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A B S T R A C T

In this paper, we propose a novel methodology for studying the dynamics of epidemic spread, focusing on
the utilization of fundamental mathematical concepts related to piecewise differential and integral operators.
These mathematical tools play a crucial role in the process of modeling epidemic phenomena, enabling us
to investigate the behavior of infectious diseases within defined time intervals. Our primary objective is to
enhance our understanding of epidemic dynamics and the underlying influencing factors. We introduce the
Susceptible–Infectious–Recovered (SIR) model as the foundational framework, which is formulated as a system
of differential equations. Our approach involves discretizing time and employing interpolation techniques for
integrals, specifically utilizing the collocation method with Bernoulli wavelets. By incorporating piecewise
derivatives, we are able to conduct comprehensive simulations and analyses of epidemic spread under various
intervention strategies, including social distancing measures. The outcomes of our numerical simulations serve
to validate the efficacy of our proposed methodology, offering valuable insights into the intricate dynamics
of real-world epidemic scenarios. This contribution significantly advances the field of epidemic control
optimization, providing an integrated framework that seamlessly integrates fractional calculus, piecewise
differential derivatives, and the capabilities of wavelets. Our findings provide crucial guidance for policymakers
and healthcare leaders, offering a deeper understanding of the effectiveness of different control strategies. By
considering our innovative approach, we can better inform and shape epidemic control measures, ultimately
enhancing public health and fortifying our defenses against infectious diseases.

1. Introduction

Mathematical models play a crucial role in understanding and ad-
dressing emerging global issues, such as disease transmission, recovery,
and mortality. In epidemiology, mathematical models are used to ex-
plore the underlying factors that affect disease transmission and suggest
potential control measures. However, modeling real-world data can
be challenging due to variations, small sample sizes, or measurement
errors [1]. Striking a balance between simplicity and detail in these
models requires careful consideration of trade-offs between highlight-
ing general qualitative behavior and generating specific quantitative
predictions.

One of the most extensively studied models in infectious disease
dynamics is the susceptible–infected–recovered (SIR) model, renowned
for its realistic portrayal of disease spread dynamics. The SIR model
operates on the premise that populations can exist in one of three
states: susceptible, infected, or recovered (removed) [2,3]. It relies on
two fundamental assumptions: infected individuals transmit the disease
to susceptible individuals at a rate proportional to the number of

∗ Corresponding author.
E-mail address: Mutaz.Mohammad@zu.ac.ae (M. Mohammad).

infected individuals, and infected individuals recover at a constant rate.
Amid the ongoing global pandemic, diverse strategies have been imple-
mented worldwide to curb infection spread, including social distancing,
lockdowns, and quarantines, among others [4–12]. In this paper, we
propose a novel approach to optimize the control strategy of the SIR
epidemic model within specified time constraints. We utilize a colloca-
tion technique based on Bernoulli wavelets to tackle the optimization
problem and conduct numerical experiments. Our methodology en-
compasses three distinct cost functionals and determines the optimal
duration of lockdown periods.

Traditionally, the optimization of the SIR epidemic model has
involved Pontryagin’s Minimum Principle [13], constrained by finite
control resources and appropriate cost functions [14–16], coupled
with various numerical techniques [17–19]. However, our proposed
method introduces an innovative approach by harnessing the potential
of Bernoulli wavelets [20]. These wavelets, particularly suitable for
machine learning applications, not only enhance numerical accuracy
but also pave the way for future advancements in epidemic control
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optimization, utilizing our AI-based algorithm [21]. Moreover, recent
literature has presented diverse classes of local differential and integral
operators, each serving specific purposes and theoretical properties.
In our study, we adopt a form of a system of piecewise fractional
differential equations, as outlined in Section 3.1, to address certain
epidemic dynamics, particularly in the context of the Zika virus model.

Epidemic modeling aims to understand and predict the spread of in-
fectious diseases within populations. One of the fundamental challenges
in this field is capturing the complex dynamics of disease transmission,
which often exhibit non-linear and time-varying behavior. Traditional
mathematical models, such as those based on ordinary differential
equations (ODEs), may struggle to accurately represent certain aspects
of epidemic spread, particularly when confronted with discontinuities
or abrupt changes in transmission rates, intervention strategies, or
population dynamics. Piecewise differential and integral operators offer
a powerful mathematical framework for addressing these challenges in
epidemic modeling. Unlike classical derivatives, which assume contin-
uous and smooth changes in system variables, piecewise derivatives
allow for the modeling of discontinuous or piecewise continuous func-
tions. This flexibility enables researchers to capture various phenomena
observed in real-world epidemics, such as the sudden implementation
of control measures (e.g., quarantine or social distancing), fluctuations
in transmission rates due to seasonal changes or behavioral factors,
and the emergence of localized outbreaks or superspreading events. By
incorporating piecewise derivatives into epidemic models, researchers
can more accurately simulate the dynamics of infectious diseases and
assess the effectiveness of different control strategies. For example,
piecewise differential equations can be used to model the temporal
evolution of disease compartments (e.g., susceptible, infectious, and
recovered individuals) within defined time intervals, allowing for the
analysis of epidemic behavior over discrete time steps. Piecewise inte-
gral operators, on the other hand, enable the calculation of cumulative
effects, such as the total number of infections or the impact of inter-
ventions on disease transmission, over finite time intervals. The utility
of piecewise derivatives extends beyond epidemic modeling to various
other fields, including ecology, finance, and engineering. In epidemi-
ology, piecewise models have been applied to study a wide range
of infectious diseases, including influenza, HIV/AIDS, and COVID-19,
providing valuable insights into the dynamics of disease spread and
informing public health policies and interventions.

In summary, our study introduces a novel methodology for studying
epidemic spread dynamics, focusing on the utilization of fundamental
mathematical concepts such as piecewise differential and integral op-
erators. The main contribution of our research lies in the development
of a comprehensive framework that integrates advanced mathematical
tools with the SIR model, enabling detailed simulations and analyses
of epidemic phenomena within defined time intervals. By considering
concepts from fractional calculus, piecewise differential derivatives,
and wavelets, our approach offers a fresh perspective on epidemic
control optimization, paving the way for more accurate and efficient
strategies in disease management. Furthermore, we propose a novel
application of the collocation method with Bernoulli wavelets for op-
timizing control strategies within the SIR model framework, providing
enhanced numerical accuracy and efficiency. Through our study, we
aim to enhance our understanding of epidemic dynamics, optimize
control strategies, and provide valuable guidance for policymakers and
healthcare leaders in addressing current challenges in epidemic control
optimization. Overall, the incorporation of piecewise derivatives into
epidemic modeling represents a significant advancement in our ability
to understand and control infectious diseases. By capturing the com-
plex and dynamic nature of epidemic phenomena, piecewise models
offer researchers a more comprehensive and accurate tool for studying
disease transmission and developing effective strategies for epidemic
control and prevention.

2. The SIR model and numerical algorithm

The SIR model with control function through social distancing 𝑢(𝑡)
and cost function 𝑓 (𝑥, 𝑢) can be expressed as follows (see [16]):
𝑑𝑠
𝑑𝑡

= −𝑠(𝑡)(𝛽 − 𝑢(𝑡))𝑥(𝑡), (1)
𝑑𝑥
𝑑𝑡

= 𝑠(𝑡)(𝛽 − 𝑢(𝑡))𝑥(𝑡) − 𝛾𝑥(𝑡), (2)
𝑑𝑦
𝑑𝑡

= 𝑓 (𝑥, 𝑢), (3)

defined on the interval [0, 𝑇 ] with the initial conditions 𝑠(0) = 𝑠0,
𝑥(0) = 𝑥0, 𝑦(0) = 0. Here, 𝑓 , 𝛽, 𝑇 , and 𝛾 are given parameters, 𝑠
represents the density of susceptible population, 𝑥 denotes the density
of infected population of various kinds, and 𝑦 represents the recovered
population (the cost functional to be minimized). These cost functionals
are introduced to quantify the mortality rate over time.

We have employed various scenarios to assess whether different cost
functionals can result in optimal control. Thus, we are examining the
incremental change in the susceptible population while adjusting the
fluctuations in the infected population according to the chosen cost
function.

In our notation, 𝑠(𝑡) represents the portion of the population that is
healthy but vulnerable to the disease at time 𝑡, while 𝑥(𝑡) denotes the
portion of the population that is infected. According to the SIR model,
the number of individuals infected by a single infected person is directly
linked to the proportion of the population 𝑠(𝑡) that remains susceptible
to the disease.

The function to be minimized is denoted as 𝑦(𝑡𝑓 , 𝑢), or equivalently
represented as the integral

∫

𝑡𝑓

0
𝑓 (𝑥, 𝑢)𝑑𝑥.

In accordance with Refs. [14,19], we assume the following param-
eters and initial data for the model (1)–(3):

𝛽 = 0.16, 𝛾 = 0.06, 𝑠0 = 0.999, 𝑥0 = 0.001, 𝑡𝑓 = 360 𝑑𝑎𝑦𝑠, 𝑠0 + 𝑥0 ≤ 1.

We have chosen these parameters following the framework outlined
in Ref. [16] to offer insights for policymaking and epidemic man-
agement. For example, we have calibrated the parameters to mirror
the dynamics observed during the COVID-19 pandemic. Assuming an
average infection duration of 18 days, we set 𝛾 = 0.06 (= 1∕18).
The coefficients 𝛽 = 0.16 and the initial conditions 𝑥0 = 0.001, 𝑠0 =
0.999 were determined in line with findings from Refs. [14,19]. These
studies suggest that commonly used parameters for modeling COVID-
19 transmission advocate for an optimal strategy entailing immedi-
ate implementation of social distancing measures, resulting in a 60%
reduction in transmission rates, sustained over approximately 360 days.

The Reproduction Number: We adhere to standard epidemiologi-
cal terminology and define the basic reproduction rate 𝑅0 of the disease
as the number of individuals a single infected person would infect
when they are the sole carrier of the disease, with transmission at its
peak, represented as 𝑅0 = 𝛽∕𝛾. 𝑅0 quantifies the speed at which the
disease would spread in the absence of interventions, while 𝑅(𝑡) =
𝛾−1𝛽(𝑡) × 𝑠(𝑡) quantifies the rate of disease spread at time 𝑡, given
the strategy implemented by the planner and the current proportion
of the susceptible population. In our model, we estimate 𝑅0 to be
approximately 2.7 (calculated as 0.16/0.06).

There are three cost functionals tested with model (1)–(3). The first
is quadratic in both state and control, given by

𝑓 = 𝑥2 + 𝑢2. (4)

The second is quadratic in state and linear in control, expressed as

𝑓 = 30𝑥2 + 𝑢. (5)

The third cost functional is linear in both state and control, represented
as

𝑓 = 20𝑥 + 𝑢. (6)



Alexandria Engineering Journal 101 (2024) 245–253

247

M. Mohammad et al.

Fig. 1. The graphs of 𝐵𝑛, for 𝑛 = 1,… , 5.

A common approach to define the control function in a social
distancing scenario is to set 𝑢 = 0 during the no-control period 𝑡𝑛 and
𝑢 = 𝑢0 > 0 during the lock-down period 𝑡𝑙. For simplicity, we assume
𝑡𝑛 = 𝑛𝑡𝑐 and 𝑡𝑙 = 𝑙𝑡𝑐 , where 𝑛 and 𝑙 are integers and 𝑡𝑐 is the minimum
time period for implementing the social distancing policy.

With this control function definition, the optimization problem aims
to find the minimum value among the set of 𝑦(𝑡𝑓 , 𝑢𝑖), where 𝑖 ranges
from 1 to 𝑁 . The value of 𝑁 can be approximated as 2𝑡𝑓 ∕𝑡𝑐 , where 𝑡𝑓
is the final time of the simulation.

To solve this optimization problem, we employ the collocation
method, utilizing Bernoulli wavelets. Fig. 1 presents several graphs of
Bernoulli polynomials, essential in the collocation method.

The piecewise function 𝑝1,2(𝑥) is defined as follows:

𝑝1,2(𝑥) =

{

𝐵1,2(𝑥) 0 ≤ 𝑥 ≤ 1
0 otherwise,

where 𝐵1,2 represent the Bernoulli polynomials given by

𝐵1 = −1
2
+ 𝑥, 𝐵2 =

1
6
− 𝑥 + 𝑥2.

Define the wavelets based on indices 𝑗 and 𝑘 as follows:

𝜓1(𝑗, 𝑘, 𝑥) = 𝑝1(𝑥𝑗 − 𝑘)

𝜓2(𝑗, 𝑘, 𝑥) = 𝑝2(𝑥𝑗 − 𝑘)

𝜓(𝑗, 𝑘, 𝑥) = 1
2
(𝜓1(𝑗, 𝑘, 𝑥) + 𝜓2(𝑗, 𝑘, 𝑥))

Then, let us define a vector 𝛹 of length 𝑀 = 2𝑛+1, where 𝑛 = 1, 2,… ,
representing the number of collocation points:

𝛹 =
(

1, 𝜓(1, 0, 𝑥),… , 𝜓(2𝑗 , 𝑘, 𝑥), 𝜓(2𝑛, 2𝑛−1, 𝑥)
)

𝑗 = 0, 1, 2,… , 𝑛; 𝑘 = 0, 1, 2,… , 2𝑗−1

Finally, we define the integral of vector 𝛹 as follows:

𝛹𝐼 = ∫

𝑥

0
𝛹 (𝑥), 𝑑𝑥

=
(

𝑥, 𝜓𝐼 (1, 0, 𝑥),… , 𝜓𝐼 (2𝑗 , 𝑘, 𝑥), 𝜓𝐼 (2𝑛, 2𝑛−1, 𝑥)
)

where 𝑗 = 0, 1, 2,… , 𝑛 and 𝑘 = 0, 1, 2,… , 2𝑗−1.
Here, 𝜓𝐼 (𝑗, 𝑘, 𝑥) can be defined explicitly as

𝜓𝐼 (𝑗, 𝑘, 𝑥) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−𝑘 + 𝑘2
2𝑗

if 𝑗 > 0, 𝑘 = 0, 1∕𝑗 − 𝑥 < 0

−𝑥 + 3𝑘2𝑥 − 3𝑗𝑘𝑥2 + 𝑗2𝑥3

6
if 𝑗 > 0, 𝑘 = 0, 𝑥 > 0, 1∕𝑗 − 𝑥 ≥ 0

𝑘 − 𝑘3 − 𝑗𝑥 + 3𝑗𝑘2𝑥 − 3𝑗2𝑘𝑥2 + 𝑗3𝑥3

6𝑗
if 𝑗 > 0, 𝑘 > 0, 𝑘∕𝑗 − 𝑥 < 0,

1∕𝑗 + 𝑘∕𝑗 − 𝑥 ≥ 0

0 otherwise

With vectors 𝛹 and 𝛹𝐼 , we can discretize the SIR model (1)–(3) using
the following steps. First, we map the solution onto the unit interval
0 ≤ 𝑡 ≤ 1 using the substitution 𝑡 = 𝑡𝑓 𝑡′. Second, we define the
numerical solutions as follows:
�̇� = 𝑆𝛹, �̇� = 𝑋𝛹, �̇� = 𝑌 𝛹, 𝑠 = 𝑆𝛹𝐼 + 𝑐1, 𝑥 = 𝑋𝛹𝐼 + 𝑐2,

𝑦 = 𝑌 𝛹𝐼 + 𝑐3,

where 𝑆, 𝑋, 𝑌 , and 𝑐 are unknown vectors to be computed using a
discrete form of (1)–(3). This implies
𝑆𝛹 (𝑡𝑚)
𝑡𝑓

= −(𝑆𝛹𝐼 (𝑡𝑚) + 𝑐1)(𝛽 − 𝑢(𝑡𝑚))(𝑋𝛹𝐼 (𝑡𝑚) + 𝑐2),

𝑋𝛹 (𝑡𝑚)
𝑡𝑓

= (𝑆𝛹𝐼 (𝑡𝑚) + 𝑐1)(𝛽 − 𝑢(𝑡𝑚))(𝑋𝛹𝐼 (𝑡𝑚) + 𝑐2) − 𝛾𝑋𝛹𝐼 (𝑡𝑚),

𝑌 𝛹 (𝑡𝑚)
𝑡𝑓

= 𝑓 (𝑋𝛹𝐼 (𝑡𝑚), 𝑢(𝑡𝑚)), (7)

where 𝑡𝑚, 𝑚 = 1, 2,… ,𝑀 , are collocation points.
To solve the system of algebraic equations (7) for a given cost func-

tional, we employ the Newton’s iterative method for each trial function
𝑢𝑖, where 𝑖 ranges from 1 to 2𝑡𝑓 ∕𝑡𝑐 . In our numerical analysis, we choose
𝑡𝑐 = 𝑡𝑓∕8. Using this approach, we can compute the minimum value of
𝑦(1, 𝑢𝑖) for a set of trial control functions 𝑢𝑖, where 𝑖 ranges from 1 to
256.

To ensure accurate numerical solutions with an appropriate error
margin, it is essential to define a minimum number of collocation
points. To determine this, we initially solved the system of Eqs. (1)–
(3) without control, i.e., 𝑢 = 0, and with the cost functional (4) using
the Runge–Kutta method of order 8. The resulting numerical solution
was then compared to the collocation method using various numbers
of collocation points, as depicted in Fig. 2. Through this comparison,
we determined that a minimum of 32 collocation points was necessary.
Attempting to use fewer points resulted in numerical instability due to
the stiffness of the system (1)–(3), which is influenced by the small
parameter 1∕𝑡𝑓 .

The optimization results are depicted in Figs. 2, 3, and 4, repre-
senting different scenarios with varying values of 𝑢0 alongside their
corresponding cost functionals. Each case was computed using 𝑀 = 32
collocation points.

Fig. 3 illustrates the optimal solution for the cost functional (4) with
𝑢0 = 0.04 (top line) and 𝑢0 = 0.08 (bottom line). In Fig. 4, the optimal
solution is presented for the cost functional (5) with 𝑢0 = 0.08 (top line)
and 𝑢0 = 0.1 (bottom line). Lastly, Fig. 5 showcases the optimal solution
for the cost functional (6) with 𝑢0 = 0.04 (top line) and 𝑢0 = 0.06
(bottom line).

Multiple tests were conducted with a shorter minimal duration of
social distancing, set at 𝑡𝑐 = 𝑡𝑓∕16. In this scenario, 216 numerical
solutions of the SIR epidemic model were compared to minimize the
cost functional. Fig. 6 presents the data computed with the same initial
conditions, 𝑢0, and functional as in Fig. 2, but with 𝑡𝑐 = 360∕16. The
data computed with 𝑢0 = 0.08 exhibit similarities to those in Fig. 3.
However, for 𝑢0 = 0.04, a new minimum and a different state emerge.

3. Applications of piecewise derivative

In this section, we present two applications of piecewise derivative
models, focusing on the Zika virus and Optimal SIR models.

3.1. Zika virus model

The application of fractional differential calculus to tackle impor-
tant and practical challenges has experienced significant growth re-
cently. Readers are encouraged to explore the following references,
which cover a diverse range of applications for these operators. For
example, see Refs. [22–32]. In this section, we explore an application
of the SIR model (1)–(3) to the simulation of a Zika virus epidemic, a
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Fig. 2. Numerical solution of SIR epidemic model at 𝑢 = 0 by the Runge–Kutta method (solid lines) and collocation method (points) with 𝑀 = 32 (left) and 𝑀 = 64 (right).

Fig. 3. Numerical optimal solution of SIR epidemic model with the cost functional (4) at 𝑢0 = 0.04 (upper line), and 𝑢0 = 0.08 (bottom line).

disease that can be transmitted from person to person through the blood
of an infected individual. To this end, we consider an extension of the
SIR model in the form of a system of piecewise fractional differential
equations in [33] given by

𝑃𝐺
0 𝐷𝛼

𝑔𝑥1 = 𝛬ℎ − 𝛽1𝛾1𝑥1(𝑡)𝑥4(𝑡) − 𝑑1𝑥1(𝑡),
𝑃𝐺
0 𝐷𝛼

𝑔𝑥2 = 𝛽1𝛾1𝑥1(𝑡)𝑥4(𝑡) − 𝑑1𝑥2(𝑡),
𝑃𝐺
0 𝐷𝛼

𝑔𝑥3 = 𝛬𝑚 − 𝛽2𝛾2𝑥2(𝑡)𝑥3(𝑡) − 𝑑2𝑥3(𝑡),
𝑃𝐺
0 𝐷𝛼

𝑔𝑥4 = 𝛽2𝛾2𝑥2(𝑡)𝑥3(𝑡) − 𝑑2𝑥4(𝑡),

(8)

where 𝑃𝐺
0 𝐷𝛼

𝑔 denotes the global fractional derivative given by

𝑃𝐶
0 𝐷𝛼

𝑔𝑓 (𝑡) =

{

𝑓 ′(𝑡) 0 ≤ 𝑡 ≤ 𝑡1,
𝐶
0 𝐷

𝛼
𝑔𝑓 (𝑡) 𝑡1 ≤ 𝑡 ≤ 𝑇 .

(9)

Here, 𝐶
0 𝐷

𝛼
𝑔 is the classical Caputo fractional derivative, 𝛼 is the

fractional order, and we have the piecewise integral operator 𝑃𝐺0 𝐽𝑔𝑓 (𝑡),
defined as follows (referring to [33]):

𝑃𝐺
0 𝐽𝑔𝑓 (𝑡) =

{

∫ 𝑡0 𝑓 (𝜏)𝑑𝜏, for 0 ≤ 𝑡 ≤ 𝑡1,
∫ 𝑡𝑡1 𝑓 (𝜏)𝑑𝑔(𝜏), for 𝑡1 ≤ 𝑡 ≤ 𝑇 .

To approximate the Caputo fractional derivative 𝐶
0 𝐷

𝛼
𝑔 , we adopt the

piecewise derivative definition proposed in [33], which reads

𝑃𝐶
0 𝐷𝛼

𝑔𝑓 (𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑓 ′(𝑡) 0 ≤ 𝑡 ≤ 𝑡1,
𝑓 ′(𝑡)
𝑔′(𝑡)

𝑡1 ≤ 𝑡 ≤ 𝑇 ,

where

𝑔(𝑡) = 𝑡2−𝛼

2 − 𝛼
is a function that ensures the smoothness of the derivative and 𝑡1 is a
breakpoint at which the derivative switches from the classical form to
the fractional form.

To ensure the positivity and boundedness, it is necessary to consider
that on each hyperplane bounding is positive, i.e.,

𝛽1𝛾1𝑥1𝑥4 ≥ 0, 𝛽2𝛾2𝑥2𝑥3 ≥ 0, 𝛬ℎ, 𝛬𝑚 ≥ 0,

and that if ‖𝑓‖∞ = sup𝑡 |𝑓 (𝑡)|, and both 𝑓 and 𝑔 (𝑔′ ≠ 1) are
differentiable functions, then

|

𝑃𝐶
0 𝐷𝛼

𝑔𝑓 (𝑡)| =

⎧

⎪

⎨

⎪

⎩

|𝑓 ′(𝑡)| 0 ≤ 𝑡 ≤ 𝑡1
|

|

|

|

𝑓 ′(𝑡)
𝑔′(𝑡)

|

|

|

|

𝑡1 ≤ 𝑡 ≤ 𝑇
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Fig. 4. Numerical optimal solution of the SIR epidemic model with the cost functional (5) for 𝑢0 = 0.08 (upper Line) and 𝑢0 = 0.1 (bottom Line).

Fig. 5. Numerical optimal solution of the SIR epidemic model with the cost functional (6) for 𝑢0 = 0.04 (upper Line) and 𝑢0 = 0.06 (bottom Line).

≤
⎧

⎪

⎨

⎪

⎩

sup𝑡∈[0,𝑡1] |𝑓
′(𝑡)| 0 ≤ 𝑡 ≤ 𝑡1

sup𝑡∈[𝑡1 ,𝑇 ]
|

|

|

|

𝑓 ′(𝑡)
𝑔′(𝑡)

|

|

|

|

𝑡1 ≤ 𝑡 ≤ 𝑇

≤
⎧

⎪

⎨

⎪

⎩

‖

‖

𝑓 ′
‖

‖∞ 0 ≤ 𝑡 ≤ 𝑡1
‖

‖

‖

‖

𝑓 ′(𝑡)
𝑔′(𝑡)

‖

‖

‖

‖∞
𝑡1 ≤ 𝑡 ≤ 𝑇 .

The equilibrium points of the system are determined by solving the
following system of equations
𝑃𝐶
0 𝐷𝛼

𝑔𝑥𝑖 = 0, 𝑖 = 1,… , 4.

This leads to two types of equilibria. The first is the disease-free
equilibrium given by:

𝜔0 = (𝑑−11 𝛬ℎ, 0, 𝑑−12 𝛬𝑚, 0).
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Fig. 6. Numerical solution of the SIR epidemic model with the cost functional (4) at 𝑡𝑐 = 360∕16 for 𝑢0 = 0.04 (upper Line) and 𝑢0 = 0.08 (bottom Line).

The second is the endemic equilibrium, which requires numerous alge-
braic steps to be evaluated. It exists only if 𝑅0 > 1 but in our calculation
𝑅0 < 1 as will be evaluated shortly.

In this model, the basic reproduction number 𝑅0 is of utmost
biological significance as it governs the overall dynamics of the model.
It can be computed using the method introduced in [34], known as the
spectral radius denoted by 𝜌(𝑀−1), applied to the matrix 𝑀−1, where

𝑀 =

⎡

⎢

⎢

⎢

⎣

0
𝑑1𝑑2
𝛽2𝛾2𝛬𝑚

𝑑1𝑑2
𝛽1𝛾1𝛬ℎ

0

⎤

⎥

⎥

⎥

⎦

.

This yields

𝑅0 =

√

𝛽1𝛽2𝛾1𝛾2𝛬𝑚𝛬ℎ
𝑑1𝑑2

.

To assess the stability of the system, we select 𝛼 > 0 and make the
assumption that 𝑅0 < 1. Employing a Lyapunov function, we can then
establish:

𝛱(𝑡) = 𝛯1
(

𝑥1 − 𝑑−11 𝛬ℎ
(

1 + ln 𝑑−11 𝛬ℎ𝑥1
))

+ 𝛯2𝑥2
+𝛯3

(

𝑥3 − 𝑑−12 𝛬𝑚
(

1 + ln 𝑑−12 𝛬ℎ𝑥3
))

+ 𝛯4𝑥4,
(10)

for some positive constants 𝛯1, 𝑖 = 1,… , 4.
Now, by applying the time derivative 𝑃𝐶

0 𝐷𝛼
𝑔 to Eq. (10), we obtain:

𝑃𝐶
0 𝐷𝛼

𝑔𝛱(𝑡) = 𝛯1

(

1 −
𝑑−11 𝛬ℎ
𝑥1

)

𝑃𝐶
0 𝐷𝛼

𝑔𝑥1 + 𝛯2
𝑃𝐶
0 𝐷𝛼

𝑔𝑥2

+𝛯3

(

1 −
𝑑−12 𝛬𝑚
𝑥3

)

𝑃𝐶
0 𝐷𝛼

𝑔𝑥3 + 𝛯4
𝑃𝐶
0 𝐷𝛼

𝑔𝑥4.

Implementing the definitions of these derivatives as provided in
Eq. (8), we arrive at:

𝑃𝐶
0 𝐷𝛼

𝑔𝛱(𝑡) = 𝛯1

(

1 −
𝑑−11 𝛬ℎ
𝑥1

)

(

𝛬ℎ − 𝛽1𝛾1𝑥1(𝑡)𝑥4(𝑡) − 𝑑1𝑥1(𝑡)
)

+ 𝛯2(𝛽1𝛾1𝑥1(𝑡)𝑥4(𝑡) − 𝑑1𝑥2(𝑡))

+ 𝛯3

(

1 −
𝑑−12 𝛬𝑚
𝑥3

)

(𝛬𝑚 − 𝛽2𝛾2𝑥2(𝑡)𝑥3(𝑡) − 𝑑2𝑥3(𝑡))

+ 𝛯4(𝛽2𝛾2𝑥2(𝑡)𝑥3(𝑡) − 𝑑2𝑥4(𝑡)).

Simplifying the last equation yields:
𝑃𝐶
0 𝐷𝛼

𝑔𝛱(𝑡) = 𝛽1𝛾1(𝛯2 − 𝛯1)𝑥1𝑥4 + 𝛽2𝛾2(𝛯4 − 𝛯3)𝑥2𝑥3
+ (𝛯1𝛽1𝛾1𝑑

−1
1 𝛬ℎ − 𝛯4𝑑2)𝑥4 + (𝛯3𝛽1𝛾1𝑑

−1
2 𝛬𝑚 − 𝛯2𝑑1)𝑥2.

By setting

𝛯1 = 𝛽2𝛾2𝑑
−1
2 𝛬𝑚 = 𝛯2, 𝛯3 = 𝑑1 = 𝛯4,

we can simplify the equation as follows:
𝑃𝐶
0 𝐷𝛼

𝑔𝛱(𝑡) = 𝑑1𝑑2(𝑅0 − 1)𝑥4.

This implies that
𝑃𝐶
0 𝐷𝛼

𝑔𝛱(𝑡) < 0, 𝑤ℎ𝑒𝑛 𝑅0 − 1 < 0,

thereby confirming the stability of the set of unknown equations
{

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ≥ 0 𝑓𝑜𝑟 𝑖 = 1,… , 4
}

.
Now, to simulate the Zika virus epidemic, we initialize the system

with parameters sourced from [35]. These parameters include initial
population counts for susceptible individuals (𝑥1(0) = 400), infected
individuals (𝑥2(0) = 100), recovered individuals (𝑥3(0) = 600), and
blood donors (𝑥4(0) = 140). Additionally, we incorporate values for
transmission rates (𝛬ℎ = 1.2, 𝛬𝑚 = 0.3), infection rates (𝛽1 = 0.0004,
𝛽2 = 0.005), recovery rates (𝛾1 = 0.02, 𝛾2 = 0.0003), and population
loss rates due to disease-related deaths (𝑑1 = 0.004, 𝑑2 = 0.0014). The
basic reproduction rate is estimated at 𝑅0 = 3

√

3
14 ≈ 0.37115. These

parameters enable the numerical solution of the system of piecewise
fractional differential Eqs. (8), allowing for an exploration of the Zika
virus epidemic’s dynamics and the evaluation of intervention strategies.

In Fig. 7, we compute the population counts 𝑥𝑖(𝑡) for 𝑖 = 1, 2, 3, 4
using 𝛼 = 1∕2, 𝑡1 = 300, and 𝑇 = 600. Notably, the total human
population is represented by 𝑥ℎ(𝑡) = 𝑥1(𝑡)+𝑥2(𝑡), where 𝑥1 and 𝑥2 denote
the counts of susceptible and infected human individuals, respectively.
Similarly, the mosquito population is the sum of susceptible (𝑥3) and



Alexandria Engineering Journal 101 (2024) 245–253

251

M. Mohammad et al.

Fig. 7. Dynamics of human (𝑥1 , 𝑥2) and mosquito (𝑥3 , 𝑥4) populations in the Zika virus
model using piecewise derivative.

infected (𝑥4) mosquitoes, given by 𝑥𝑚 = 𝑥3 + 𝑥4. The piecewise
derivative functions as a regulatory mechanism applied simultaneously
to both human and mosquito populations.

3.2. Optimal SIR model

In the given system of equations, denoted as (1)–(3), we have three
equations describing the dynamics of the variables 𝑠(𝑡), 𝑥(𝑡), and 𝑦(𝑡).
To rewrite the system using the piecewise derivative operator 𝑃𝐺

0 𝐷𝛼
𝑔 ,

we introduce a new system where the time derivatives are replaced by
the piecewise derivative operator. The function 𝑔(𝑡) is again defined as
𝑔(𝑡) = 𝑡2−𝛼

2 − 𝛼
, where 0 < 𝛼 ≤ 1.

The 𝑃𝐺
0 𝐷𝛼

𝑔 operator applied to a function 𝑓 (𝑡) is defined as in , (again
referring to [33]):

𝑃𝐺
0 𝐷𝛼

𝑔𝑓 (𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑓 ′(𝑡), for 0 ≤ 𝑡 ≤ 𝑡1,
𝑓 ′(𝑡)
𝑔′(𝑡)

, for 𝑡1 ≤ 𝑡 ≤ 𝑇 ,

where 𝑡1 is the transition time from the first regime to the second
regime.

Additionally, we have the piecewise integral operator 𝑃𝐺
0 𝐽𝑔𝑓 (𝑡),

defined as

𝑃𝐺
0 𝐽𝑔𝑓 (𝑡) =

{

∫ 𝑡0 𝑓 (𝜏)𝑑𝜏, for 0 ≤ 𝑡 ≤ 𝑡1,
∫ 𝑡𝑡1 𝑓 (𝜏)𝑔

′(𝜏)𝑑𝜏, for 𝑡1 ≤ 𝑡 ≤ 𝑇 .

These definitions provide the necessary framework to express and
analyze the given system of equations using piecewise fractional calcu-
lus operators.

By applying the piecewise integral operator 𝑃𝐺0 𝐽𝑡 to the system (1)–
(3), we can express the variables 𝑠(𝑡), 𝑥(𝑡), and 𝑦(𝑡) in terms of their
initial values and the corresponding integrals. The resulting expressions
are as follows:

For 𝑠(𝑡):

𝑠(𝑡) =

{

𝑠(0) − ∫ 𝑡10 𝑠(𝜏)(𝛽 − 𝑢(𝜏))𝑥(𝜏)𝑑𝜏, for 0 ≤ 𝑡 ≤ 𝑡1,
𝑠(𝑡1) − ∫ 𝑡𝑡1 𝑠(𝜏)(𝛽 − 𝑢(𝜏))𝑥(𝜏)𝑔

′(𝜏)𝑑𝜏, for 𝑡1 ≤ 𝑡 ≤ 𝑇 .

For 𝑥(𝑡):

𝑥(𝑡) =

{

𝑥(0) + ∫ 𝑡10 (𝑠(𝜏)(𝛽 − 𝑢(𝜏))𝑥(𝜏) − 𝛾𝑥(𝜏)) 𝑑𝜏, for 0 ≤ 𝑡 ≤ 𝑡1,
𝑥(𝑡1) + ∫ 𝑡𝑡1 (𝑠(𝜏)(𝛽 − 𝑢(𝜏))𝑥(𝜏) − 𝛾𝑥(𝜏)) 𝑔

′(𝜏)𝑑𝜏, for 𝑡1 ≤ 𝑡 ≤ 𝑇 .

For 𝑦(𝑡):

𝑦(𝑡) =

{

𝑦(0) + ∫ 𝑡10 𝑓 (𝑥(𝜏), 𝑢(𝜏))𝑑𝜏, for 0 ≤ 𝑡 ≤ 𝑡1,
𝑦(𝑡1) + ∫ 𝑡𝑡1 𝑓 (𝑥(𝜏), 𝑢(𝜏))𝑔

′(𝜏)𝑑𝜏, for 𝑡1 ≤ 𝑡 ≤ 𝑇 .

These expressions provide a representation of the variables 𝑠(𝑡), 𝑥(𝑡),
and 𝑦(𝑡) in terms of the initial values and the corresponding integrals
involving the functions 𝑠(𝜏), 𝑥(𝜏), 𝑢(𝜏), 𝑓 (𝑥(𝜏), 𝑢(𝜏)), and the weight
function 𝑔′(𝜏).

Assuming 𝑡 = 𝑡𝑛+1 and using the initial conditions 𝑠(0) = 𝑠0, 𝑥(0) =
𝑥0, and 𝑦(0) = 0, the expressions for 𝑠(𝑡𝑛+1), 𝑥(𝑡𝑛+1), and 𝑦(𝑡𝑛+1) can be
simplified as follows:

For 𝑠(𝑡𝑛+1):

𝑠(𝑡𝑛+1) =

{

𝑠0 − ∫ 𝑡10 𝑠(𝜏)(𝛽 − 𝑢(𝜏))𝑥(𝜏)𝑑𝜏, for 0 ≤ 𝑡𝑛+1 ≤ 𝑡1,
𝑠(𝑡1) − ∫ 𝑡𝑛+1𝑡1

𝑠(𝜏)(𝛽 − 𝑢(𝜏))𝑥(𝜏)𝑔′(𝜏)𝑑𝜏, for 𝑡1 ≤ 𝑡𝑛+1 ≤ 𝑇 .

For 𝑥(𝑡𝑛+1):

𝑥(𝑡𝑛+1) =

⎧

⎪

⎨

⎪

⎩

𝑥0 + ∫ 𝑡10 (𝑠(𝜏)(𝛽 − 𝑢(𝜏))𝑥(𝜏) − 𝛾𝑥(𝜏)) 𝑑𝜏, for 0 ≤ 𝑡𝑛+1 ≤ 𝑡1,
𝑥(𝑡1) + ∫ 𝑡𝑛+1𝑡1

(𝑠(𝜏)(𝛽 − 𝑢(𝜏))𝑥(𝜏)
− 𝛾𝑥(𝜏)) 𝑔′(𝜏)𝑑𝜏, for 𝑡1 ≤ 𝑡𝑛+1 ≤ 𝑇 .

For 𝑦(𝑡𝑛+1):

𝑦(𝑡𝑛+1) =

{

∫ 𝑡10 𝑓 (𝑥(𝜏), 𝑢(𝜏))𝑑𝜏, for 0 ≤ 𝑡𝑛+1 ≤ 𝑡1,
𝑦(𝑡1) + ∫ 𝑡𝑛+1𝑡1

𝑓 (𝑥(𝜏), 𝑢(𝜏))𝑔′(𝜏)𝑑𝜏, for 𝑡1 ≤ 𝑡𝑛+1 ≤ 𝑇 .

These simplified expressions represent the values of 𝑠(𝑡𝑛+1), 𝑥(𝑡𝑛+1),
and 𝑦(𝑡𝑛+1) at time 𝑡𝑛+1 in terms of the initial values 𝑠0 and 𝑥0, the
functions 𝑠(𝜏), 𝑥(𝜏), 𝑢(𝜏), and 𝑓 (𝑥(𝜏), 𝑢(𝜏)), and the integration intervals
based on the transition time 𝑡1 and the final time 𝑇 .

Implementing the Newton polynomial interpolation formula, we
have the following:

• For 𝑠(𝑡𝑛+1), if 2 ≤ 𝑘 ≤ 𝑖, then

𝑠(𝑡𝑛+1) = 𝑠0 −
𝑖

∑

𝑘=2

( 5
12
𝑠(𝑡𝑘−2)(𝛽 − 𝑢(𝑡𝑘−2))𝑥(𝑡𝑘−2)

−4
3
𝑠(𝑡𝑘−1)(𝛽 − 𝑢(𝑡𝑘−1))𝑥(𝑡𝑘−1) +

23
12
𝑠(𝑡𝑘)(𝛽 − 𝑢(𝑡𝑘))𝑥(𝑡𝑘)

)

While if 𝑖 + 3 ≤ 𝑘 ≤ 𝑛:

𝑠(𝑡𝑛+1) = 𝑠1 −
𝑛
∑

𝑘=𝑖+3

( 5
12

(𝑔(𝑡𝑘−1) − 𝑔(𝑡𝑘−2))𝑠(𝑡𝑘−2)(𝛽 − 𝑢(𝑡𝑘−2))𝑥(𝑡𝑘−2)

−4
3
(𝑔(𝑡𝑘) − 𝑔(𝑡𝑘−1))𝑠(𝑡𝑘−1)(𝛽 − 𝑢(𝑡𝑘−1))𝑥(𝑡𝑘−1)

+23
12

(𝑔(𝑡𝑘+1) − 𝑔(𝑡𝑘))𝑠(𝑡𝑘)(𝛽 − 𝑢(𝑡𝑘))𝑥(𝑡𝑘)
)

• For 𝑥(𝑡𝑛+1), if 2 ≤ 𝑘 ≤ 𝑖, then

𝑥(𝑡𝑛+1) = 𝑥0 −
𝑖

∑

𝑘=2

( 5
12

(

𝑠(𝑡𝑘−2)(𝛽 − 𝑢(𝑡𝑘−2))𝑥(𝑡𝑘−2) − 𝛾𝑥(𝑡𝑘−2)
)

−4
3
(

𝑠(𝑡𝑘−1)(𝛽 − 𝑢(𝑡𝑘−1))𝑥(𝑡𝑘−1) − 𝛾𝑥(𝑡𝑘−1)
)

+23
12

(

𝑠(𝑡𝑘)(𝛽 − 𝑢(𝑡𝑘))𝑥(𝑡𝑘) − 𝛾𝑥(𝑡𝑘)
)

)

While if 𝑖 + 3 ≤ 𝑘 ≤ 𝑛:

𝑥(𝑡𝑛+1) = 𝑥1 −
𝑛
∑

𝑘=𝑖+3

( 5
12

(𝑔(𝑡𝑘−1) − 𝑔(𝑡𝑘−2))
(

𝑠(𝑡𝑘−2)(𝛽 − 𝑢(𝑡𝑘−2))

× 𝑥(𝑡𝑘−2) − 𝛾𝑥(𝑡𝑘−2)
)

− 4
3
(𝑔(𝑡𝑘) − 𝑔(𝑡𝑘−1))

(

𝑠(𝑡𝑘−1)(𝛽 − 𝑢(𝑡𝑘−1))𝑥(𝑡𝑘−1) − 𝛾𝑥(𝑡𝑘−1)
)

+23
12

(𝑔(𝑡𝑘+1) − 𝑔(𝑡𝑘))
(

𝑠(𝑡𝑘)(𝛽 − 𝑢(𝑡𝑘))𝑥(𝑡𝑘) − 𝛾𝑥(𝑡𝑘)
)

)
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• For 𝑦(𝑡𝑛+1), if 2 ≤ 𝑘 ≤ 𝑖, then

𝑦(𝑡𝑛+1) = 𝑦0 −
𝑖

∑

𝑘=2

( 5
12
𝑓 (𝑥(𝑡𝑘−2), 𝑢(𝑡𝑘−2)) −

4
3
𝑓 (𝑥(𝑡𝑘−1), 𝑢(𝑡𝑘−1))

+23
12
𝑓 (𝑥(𝑡𝑘), 𝑢(𝑡𝑘))

)

While if 𝑖 + 3 ≤ 𝑘 ≤ 𝑛:

𝑦(𝑡𝑛+1) = 𝑦1 −
𝑛
∑

𝑘=𝑖+3

( 5
12

(𝑔(𝑡𝑘−1) − 𝑔(𝑡𝑘−2))𝑓 (𝑥(𝑡𝑘−2), 𝑢(𝑡𝑘−2))

− 4
3
(𝑔(𝑡𝑘) − 𝑔(𝑡𝑘−1))𝑓 (𝑥(𝑡𝑘−1), 𝑢(𝑡𝑘−1))

+23
12

(𝑔(𝑡𝑘+1) − 𝑔(𝑡𝑘))𝑓 (𝑥(𝑡𝑘), 𝑢(𝑡𝑘))
)

Note that, the mathematical representation of the implementation
using Newton’s polynomial interpolation can be summarized to imple-
ment the system numerically in our desired software tool as follows:

Given data points:

𝑡 = [𝑡0, 𝑡1,… , 𝑡𝑛] (Time points)
𝑥 = [𝑥0, 𝑥1,… , 𝑥𝑛] (Values of 𝑥 at time points)
𝑦 = [𝑦0, 𝑦1,… , 𝑦𝑛] (Values of 𝑦 at time points)

Constants:

𝛽, 𝛾 (given constants)

Function for 𝑓 (𝑥, 𝑢):

𝑓 (𝑥, 𝑢) (definition of the function)

Function for 𝑔′(𝑡):

𝑔′(𝑡) (definition of the function)

Function for 𝑠(𝑡) (using Newton’s polynomial interpolation):

𝑛 = length of 𝑡
Initialize 𝑠coeffs = [0, 0,… , 0] (coefficients of the polynomial)

Compute the divided differences:

For 𝑗 = 0 to 𝑛 − 1 ∶

𝑠coeffs[𝑗] = 𝑦[𝑗]

For 𝑖 = 𝑗 − 1 to 0 ∶

𝑠coeffs[𝑖 + 1] =
𝑠coeffs[𝑖 + 1] − 𝑠coeffs[𝑖]

𝑡[𝑖 + 1] − 𝑡[𝑖]
Evaluate the polynomial at the interpolation points:

For 𝑖 = 0 to 𝑛 − 1 ∶

Set prod = 1

For 𝑗 = 0 to 𝑖 − 1 ∶

Set prod = prod × (𝑡interp − 𝑡[𝑗])

𝑠interp = 𝑠interp + 𝑠coeffs[𝑖] × prod

Function for 𝑥(𝑡) (using Newton’s polynomial interpolation):

𝑛 = length of 𝑡
Initialize 𝑥coeffs = [0, 0,… , 0] (coefficients of the polynomial)

Compute the divided differences:

For 𝑗 = 0 to 𝑛 − 1 ∶

𝑥coeffs[𝑗] = 𝑥[𝑗]

For 𝑖 = 𝑗 − 1 to 0 ∶

𝑥coeffs[𝑖 + 1] =
𝑥coeffs[𝑖 + 1] − 𝑥coeffs[𝑖]

𝑡[𝑖 + 1] − 𝑡[𝑖]
Evaluate the polynomial at the interpolation points:

For 𝑖 = 0 to 𝑛 − 1 ∶

Set prod = 1

For 𝑗 = 0 to 𝑖 − 1 ∶

Set prod = prod × (𝑡interp − 𝑡[𝑗])

𝑥interp = 𝑥interp + 𝑥coeffs[𝑖] × prod.

Function for 𝑦(𝑡) (using Newton’s polynomial interpolation):

𝑛 = length of 𝑡
Initialize 𝑦coeffs = [0, 0,… , 0] (coefficients of the polynomial)

Compute the divided differences:

For 𝑗 = 0 to 𝑛 − 1 ∶

𝑦coeffs[𝑗] = 𝑦[𝑗]

For 𝑖 = 𝑗 − 1 to 0 ∶

𝑦coeffs[𝑖 + 1] =
𝑦coeffs[𝑖 + 1] − 𝑦coeffs[𝑖]

𝑡[𝑖 + 1] − 𝑡[𝑖]
.

Evaluate the polynomial at the interpolation points:

For 𝑖 = 0 to 𝑛 − 1 ∶

Set prod = 1

For 𝑗 = 0 to 𝑖 − 1 ∶

Set prod = prod × (𝑡interp − 𝑡[𝑗])

𝑦interp = 𝑦interp + 𝑦coeffs[𝑖] × prod.

While both studies by Kruse [14] and Freddi [16] address opti-
mization challenges in compartmental epidemic models, they each offer
unique strengths and limitations. The research introduced in Kruse and
Freddi’s work presents a comprehensive system of ordinary differential
equations (ODEs) that covers classical and contemporary epidemic
spread models. Their methodology ensures well-posedness, positivity,
and uniqueness of optimal solutions, even for nonlinear cost functionals
with varied exponents. Additionally, they introduce necessary optimal-
ity conditions, deriving feedback control laws for qualitative analysis.
However, their analysis is primarily confined to linear and quadratic
cost functions, potentially encountering discontinuities in controls. In
contrast, our paper proposes an innovative method for optimizing the
control strategy of the SIR model under social distancing measures.
Considering advanced numerical techniques, such as collocation with
Bernoulli wavelets and Newton’s iterative method, we offer a robust
framework for epidemic control optimization. Our approach boasts
enhanced accuracy and efficiency, especially in determining the op-
timal duration of lock-down periods. Furthermore, the utilization of
Bernoulli wavelets opens doors to potential applications in artificial
intelligence and machine learning, broadening the versatility of our
approach. Therefore, while both studies significantly contribute to the
field of epidemic modeling and optimization, our approach stands out
for its numerical efficiency and potential applications in AI. Nonethe-
less, further research is necessary to fully explore the capabilities and
adaptability of our methodology across diverse epidemic scenarios and
population sizes. Our proposed methodology offers several advantages
in understanding epidemic spread. By investigating piecewise differ-
ential and integral operators, we introduce a novel approach that
enhances our comprehension of epidemic dynamics within finite time
intervals. The incorporation of Bernoulli wavelets facilitates efficient
simulations, enabling comprehensive analyses of epidemic behavior
under various control strategies, including social distancing measures.
However, a potential challenge of our approach lies in the complexity
associated with implementing piecewise derivatives, necessitating an
advanced mathematical expertise as discussed in [21]. Additionally,
further research is needed to assess the scalability and robustness of our
methodology across different epidemic scenarios and population sizes.
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4. Conclusion

Our investigation represents a big step forward in improving how
we control diseases, especially during times when we need to keep
our distance from each other. With the current global health crisis,
it is crucial to come up with effective plans. Mathematical tools like
the susceptible–infected–recovered (SIR) model give us important in-
formation about how diseases spread, helping leaders make the right
decisions. Our new approach offers a fresh way to make the SIR
model work better within specific timeframes. Using a collocation
with Bernoulli wavelets, we have looked closely at real-life disease
situations and figured out the best times for lockdowns. This method
is different from the usual ones, but it is more accurate and efficient
in controlling diseases. While other studies have tried different ways
to solve problems with the SIR model, our work stands out because
we used Bernoulli wavelets in a new and creative way. These wavelets
could also be useful for future work in artificial intelligence (AI) and
machine learning. Our approach opens up new ways to understand
and improve how we control diseases. Overall, our research shows the
importance of teamwork and new ways of thinking in dealing with
big global problems. By combining advanced math techniques with
insights from studying diseases, we can do a better job of keeping
people healthy in a world that is always changing.
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