OCT scans. They used a dataset collected from Northwestern Memorial Hospital com-
posed of 396 OCT images for the training set and 102 images for the testing set, record-
ing an overall accuracy of 93.14%. Serener and Serte (2019) proposed a TL-CNN based 
on using different pre-trained models, AlexNet and ResNet18, to differentiate between dry 
AMD, wet AMD, DME, and normal OCT scans. ResNet18 recorded the highest accuracy 
rates of 99.5% and 98.8% for detecting dry AMD and wet AMD, respectively, using the 
Mendely dataset.

3.4 � AMD grading and classification using Fundus photography

Bhuiyan et al. (2020) implemented a DL model to perform binary classification, record-
ing an accuracy of 99.2%, sensitivity of 98.9%, and specificity of 99.5% distinguishing 
between (normal/early) and (intermediate/late). They also performed a 4-class classifica-
tion to differentiate between normal, early, intermediate, and advanced AMD, recording 
an accuracy of 96.1%. The model was also used for disease prediction, recording accu-
racy rates of 66.79% and 68.15% for predicting dry and wet AMD, respectively, for one-
year progression. For two-year progression, the model recorded accuracy rates of 66.88% 
and 67.15%, respectively, using 116K CFP from AREDS for training and the Nutritional 
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AMD Treatment-2 (NAT-2) study for validation. Table 6 shows several studies that imple-
mented the multi-class classification for different gradings of AMD using CFP. Ali et al. 
(2024) proposed AMDNet23 to diagnose three different retinal disorders and differentiate 
between normal retinal, AMD, cataract, and DR, recording an accuracy of 96.50%, speci-
ficity of 99.32%, sensitivity of 96.5%, precision of 96.51%, and F1-score of 96.49%. The 
proposed model trained on 2000 fundus images of high quality from a combination of six 
public databases: ODIR, Eye Diseases Classification from Kaggle, DR-200, Fundus Data-
set, RFMiD, and ARIA. El-Den et al. (2023) proposed an integrated AE model with TL 
based on using six different pre-trained models (ResNet50, VGG16, ResNet18, Inception-
V3, VGG19, and ResNet101) with two different optimizers to differentiate between wet, 
GA, intermediate grades, and normal retina using a private dataset consisting of 864 CFP. 
Integration with the ResNet50 pre-trained model using the SGD optimizer recorded the 
best accuracy of 96.23%, a sensitivity of 96.2%, and a specificity of 99%. Kallel and Kam-
moun (2024) used SVM to classify CFP into normal, age-related maculopathy, dry AMD, 
and nAMD with an accuracy of 98.4%, specificity of 100%, the sensitivity of 97.56%, the 
precision of 100%, F1-score of 98%, AUC of 0.9887, and kappa score of 0.9649 using 
a dataset from the Habib Bourguiba University Hospital. They employed hybrid human-
artificial intelligence (H-AI) to interact continuously and increase human cognitive abil-
ity rather than replace it. The left-right contrastive classification (LRCC) pre-processing 
operation for distinguishing between left and right eye images is considered time consump-
tion. Gour and Khanna (2021) proposed two CNN-based models to perform multi-class 
multi-label detection for normal retina, AMD, DR, hypertension, myopia, and others. The 
models were developed using four different pre-trained models: ResNet50, Inception-V3, 
MobileNet, and VGG16, with two optimizers, Adam and SGD. The VGG16 with the SGD 
optimizer was the best model, recording an accuracy of 87.16%, AUC of 0.8493, and an 
F1-score of 85.57%, using a multi-labeled dataset composed of 5000 fundus images for 8 
different ophthalmic diseases. Mookiah et al. (2014) proposed an automated AMD detec-
tion system to differentiate between the normal retina and different grades of dry AMD 
(early, intermediate, and advanced) comparing between NB, k-NN, probabilistic neural 
network (PNN), DT, and SVM classifiers. SVM recorded the highest accuracy of 90.19%, 
using a private dataset from Kasturba Medical Hospital, Manipal, India, and 95.07% using 
the ARIA dataset, and 95% using the STARE dataset.

4 � Discussion

In this review, we discussed the detection and classification of AMD. Numerous AI-based 
automated systems and procedures have been developed and explored to analyze the dis-
ease’s characteristics. We considered all relevant journal articles and conference papers up 
to June 2024. We selected publications from the past ten years (from 2014 to 2024) on the 
topic, revealing that AI helped diagnose and grade AMD using different retinal imaging 
modalities, such as CFP and OCT scans. We gathered the research publications for this 
review from the most prominent databases based on their accessibility, quality, and avail-
ability, such as PubMed, NIH, Web of Science, Google Scholar, and IEEE Xplore. DL-
based models utilizing TL methodology are gaining popularity recently, exhibiting impres-
sive results and performance in diagnosing and classifying disease grades and different 
severity levels using various retinal imaging techniques.
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Based on our literature review, Fig. 6 shows the usability of different AI approaches, 
including ML, custom CNN, and pre-trained model families, as backbone models for the 
discussed studies of detecting and prognosis of AMD diseases, demonstrating that DL has 
advanced over ML, where the VGG-family, including VGG16 and VGG19, recorded 25%, 
and ResNet-family, including ResNet50, ResNet18, and ResNet152, recorded 16%, while 
16% of the studies used ML techniques such as NB, k-NN, LSVM, random forest, and 
SVM classifiers. Additionally, Inception-Family and other pre-trained models recorded 
5% each. Figure 7 shows the highest accuracy recorded using different AI approaches for 
detecting and classifying AMD grades.

OCT scans are popular for AMD grading; meanwhile, CFP performed well in diag-
nosing AMD and detecting its grades; however, CFP alone is insufficient for diagnos-
ing nAMD as they underestimate the possible presence of CNV. To improve perfor-
mance, (Kadry et al. 2022) studies training the VGG16 pre-trained model to detect AMD 
using OCT scans combined with CFP modalities. Moreover, (Elsharkawy et al. 2024; Yan 
et  al. 2021) were capable of classifying wet AMD into active AMD and inactive AMD 
using OCT image modality.

Fig. 6   An illustrative diagram for the used models, including ML, DL, and TL pre-trained models, in AMD 
detection and classification studies throughout this review

Fig. 7   Highest recorded accuracy of the reviewed publication models in detecting and classifying AMD 
grading
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Several studies  (Burlina et  al. 2017; Chakraborty and Pramanik 2022; He et  al. 
2022; Keel et  al. 2019; Lee et  al. 2017; Ogundokun et  al. 2023; Tan et  al. 2018; 
Thomas et al. 2021; Wang et al. 2020; Wang et al. 2023; Zang et al. 2023) performed 
binary classification to detect the presence or absence of AMD. (Pečiulis et al. 2021) 
performed binary classification according to locating AMD’s lesion zone.

Some studies (Bhuiyan et al. 2020; Burlina et al. 2017; Chen et al. 2021; Chen et al. 
2023) conducted binary and n-class classification. Other studies (Akça et al. 2024; El-
Den et al. 2023; Elsharkawy et al. 2024; Han et al. 2022; Mookiah et al. 2014; Serener 
and Serte 2019; Sotoudeh-Paima et al. 2022; Wang et al. 2020) performed multi-class 
classification differentiating between AMD different grades.

The reviewed studies relied on various performance metrics, including accuracy, 
ROC curve, AUC, sensitivity, specificity, precision, kappa score, and F1-score. Fur-
thermore, Bhuiyan  et al.  (Bhuiyan et  al. 2020) proposed a model that is capable of 
anticipating AMD progression for one and two years, while Pham et  al. (2022) 
attempted to generate predictions of drusen changes over time.

The comparative results indicated that most of the reviewed literature used private 
OCT datasets to detect and grade AMD. The most commonly used public datasets are 
Mendely, recording accuracy over 95% for binary and n-way classification problems. 
Some of the reviewed publications used their private dataset for training while test-
ing and evaluating the trained model on a public dataset for detecting and classifying 
AMD grades. Figure 8 plots the accuracy values of the reviewed publication models 
used to detect and classify AMD grades using OCT datasets.

Studies that trained their proposed model using a small private dataset,   (Kadry 
et al. 2022; Kallel and Kammoun 2024; Motozawa et al. 2019; Wang et al. 2020), may 
endure biased and insufficient data limitations, which may lead to overfitting results; 
hence, it is unclear that their findings can be applied widely. Applying TL using a pre-
trained model such as ResNet50, Inception-V3, and VGG16, applying data augmenta-
tion, and testing the model using public datasets is recommended. However, (Chen 
et  al. 2021; Chen et  al. 2023; El-Den et  al. 2023; He et  al. 2022; Ogundokun et  al. 
2023; Oliveira et  al. 2024; Pečiulis et  al. 2021; Saha et  al. 2019; Serener and Serte 
2019) there is a possibility that the pre-trained model is extracting features that were 
not previously identified or overlooked by humans due to training on alternate disci-
plines. Although TL is recommended to overcome the limitations of DL-based mod-
els, VGG-family-based (Chen et al. 2021; ; Gour and Khanna 2021; Han et al. 2022; 
Sotoudeh-Paima et  al. 2022; Wang et  al. 2020)models may confront significant time 
consumption limitations due to the enormous number of parameters despite its simple 
architecture and high-performance indicators findings.

In disease detection and classification, ML techniques have been widely used, with 
a predominant focus on articles reporting DL and TL methodologies. These studies 
have demonstrated the successful detection of AMD in fundus images using various 
public and private databases.

Based on the outcomes of these studies, we recommend developing fully automated 
CAD systems using AI-based approaches to detect various ophthalmic diseases. It is 
important to note that these AI-based models are not intended to replace ophthalmolo-
gists but rather serve as facilitating tools in clinical settings. They can significantly 
expedite the process of determining the grade and severity of illnesses, thereby saving 
valuable time and resources.
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5 � Future direction

By integrating AI technology into clinical practice, ophthalmologists can leverage the 
benefits of these developed models to enhance the accuracy of their diagnostic capa-
bilities and provide more efficient medical care for patients. Many patients suffer from 
many retinal disorders; hence, developing more advanced intelligent CAD systems 
for clinical use that can detect and discriminate between different retinal disorders by 
integrating different imaging modalities, such as OCT with CFP, is important. Future 
research may investigate the gene for the disease and combine genomic data with imag-
ing techniques.

Witnessing the rapid development of NLP and transformers, studying the recorded 
medical text and clinical notes may develop an automatic reporting system that gener-
ates a sheet with the patient’s condition, including the prescribed medication. It is cru-
cial to ensure data security measures to protect patient confidentiality and adhere to AI 
ethics.

Fig. 8   Accuracy of the reviewed publication models in detecting and classifying AMD grading using public 
and private OCT datasets
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With the presence of self-attention-based models, building a hybrid architecture model 
combining CNN with ViTs may leverage the strengths of both approaches to develop a 
robust model with high-performance metrics for CV challenges.

Looking ahead, AI approaches will become increasingly prevalent and vital for retinal 
disorder screening and assessment, improving the efficiency and accessibility of examina-
tions and enhancing the accuracy of detecting and diagnosing disease severity levels.

6 � Conclusion

In conclusion, AI has the potential to accelerate diagnostic procedures, reduce clinician 
workload, and eliminate diagnostic errors caused by improper data integration. AI can 
extract characteristics from complicated and diverse imaging modalities, enabling the 
development of novel biomarkers to expand our current understanding of illnesses. DL and 
TL pre-trained models have shown remarkable achievements in diagnosing ophthalmic dis-
eases, particularly in image classification using fundus images or OCT scans. The findings 
from the DL analysis hold great promise for enhancing clinical assessments and improving 
patient medical care. This could potentially introduce newly discovered diagnostic findings 
into clinical practice or aid in developing new treatments for retinal disorders.
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