
Zayed University Zayed University

ZU Scholars ZU Scholars

All Works

7-1-2024

Compiler-provenance identification in obfuscated binaries using Compiler-provenance identification in obfuscated binaries using

vision transformers vision transformers

Wasif Khan
United Arab Emirates University

Saed Alrabaee
United Arab Emirates University

Mousa Al-kfairy
Zayed University, mousa.al-kfairy@zu.ac.ae

Jie Tang
Tsinghua University

Kim Kwang Raymond Choo
The University of Texas at San Antonio

Follow this and additional works at: https://zuscholars.zu.ac.ae/works

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Khan, Wasif; Alrabaee, Saed; Al-kfairy, Mousa; Tang, Jie; and Raymond Choo, Kim Kwang, "Compiler-
provenance identification in obfuscated binaries using vision transformers" (2024). All Works. 6635.
https://zuscholars.zu.ac.ae/works/6635

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All
Works by an authorized administrator of ZU Scholars. For more information, please contact scholars@zu.ac.ae.

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F6635&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F6635&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/6635?utm_source=zuscholars.zu.ac.ae%2Fworks%2F6635&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholars@zu.ac.ae

Forensic Science International: Digital Investigation 49 (2024) 301764

Available online 5 July 2024
2666-2817/© 2024 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS USA 2024 - Selected Papers from the 24th Annual Digital Forensics Research Conference USA

Compiler-provenance identification in obfuscated binaries using
vision transformers

Wasif Khan a, Saed Alrabaee a,e,f,*, Mousa Al-kfairy b, Jie Tang c, Kim-Kwang Raymond Choo d

a Information Systems & Security, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
b College of Technological Innovation, Zayed University, United Arab Emirates
c Department of Computer Science, Tsinghua University, China
d Department of Information Systems and Cyber Security, University of Texas at San Antonio, USA
e Big Data Analytics Center, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
f Cybersecurity Research Group Center, College of IT, United Arab Emirates University, 15551, Al Ain, United Arab Emirates

A R T I C L E I N F O

Keywords:
Reverse engineering
Compiler provenance
Binary code analysis
Malware analysis

A B S T R A C T

Extracting compiler-provenance-related information (e.g., the source of a compiler, its version, its optimization
settings, and compiler-related functions) is crucial for binary-analysis tasks such as function fingerprinting,
detecting code clones, and determining authorship attribution. However, the presence of obfuscation techniques
has complicated the efforts to automate such extraction. In this paper, we propose an efficient and resilient
approach to provenance identification in obfuscated binaries using advanced pre-trained computer-vision
models. To achieve this, we transform the program binaries into images and apply a two-layer approach for
compiler and optimization prediction. Extensive results from experiments performed on a large-scale dataset
show that the proposed method can achieve an accuracy of over 98 % for both obfuscated and deobfuscated
binaries.

1. Introduction

Program provenance refers to the detailed aspects involved in the
development of a target binary; this encompasses the tools and libraries
used, along with their specific versions. A particular aspect of this,
known as “compiler-provenance identification,” concentrates on
extracting detailed information about the compiler itself, which includes
its family, version, and level of optimization. This information is pivotal,
for example, to understanding the origin and distinct characteristics of a
malware binary.

Existing approaches use different types of features to determine the
compiler provenance. Syntactic features have been used to quantify the
occurrence of a program’s attributes in an assembly such as idioms, N-
grams, and N-perms. Conversely, semantic features are obtained
through more sophisticated analyses, such as by extracting graph-based
combined features and machine learning (ML)-based embedding rep-
resentations. These include graphlets, control flow graphs (CFGs),
compiler transformation profiles (CTPs), and compiler tags (CTs).
Additionally, structural features encapsulate the control structures or

data flows within a program, for example using annotated CFGs
(ACFGs). A brief description of these features is shown in Table 1.

After the feature-extraction process, various ML algorithms can be
employed to ascertain compiler provenance based on the derived fea-
tures. Feature selection also plays a crucial role, isolating the top-k
salient features to enhance prediction accuracy. Despite the promising
efficacy of ML-based approaches in compiler-provenance identification,
their reliance on specialized, handcrafted features is noteworthy. The
extraction of such features necessitates domain-specific expertise and
problem-specific knowledge, presenting a significant challenge. More-
over, feature-selection techniques are not without their subjective biases
and inherent limitations [1, 2].

Deep-learning (DL) algorithms can facilitate the extraction of useful
features with minimal preprocessing (LeCun et al., 2015; Li et al., 2021;
Voulodimos et al., 2018; Zhao et al., 2019), but they rely on a significant
amount of training data. Obtaining such data is, however,
time-consuming and expensive. Moreover, the difficulty in generalizing
DL models across different datasets—given the changing behavior of
binaries—is a major limitation. Program binaries, which are represented

* Corresponding author. Information Systems & Security, United Arab Emirates University, 15551, Al Ain, United Arab Emirates.
E-mail addresses: kwasif@uaeu.ac.ae (W. Khan), salrabaee@uaeu.ac.ae (S. Alrabaee), mousa.al-kfairy@zu.ac.ae (M. Al-kfairy), jietang@tsinghua.edu.cn (J. Tang),

raymond.choo@fulbrightmail.org (K.-K. Raymond Choo).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2024.301764

mailto:kwasif@uaeu.ac.ae
mailto:salrabaee@uaeu.ac.ae
mailto:mousa.al-kfairy@zu.ac.ae
mailto:jietang@tsinghua.edu.cn
mailto:raymond.choo@fulbrightmail.org
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2024.301764
https://doi.org/10.1016/j.fsidi.2024.301764
https://doi.org/10.1016/j.fsidi.2024.301764
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2024.301764&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Forensic Science International: Digital Investigation 49 (2024) 301764

2

as strings of zeros and ones, can be transformed into matrices or images
(Nataraj et al., 2011). An alternative and promising approach to
compiler-provenance identification thus involves converting these bi-
naries into images and treating the identification of their compilers as a
computer-vision problem.

In this paper, we focus on deep vision for the following reasons.

• Dealing with obfuscated binaries. Previous studies have not
generally sought to work with obfuscated binaries, and approaches
designed for deobfuscated binaries experience a significant accuracy
drop (He et al., 2022). However, this limitation can be mitigated
when dealing with images, as they rely only on textural information,
as demonstrated by (Nataraj et al., 2011).

• Size of training datasets. DL models trained on large-scale datasets
such as ImageNet (Deng et al., 2009; Krizhevsky et al., 2012) can be
effectively fine-tuned for specific tasks with minimal additional
training data. These pre-trained networks serve as powerful feature
extractors that capture generalizable patterns. Multiple pre-trained
models that have been validated on large-scale datasets demon-
strate good performance across various image-recognition tasks
(LeCun et al., 2015; Voulodimos et al., 2018) (Zhao et al., 2019).
Additionally, the incorporation of data-augmentation techniques
prevents overfitting and increases the available training data; this is
particularly important when dealing with smaller datasets (Kriz-
hevsky et al., 2012).

• Multiple architectures. Previous approaches to compiler-
provenance extraction have been designed to handle a particular
architecture or to consider each architecture separately (Rosenblum
et al., 2010, 2011; Rahimian et al., 2015; Alrabaee et al., 2020; He
et al., 2022; Kim et al., 2023). However, we show that since binaries
from different platforms transformed into images have similar
textural information, the source of a program binary compiled with
any target architecture can be identified using the same model with
high accuracy.

• Efficiency. Transformer models (Vaswani et al., 2017) have also
been extended to vision transformer (ViT) architectures (Dosovitskiy

et al., 2020), which use an attention mechanism to partition an
image into patches and feed the resulting sequence of linear em-
beddings of these patches into a transformer model. The performance
of this approach surpasses that of conventional convolutional neural
network (CNN) models in various computer-vision tasks (Dosovitskiy
et al., 2020). Herein, we use ViT models for compiler-provenance
identification.

This study focused on only the GCC and Clang compilers because
they are the most commonly used cross-platform compilers (He et al.,
2022); other compilers are only compatible with a few target architec-
tures (Kim et al., 2022). Specifically, we propose a novel method to
predict the compiler family and optimization level using 8 pre-trained
networks and state-of-the-art transformer models. The compiler family
and optimization level is predicted using multiple pre-trained DL and
transformer models from the largest publicly available dataset.

This is one of the first attempts to employ pre-trained and ViT-based
models for identifying compiler provenance from mixed-architecture
binaries. We show that the proposed approach achieves promising
performance for both obfuscated and deobfuscated binaries.

2. Related approaches

Multiple studies have examined the issue of compiler provenance.
One of the first works was that of (Rosenblum et al., 2010), who focused
on identifying the source of the compiler. Their work was then extended
to predicting toolchain provenance (e.g., compiler family, source lan-
guage, and compilation options), with promising results (Rosenblum
et al., 2011). The approach outlined by (Rahimian et al., 2015) showed
that extracting different types of features—syntactic, semantic, and
structural—improves the predictive performance of
compiler-provenance identification. The authors then proposed an
ML-based approach to predict compiler version and optimization level,
which was found to achieve good results. Although these works repre-
sent some of the leading approaches to compiler-provenance identifi-
cation, they nonetheless rely on handcrafted features.

(Pizzolotto and Inoue, 2020) evaluated two DL-based models—a
CNN model and long short-term memory (LSTM) model—to predict the
compiler (GCC or Clang) and its optimization settings from a dataset of
76,000 binaries. Their experimental results showed that the CNN ach-
ieved an F-score of 0.99 for binary optimization and 0.98 for the
compiler used. The authors also showed that the CNN model was better
than the LSTM model because the former provided better accuracy and
was easy to train (Otsubo et al., 2020a). proposed the “o-glasses”
approach to visualize the x86 native code (program-code vs non-code)
using a 1D CNN model, which was found to perform well. An exten-
sion of o-glasses, o-glassesX (Otsubo et al., 2020b), uses an attention
mechanism for identifying compiler provenance, and this was also found
to produce promising results, with an accuracy of more than 0.98 in
identifying compiler family, optimization, and architecture (Benoit
et al., 2021). introduced a graph-neural-network approach for identi-
fying toolchain provenance that was also found to have good perfor-
mance (Tian et al., 2021). applied a neural-modeling-based
compiler-identification approach using CNN and recurrent neural
network (RNN) models with an attention mechanism. The authors used
a dataset of over 854,858 functions (4810 binaries) and achieved ac-
curacy levels of 98.6 %, 95.3 %, and 88.7 % in identifying the compiler
family, optimization level, and compiler version, respectively (He et al.,
2022). proposed BinProv, which uses Bidirectional Encoder Represen-
tations from Transformers (BERT)-based embedding for compiler and
optimization prediction. The authors used a subset of the BinKit dataset
(Kim et al., 2022) for evaluation. A summary of the studies conducted in
relation to identifying compiler and optimization provenance is pre-
sented in Table 2.

Table 1
Features used for determining compiler provenance. CTP: compiler trans-
formation profile; CFG: control flow graph; CCT: compiler constructor termi-
nator; CT: compiler tag; CF: compiler function; ACFG: annotated CFG.

Feature
name

Feature
type

Brief description

Idiom Syntactic Idioms are instruction sequences in assembly code
signifying specific programming constructs, helping to
reveal the code’s high-level structure.

N-gram Syntactic N-grams represent sequences of N instructions in the
binary code. They capture local patterns and
dependencies between instructions.

N-perm Syntactic N-perms involve considering permutations of N
instructions. They capture the ordering of instructions
without enforcing strict adjacency.

Graphlet Semantic Graphlets are small subgraphs within the CFG or data
flow graph.

CTP Semantic CTPs are related to the transformations applied by the
compiler during the compilation process.

CFG Semantic CFGs represent the flow of control between basic
blocks in the binary.

CCT Semantic CCTs show the relationships between constructor and
terminator functions added by the compiler.

CT Semantic CTs are annotations embedded into the binary code by
the compiler.

CF Semantic CFs refer to specific functions or routines added by the
compiler during the compilation process. These
functions may serve various purposes, including
runtime support or implementing certain
optimizations.

ACFG Structural ACFGs are an extension of traditional CFGs in which
additional annotations, such as compiler-related
details, are included.

W. Khan et al.

Forensic Science International: Digital Investigation 49 (2024) 301764

3

3. Proposed methodology

A flowchart of the proposed methodology is shown in Fig. 1. This
consists of four different modules: the dataset of program binaries,
image construction from the program binaries, DL models, and the re-
sults of compiler and optimization-level prediction (see Table 3).

3.1. Program binaries dataset

We used BinKit (Kim et al., 2022), a large-scale binary-code simi-
larity analysis benchmark consisting of over 200,000 binaries compiled
from 51 GNU software packages. This contains 1351 combinations of
compilers, compilation options, and target architectures. The binaries
are compiled for eight different architectures from nine different
compiler versions, including GCC and Clang, with five optimization
levels (O0 to O3, Os). Details about the dataset can be found in the report
of (Kim et al., 2022).

3.2. Obfuscated binaries dataset

In addition to the normal dataset, we included the obfuscated bi-
naries of the BinKit dataset. The obfuscation was conducted with the
commonly applied Obfuscator-LLVM system (Junod et al., 2015), using
its latest version with four obfuscation options: instruction substitution
(SUB), bogus control flow (BCF), control flow flattening (FLA), and a
combination of all options. Each obfuscation method was treated as a
distinct compiler during evaluation, and obfuscation was applied only
once to prevent significant increases in binary size, which might make it
challenging to process them using tools such as IDA Pro.1 For instance,
applying obfuscation twice on the a2ps binary with all three options

results in a file that is 30 times larger when compared to the original
binary (Kim et al., 2022).

3.3. Problem formulation and image dataset

Traditional methods often rely on static analysis, which may not
capture the inherent complexities of binary executables. To address this,
our approach involves transforming binary files into visual representa-
tions, which can be analyzed using advanced DL models.

Consider a binary file F consisting of a sequence of bytes b1, b2, …, bn,
where each byte bi (for 1 ≤ i ≤ n) is an integer value in the range [0,
255]. The bytes in F are grouped into triplets to form RGB values. Each
triplet (bi, bi+1, bi+2) is mapped to a pixel P in the RGB image, where P––
(R, G, B) and R = bi, G = bi+1, and B = bi+2. This process can be math-
ematically represented as:

Pj = (b3j− 2, b3j− 1, b3j)

for 1 ≤ j ≤
⌈n

3
⌉
.

The dimensions of the resulting image are a function of the total
number of bytes in F. Let W and H represent the width and height of the
image, respectively. The value of W is determined based on the file size,
and H is adjusted accordingly. This is represented as:

W = f (size(F)), H =

⌈
n
3

⌉

W
,

where f is a function that determines the width based on the file size(F).
Each RGB triplet is mapped to a pixel in the image. This mapping can

be represented as a function M from the set of triplets to a set of pixels in
the image grid:

M : {Pj}→Image Grid.

After creating the image dataset, it will be used to train and validate
several state-of-the-art DL models, which are described in the next
subsections.

3.4. DL models

In this section, we describe several pre-trained models that were used
in this study for compiler-provenance identification. All the pre-trained
DL models are based on CNNs, which provide a backbone of DL archi-
tectures. The basic structure of a CNN consists of several layers that
automatically extract features from input data. These layers include
convolutional layers, max-pooling layers, and fully connected layers. A
brief explanation of CNNs is now presented.

Table 2
Comparative summary of the compiler and optimization provenance literature (Syn): Syntactic (Sem): Semantic (Str): Structural (Auto): Automatic.

Work Features Algorithm Analysis Compilers Target Architecture

Syn Sem Str Autoa ML DL Static Dynamic

Rosenblum et al. (2010) ✓ ⨯ ⨯ ⨯ ✓ ⨯ ✓ ⨯ GCC, ICC, MSVS Intel IA-32
Rosenblum et al. (2011) ✓ ✓ ⨯ ⨯ ✓ ⨯ ✓ ⨯ GCC, ICC, MSVS Intel IA-32
Rahimian et al. (2015) ✓ ✓ ✓ ⨯ ✓ ⨯ ✓ ⨯ GCC, ICC, MVS, Clang Intel x86/x86-64
Chaki et al. (2011) ✓ ✓ ⨯ ⨯ ✓ ⨯ ✓ ⨯ VS –
Otsubo et al. (2020a) ⨯ ⨯ ⨯ ✓ ⨯ ✓ ✓ ⨯ GCC x86
Otsubo et al. (2020b) ⨯ ⨯ ⨯ ✓ ⨯ ✓ ✓ ⨯ VS, GCC, Clang, ICC x86/x86-64
Benoit et al. (2021) ⨯ ✓ ⨯ ⨯ ⨯ ✓ ✓ ⨯ GCC, ICC, MVS, Clang, MinGW Ubuntu, x64
Pizzolotto and Inoue (2020) ⨯ ⨯ ⨯ ✓ ⨯ ✓ ✓ ⨯ GCC, Clang x86 64
Lin and Gao (2021) ⨯ ✓ ⨯ ⨯ – – ✓ ⨯ Clang, GCC x86-64
He et al. (2022) ⨯ ⨯ ⨯ ✓ ⨯ ✓ ✓ ⨯ GCC, Clang x86/64
Otsubo et al. (2022) ⨯ ⨯ ⨯ ✓ ⨯ ✓ ✓ ⨯ VC, ICC, GCC, Clang x86/x86-64
Pei et al. (2021) ⨯ ⨯ ⨯ ✓ ⨯ ✓ ✓ ⨯ GCC, Clang ARM, MIPS, x86, x64
Kim et al. (2023) ✓ ✓ ⨯ ⨯ ✓ ⨯ ✓ ⨯ GCC, Clang ARM
Du et al. (2022) ⨯ ✓ ⨯ ⨯ ✓ ⨯ ✓ ✓ GCC, ICC, Clang Linux

a Does not require feature extraction such as DL-based algorithms.

Table 3
Architecture details of the selected DL models.

Model Size
(MB)

GFLOPSa Parameters Convolution
layers

Fully
connected
layers

AlexNet 233.1 0.71 62M 5 3
VGG16 527.8 15.47 138M 13 3
ResNet 44.7 1.81 25M 34 1
GoogleNet 49.7 1.50 6M 22 1
DenseNet 30.8 2.83 8M 4b 1
MobileNet 13.6 0.30 3.5M 32 1

a GFLOPS: giga floating-point operations per second.
b Dense blocks.

1 https://hex-rays.com/ida-pro/.

W. Khan et al.

https://hex-rays.com/ida-pro/

Forensic Science International: Digital Investigation 49 (2024) 301764

4

3.4.1. CNNs
CNNs are DL models that are widely used for image-related tasks,

such as image classification, object detection, and segmentation. They
are designed to automatically and adaptively learn hierarchical repre-
sentations from raw input data.

3.4.1.1. Convolutional layers. Convolutional layers convolve image
pixels with learnable filters to capture local patterns in the image data
and extract useful features from the input layer:

y(x) = f

(
∑

i=1
nwi*xi + b

)

, (1)

where x is the input, wi represents the learnable weights, b is the bias
term, * denotes the convolution operation, and f is the activation
function.

3.4.1.2. Activation function. The activation function introduces non-
linearity to the model and enhances the usability of the feature maps
obtained from the convolution layers. The rectified linear unit (ReLU) is
a commonly used activation function that aids the capture of complex
relationships and increases the speed of convergence during training. It
can be defined as:

ReLU(x) = max(0, x). (2)

3.4.1.3. Pooling layers. A pooling layer downsamples the spatial di-
mensions, thus reducing computational complexity. For instance, max-
pooling operates by selecting the maximum value within a local re-
gion and forwarding it to the next layer.

3.4.1.4. Fully connected layers. In a fully connected layer, the features
obtained from previous layers are flattened to a 1D feature vector, which
is then used for classification.

3.4.1.5. Softmax layer. A softmax layer is a final layer that is used to
classify the instances based on the features obtained from the fully
connected layer. For K classes, the softmax function is given by:

P(classi) =
ezi

∑
j=1Kezj

, (3)

where P(classi) is the probability of the input belonging to class i, zi is the
raw output for class i, and K is the total number of classes.

3.4.1.6. Dropout regularization. Dropout is a regularization technique in
which a fraction of input units are set to zero during training. This re-
duces the co-dependency between neurons and avoids overfitting. It can
be represented as:

output =
input

1 − dropout_rate
. (4)

Since all the pre-trained models are based on CNN architecture, we now
briefly explain the DL models used in this study.

3.4.2. AlexNet
AlexNet was one of the first DL models to be trained on the large-

scale ImageNet dataset, which contains more than 15 million (M) im-
ages with 1000 classes from 22,000 categories. The architecture of
AlexNet contains five convolution layers, three fully connected layers,
and 60M parameters.

3.4.3. VGG16
Visual geometry group 16 (VGG16) (Simonyan and Zisserman, 2014)

consists of small receptive fields (3 × 3) with 16 layers—13 convolution
layers and three fully connected layers—and it contains 138M
parameters.

3.4.4. ResNet
(He et al., 2016) demonstrated the challenges associated with

training deeper neural networks. Therefore, the residual network
(ResNet) architecture was introduced, incorporating residual learning
blocks with skip connections. These blocks enable the flow of informa-
tion from one layer directly to another, skipping one or more interme-
diate layers. ResNet is computationally cheaper than other models such
as VGG16, and it achieves better classification performance.

3.4.5. GoogleNet
For GoogleNet (Szegedy et al., 2015), incorporated an inception

module into a CNN; this employs multiple parallel convolutional filters
of different sizes within the same layer.

3.5. Transformers

(Vaswani et al., 2017) originally developed transformers for
sequence modeling, and they show significant advances in natural lan-
guage processing (NLP) tasks. Transformers address the key limitation of
RNNs, which is that they process inputs sequentially. Transformers use
an attention mechanism that is capable of processing sequences in
parallel, making them more efficient and also faster. After the success of
transformers, they were then extended to the computer-vision domain,
also resulting in significant improvements. We now briefly explain the
transformer used in our study.

3.5.1. ViTs
ViTs (Dosovitskiy et al., 2020) convert an image into patches

(treating them as tokens) and input a sequence of linear embeddings

Fig. 1. Schematic flowchart of the proposed framework.

W. Khan et al.

Forensic Science International: Digital Investigation 49 (2024) 301764

5

from these patches into a transformer. A ViT processes 2D images by
reshaping them into flattened 2D patches, which are linearly projected
to embeddings:

z0 = [xclass; x1pE ; x2pE;…; xNpE] + Epos, (5)

where xclass is the learnable embedding, xipE are the flattened patches,
and Epos are the position embeddings. The sequence is then input to a
transformer encoder, which consists of multiheaded self-attention
(MSA) and multilayer perceptron (MLP) blocks. CNN models work
under the assumption that image features such as 2D neighborhood
structure, locality, and translation equivariance are embedded in every
layer across the model. However, in ViT, MLP blocks exhibit local and
translational equivariance, while MSA blocks operate globally.

3.5.2. Swin transformer
Transformers use fixed-scale word tokens for NLP tasks. However,

vision tasks vary in scale; therefore, fixed-scale tokens are not suitable
for vision tasks. Furthermore, the high pixel resolution in images poses
computational-complexity challenges for the self-attention mechanism
of a ViT; hence, its challenging to adopt ViT in tasks requiring pixel-level
dense predictions. Swin transformer (SViT) was proposed to address
these challenges (Liu et al., 2021). SViT constructs hierarchical feature
maps from smaller patches and then merges these patches with neigh-
bors in the deep layers. The image is then converted into
non-overlapping patches (tokens) with a feature dimension (denoted as
C) of 48 (4 × 4 × 3) after a linear embedding layer. The SViT blocks are
applied on the patch token.

The network employs patch merging in deeper layers to create a
hierarchical representation, reducing the number of tokens through
concatenation and linear-layer application. For instance, initially, it is
(H

4 ×
W
4
)
; then it becomes

(H
8 ×

W
8
)
,
(H

16 ×
W
16
)
, and

(H
32 ×

W
32
)
. In SViT, the

MSA is replaced with a shifted window-based MSA module represented
as:

Ω(W − MSA) = 4hwC2 + 2M2hwC,

where M is the window size and h × w are the patches of an image. We
used ViT and SViT and their variants, as shown in Table 4.

4. Experimental setup and results

This section explains the experimental results of compiler-
provenance identification. We first show the compiler-identification
results, and this is followed by the optimization-identification results
with different combinations. The dataset was divided into training
(0.60), validation (0.20), and testing sets (0.20). All the results in the
tables are shown for the testing set. The experiments were conducted
with an NVIDIA Tesla V100 GPU with 32 GB RAM.

4.1. Image dataset

The conversion of images from program binaries is discussed in
Section 3.1. A sample of each from each compiler and their respective
optimizations is shown in Fig. 2.

4.2. Compiler identification

The experimental results shown in Table 5 show that ViT achieved

the best classification performance, with accuracy, precision, recall, and
F-score values all equal to 0.993; this was followed by VGG16, which
had respective values of 0.987, 0.985, 0.986, and 0.985. It can be seen
that other models also achieved comparable performance for compiler
identification.

4.3. Optimizations

Once the origin compiler of the program binary is identified, we can
then predict the optimization used for that binary. The results for pre-
dicting the optimization associated with each binary are now presented.
We first show the optimization levels for Clang and then for GCC.

4.3.1. Clang

4.3.1.1. Low and high optimization (O0 and O3). The experimental re-
sults for classifying between optimization levels O0 and O3 are pre-
sented in Table 6. This shows that VGG16 achieved the best
classification performance, with accuracy, precision, recall, and F-score
values of 0.945, 0.942, 0.948, and 0.945, respectively. ResNet, Goo-
gleNet, DenseNet, and MobileNet also achieved similar performance. It
can be seen that transformer models achieved inferior performance
when compared to the pre-trained models, with the best performance
achieved by the SViT model, which had an accuracy of 0.902.

4.3.1.2. Low and high optimization (O3 and Os). The experimental re-
sults for classifying between optimization levels O3 and Os are presented
in Table 7. This shows that AlexNet, ResNet, and VGG16 exhibited
relatively higher accuracy values: 0.607, 0.645, and 0.671, respectively.
VGG16 showed higher precision, recall, and F-score values: 0.671,
0.711, and 0.685, respectively. The recall of DenseNet was the best at
0.840; however, the precision was only 0.629. The transformer models
performed the worst in comparison to the pre-trained models.

4.3.1.3. Low and high optimization (O0 and Os). The experimental re-
sults in Table 8 show that none of the classifiers was able to achieve
better classification performance in this case. The Swin transformer
achieved the best performance, and this was slightly better than the
random classifier.

4.3.1.4. Multi-level optimization (O0, O1, and O2). Table 9 presents the
results of a multi-class classification approach to distinguishing the O0,
O1, and O2 optimization levels. This shows that VGG16 achieved the
best classification performance, with accuracy, precision, recall, and F-
score values of 0.811, 0.810, 0.811, and 0.811, respectively. Other pre-
trained models also achieved comparable performance; however,
transformer-based models remained the worst.

4.3.1.5. Multi-level optimization for all cases (O0, O1, O2, O3, and Os).
Table 10 presents the prediction results across all the optimization levels
for the Clang compiler. This shows that ViT achieved the highest per-
formance, with accuracy values of 0.659, 0.656, 0.662, and 0.659,
respectively.

4.3.2. GCC
The experimental results to predict different optimization levels for

the GCC compiler are now presented.

4.3.2.1. Low and high optimization (O0 and O3). Table 11 shows the
results of classification between the O0 and O3 optimization levels for
the GCC compiler. It can be seen that VGG16 consistently achieved the
best classification performance when compared to the other models,
with an accuracy of 0.918. For the transformer-based model, SViT
achieved better performance, with an accuracy of 0.869.

Table 4
Model specifications for ViT models.

Model Size (MB) GFLOPSa Parameters (M) Patch size

ViT 330 15.38 86 224 × 224
SViT 108.2 4.49 28 224 × 224

a GFLOPS: giga floating-point operations per second.

W. Khan et al.

Forensic Science International: Digital Investigation 49 (2024) 301764

6

4.3.2.2. Low and high optimization (O3 and Os). The experimental re-
sults for classification between O3 and Os are presented in Table 12.
These show that ResNet achieved higher performance across all metrics,
with an accuracy of 0.869, precision of 0.871, recall of 0.869, and F-
score of 0.870. VGG16 and DenseNet also achieved comparable per-
formance; however, the transformer-based models performed the worst.

4.3.2.3. Multi-level optimization (O0 and Os). For O0 and Os optimiza-
tion prediction, VGG16 performed the best, as shown in Table 13.

Fig. 2. Samples of images obtained from binaries: (a) GCC O0; (b) Clang O0; (c) GCC O1; (d) Clang O1; (e) GCC O2; (f) Clang O2; (g) GCC O3; (h) Clang O3; (i)
GCC Os.

Table 5
GCC and Clang identification using DL models.

Model Accuracy Precision Recall F-score

AlexNet 0.961 0.957 0.957 0.957
ResNet 0.978 0.975 0.974 0.975
VGG16 0.987 0.985 0.986 0.985
GoogleNet 0.980 0.979 0.975 0.977
ViT 0.993 0.993 0.993 0.993
Swin T 0.969 0.970 0.969 0.969

Table 6
Clang optimization O0 and O3.

Model Accuracy Precision Recall F-score

AlexNet 0.896 0.900 0.895 0.898
ResNet 0.930 0.928 0.930 0.929
VGG16 0.945 0.942 0.948 0.945
GoogleNet 0.913 0.947 0.875 0.909
DenseNet 0.925 0.937 0.915 0.926
MobileNet 0.920 0.927 0.909 0.918
ViT 0.814 0.823 0.790 0.806
SViT 0.902 0.902 0.902 0.902

Table 7
Clang optimization O3 and Os.

Model Accuracy Precision Recall F-score

AlexNet 0.607 0.602 0.675 0.636
ResNet 0.645 0.654 0.620 0.637
VGG16 0.671 0.661 0.711 0.685
GoogleNet 0.631 0.608 0.730 0.664
DenseNet 0.631 0.629 0.629 0.629
MobileNet 0.600 0.564 0.840 0.675
ViT 0.492 0.454 0.061 0.108
SViT 0.522 0.545 0.522 0.533

Table 8
Clang optimization O0 and Os.

Model Accuracy Precision Recall F-score

AlexNet 0.491 0.494 0.322 0.390
ResNet 0.495 0.499 0.507 0.503
VGG16 0.491 0.500 0.434 0.464
GoogleNet 0.498 0.483 0.434 0.457
DenseNet 0.500 0.507 0.167 0.252
MobileNet 0.495 0.492 0.817 0.614
ViT 0.500 0.50 0.50 0.50
SViT 0.506 0.517 0.506 0.511

Table 9
Clang optimization O0, O1, and O2.

Model Accuracy Precision Recall F-score

AlexNet 0.725 0.723 0.725 0.724
ResNet 0.779 0.777 0.779 0.778
VGG16 0.811 0.810 0.811 0.811
GoogleNet 0.753 0.754 0.753 0.754
DenseNet 0.768 0.774 0.768 0.771
MobileNet 0.746 0.758 0.746 0.752
ViT 0.538 0.525 0.538 0.532
SViT 0.674 0.671 0.674 0.672

W. Khan et al.

Forensic Science International: Digital Investigation 49 (2024) 301764

7

4.3.2.4. Multi-level optimization (O0, O1, and O2). The performance for
multi-level optimization is presented in Table 14. This shows a drop in
the accuracy, with the maximum accuracy of 0.741 achieved by VGG16.

4.3.2.5. Multi-level optimization for all cases (O0, O1, O2, O3, and Os).
The performance for all optimization levels is represented in Table 15.

4.3.3. Obfuscated binaries
We conducted a comprehensive evaluation of our proposed model

using obfuscated binaries sourced from the BinKit dataset. The BinKit
dataset provides the obfuscated binaries for Clang only; therefore, we
performed various experiments to identify multiple optimization levels
ranging from O0 to Os.

4.3.3.1. Low and high optimization (O0 and O3). The experimental re-
sults evaluating the performance of multiple DL models for identifica-
tion between O0 and O3 in obfuscated binaries are shown in Table 16.
These show that the proposed technique achieved promising perfor-
mance even for obfuscated binaries. The best result was achieved by ViT,
which had accuracy, precision, recall, and F-score values all equal to
0.971.

4.3.3.2. Low and high optimization (O0 and Os). The experimental re-
sults for predicting O0 bs Os are presented in Table 17. This shows that
the best performance was achieved by ViT, with an accuracy of 0.971.

4.3.3.3. Low and high optimization (O3 and Os). In differentiating be-
tween O3 and Os (Table 18), the best performance was achieved by
VGG16, with accuracy, precision, recall, and F-score values of 0.638,

0.641, 0.638, and 0.639, respectively. Comparable performance was
achieved by ViT.

4.3.4. Model convergence and t-SNE visualization for obfuscated binaries
This section presents an example of the proposed approach, in which

we show the training and validation accuracies as well as losses for
multiple models. Additionally, we incorporate t-distributed stochastic
neighbor embedding (t-SNE) visualizations to examine the separation of
data points. The training and validation accuracies shown in Fig. 3(a)
reveal that nearly all the models converge after the eighth epoch, indi-
cating their proficiency in learning patterns and distinguishing between
various optimizations. Similarly, the training and validation losses
exhibit consistent patterns.

Example t-SNE plots for optimization prediction (O0 and O3) with
obfuscated binaries are presented in Fig. 4. It can be seen that ViT and
the Swin transformer (Fig. 4(g) and (h)) show better performance,
accurately identifying and segregating the binaries. While the separation
of data points achieved by VGG16 and ResNet is also better, the ViT and
SViT models exhibit superior performance, as can be seen from the
cluster separation.

5. Discussion

This work highlights the effectiveness of vision models for compiler-
provenance identification. The transformation of binaries into images
shows promising results for both the obfuscated and deobfuscated cases.
It can be seen that each compiler and their respective optimization levels
have distinctive textures; therefore, the DL models obtained encour-
aging results. We showed that our approach achieved an accuracy of 99

Table 10
Clang optimization for all levels.

Model Accuracy Precision Recall F-score

AlexNet 0.483 0.469 0.483 0.476
ResNet 0.533 0.515 0.533 0.524
VGG16 0.575 0.566 0.575 0.571
GoogleNet 0.516 0.500 0.516 0.508
DenseNet 0.508 0.530 0.508 0.519
MobileNet 0.495 0.545 0.495 0.519
ViT 0.659 0.656 0.662 0.659
SViT 0.479 0.460 0.479 0.469

Table 11
Optimizations for GCC: O0 and O3.

Model Accuracy Precision Recall F-score

AlexNet 0.866 0.866 0.866 0.866
ResNet 0.905 0.905 0.905 0.905
VGG16 0.918 0.918 0.918 0.918
GoogleNet 0.887 0.889 0.887 0.888
DenseNet 0.896 0.897 0.896 0.897
MobileNet 0.899 0.900 0.899 0.900
ViT 0.848 0.848 0.848 0.848
SViT 0.922 0.922 0.922 0.922

Table 12
Optimizations for GCC: O3 and Os.

Model Accuracy Precision Recall F-score

AlexNet 0.718 0.719 0.718 0.718
ResNet 0.869 0.871 0.869 0.870
VGG16 0.780 0.781 0.780 0.780
GoogleNet 0.736 0.754 0.736 0.745
DenseNet 0.758 0.771 0.758 0.764
MobileNet 0.727 0.744 0.727 0.735
ViT 0.727 0.728 0.727 0.728
SViT 0.661 0.670 0.661 0.665

Table 13
Optimizations for GCC: O0 and Os.

Model Accuracy Precision Recall F-score

AlexNet 0.852 0.854 0.852 0.853
ResNet 0.869 0.871 0.869 0.870
VGG16 0.911 0.911 0.911 0.911
GoogleNet 0.876 0.876 0.876 0.876
DenseNet 0.861 0.864 0.861 0.863
MobileNet 0.869 0.876 0.869 0.873
ViT 0.957 0.957 0.957 0.957
SViT 0.887 0.889 0.887 0.887

Table 14
Optimizations for GCC: O0, O1, and O2.

Model Accuracy Precision Recall F-score

AlexNet 0.667 0.671 0.667 0.669
ResNet 0.698 0.698 0.698 0.698
VGG16 0.742 0.741 0.742 0.742
GoogleNet 0.697 0.696 0.697 0.697
DenseNet 0.712 0.714 0.712 0.713
MobileNet 0.697 0.708 0.697 0.702
ViT 0.852 0.852 0.852 0.852
SViT 0.718 0.718 0.718 0.718

Table 15
GCC: optimizations at all levels.

Model Accuracy Precision Recall F-score

AlexNet 0.493 0.490 0.493 0.491
ResNet 0.507 0.501 0.507 0.504
VGG16 0.547 0.545 0.547 0.546
GoogleNet 0.420 0.406 0.420 0.413
DenseNet 0.518 0.516 0.518 0.517
MobileNet 0.514 0.510 0.514 0.512
ViT 0.717 0.718 0.717 0.718
SViT 0.397 0.374 0.397 0.385

W. Khan et al.

Forensic Science International: Digital Investigation 49 (2024) 301764

8

% for compiler identification. It can be seen from Table 5 that ViT
achieved the best performance, with an accuracy of 0.993; this was
followed by VGG16, with an accuracy of 0.987. The models’ results are
comparable, showing that any pre-trained models can be adopted for
compiler identification.

Several studies conducted considering compiler-provenance identi-
fication have demonstrated similar performance (Rosenblum et al.,
2010, 2011; Chaki et al., 2011; Otsubo et al., 2020a; He et al., 2022).
However, our approach predicts the compiler in an
architecture-agnostic way, i.e., regardless of the source architecture. For
instance (He et al., 2022), evaluated their method only on the x64-86
target architecture. Furthermore, we used the latest version of the BinKit
dataset (version 2.0),2 which is the largest publicly available dataset. In
contrast, some works only used a subset of the BinKit dataset for eval-
uation (He et al., 2022).

We also performed extensive experiments to identify the optimiza-
tion level used during the compilation process. Our approach showed
high performance in predicting between low (O0) and high (O3) opti-
mization levels, with over 95 % accuracy for both GCC and Clang. We
also experimented with distinguishing between various optimization
levels, such as O0 vs Os, O3 vs Os, and multi-level classification (O0, O1,
and O2, and O0, O1, O2, O3, and Os) for both GCC and Clang. Our
analysis showed that distinguishing between low (O0) and high (O3)
had the best performance; however, other optimization levels also
achieved comparable performance. For instance, for GCC optimizations,
the accuracy for O0 vs O3 was encouraging, with the highest accuracy

achieved by ViT, at 0.962. Furthermore, the performance for O0 vs Os
was also good, with an accuracy of 0.957. However, for O3 vs Os, the
performance was slightly reduced to 0.869. For multi-level optimiza-
tion, for distinguishing between O0, O1, and O2, the accuracy was
0.742; for distinguishing between all optimization levels, the accuracy
was only 0.71, and this was achieved by ViT.

The experimental results for obfuscated binaries demonstrated the
efficacy of the proposed approach, which has an accuracy as high as
0.971 using ViT for distinguishing between low (O0) and high (O3)
optimization levels (see Table 16). In contrast to various existing tech-
niques, which often struggle with obfuscated binaries, our approach
exhibits resilience, achieving performance similar to deobfuscated bi-
naries. This shows the robustness and effectiveness of vision-based
models for compiler-provenance identification in both obfuscated and
deobfuscated binaries.

We have also presented an illustration of model convergence and t-
SNE visualizations to analyze the behavior of the DL models. The results
show that all models exhibit convergence, demonstrating their potential
to be effectively trained even up to 20 epochs. Moreover, the t-SNE vi-
sualizations highlight the ability to cluster data points, particularly in
transformer models (Fig. 4). This shows the ability of the DL models to
reveal complex patterns within the image-based program binaries.

The experimental results show that the proposed approach is archi-
tecture agnostic and does not rely on handcrafted features. Furthermore,
it uses pre-trained networks without the need for extensive fine-tuning.
Therefore, this approach can be adopted with minimal fine-tuning.

6. Conclusions and future work

Herein, we have proposed a novel approach to predicting the
compiler family and optimization level by transforming a binary into an
images and using state-of-the-art DL models. We have shown that our
approach achieved over 98 % accuracy for compiler identification and
over 95 % accuracy for optimization-level identification. The proposed
method is simple yet efficient, and it can be used for compiler-
provenance identification in an architecture-agnostic manner.

Although our approach demonstrated promising performance, we
now also highlight the potential for future work. All the algorithms were
used with their default parameters without any hyperparameter tuning.
The performance could be further improved with extensive hyper-
parameter optimization. In the future, we also aim to include more
compilers in addition to GCC and Clang. Furthermore, we aim to use
external validation, i.e., training our model on BinKit and testing it on
multiple datasets available for compiler-provenance identification to
evaluate the generalizability of the proposed approach.

Data availability

We used publicly available datasets and publicly available Pytorch

Table 16
Performance on obfuscated binaries (O650 and 03).

Model Accuracy Precision Recall F-score

AlexNet 0.848 0.848 0.848 0.848
ResNet 0.893 0.894 0.893 0.893
VGG16 0.928 0.928 0.928 0.928
GoogleNet 0.886 0.886 0.886 0.886
DenseNet 0.745 0.745 0.745 0.745
MobileNet 0.736 0.736 0.736 0.736
ViT 0.971 0.971 0.971 0.971
SViT 0.959 0.959 0.959 0.959

Table 17
Performance on obfuscated binaries (O0 and Os).

Model Accuracy Precision Recall F-score

AlexNet 0.850 0.850 0.850 0.850
ResNet 0.878 0.879 0.878 0.878
VGG16 0.927 0.928 0.927 0.928
GoogleNet 0.868 0.869 0.868 0.869
DenseNet 0.750 0.752 0.750 0.751
MobileNet 0.742 0.742 0.742 0.742
ViT 0.971 0.971 0.971 0.971
SViT 0.963 0.963 0.963 0.963

Table 18
Performance on obfuscated binaries (O3 and Os).

Model Accuracy Precision Recall F-score

AlexNet 0.584 0.586 0.584 0.585
ResNet 0.599 0.601 0.599 0.600
VGG16 0.638 0.641 0.638 0.639
GoogleNet 0.588 0.588 0.588 0.588
DenseNet 0.515 0.516 0.515 0.516
MobileNet 0.530 0.529 0.530 0.529
ViT 0.633 0.633 0.633 0.633
SViT 0.620 0.621 0.620 0.620

Fig. 3. Sample of training and validation accuracies and loss. T Acc: Training
Accuracy, V Acc: Validation accuracy, T Loss: Training Loss, V Loss: Valida-
tion loss.

2 https://github.com/SoftSec-KAIST/BinKit.

W. Khan et al.

https://github.com/SoftSec-KAIST/BinKit

Forensic Science International: Digital Investigation 49 (2024) 301764

9

models.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

We are grateful to the anonymous reviewers for their comments and
suggestions. This work is supported by AUA-UAEU Joint Research Grant
number 12R170.

References

Alrabaee, S., Debbabi, M., Shirani, P., Wang, L., Youssef, A., Rahimian, A., Nouh, L.,
Mouheb, D., Huang, H., Hanna, A., 2020. Compiler provenance attribution. In:
Binary Code Fingerprinting for Cybersecurity. Springer, pp. 45–78.

Benoit, T., Marion, J.-Y., Bardin, S., 2021. Binary level toolchain provenance
identification with graph neural networks. In: 2021 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, pp. 131–141.

Chaki, S., Cohen, C., Gurfinkel, A., 2011. Supervised learning for provenance-similarity
of binaries. In: Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 15–23.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L., 2009. Imagenet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition. Ieee, pp. 248–255.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al., 2020. An Image Is Worth
16x16 Words: Transformers for Image Recognition at Scale arXiv preprint arXiv:
2010.11929.

Du, Y., Snow, K., Monrose, F., et al., 2022. Automatic recovery of fine-grained compiler
artifacts at the binary level. In: 2022 USENIX Annual Technical Conference (USENIX
ATC 22), pp. 853–868.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778.

He, X., Wang, S., Xing, Y., Feng, P., Wang, H., Li, Q., Chen, S., Sun, K., 2022. Binprov:
binary code provenance identification without disassembly. In: Proceedings of the
25th International Symposium on Research in Attacks, Intrusions and Defenses,
pp. 350–363.

Junod, P., Rinaldini, J., Wehrli, J., Michielin, J., 2015. Obfuscator-llvm–software
protection for the masses. In: 2015 Ieee/acm 1st International Workshop on Software
Protection. IEEE, pp. 3–9.

Kim, D., Kim, E., Cha, S.K., Son, S., Kim, Y., 2022. Revisiting binary code similarity
analysis using interpretable feature engineering and lessons learned. IEEE Trans.
Software Eng. 49 (4), 1661–1682.

Kim, J., Genkin, D., Leach, K., 2023. Revisiting Lightweight Compiler Provenance
Recovery on Arm Binaries arXiv preprint arXiv:2305.03934.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep
convolutional neural networks. Adv. Neural Inf. Process. Syst. 25.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436–444.
Li, Zewen, Liu, Fan, Yang, Wenjie, Peng, Shouheng, Zhou, Jun, 2021. A survey of

convolutional neural networks: analysis, applications, and prospects. IEEE Transact.
Neural Networks Learn. Syst. 33 (12), 6999–7019 {IEEE}.

Lin, Y., Gao, D., 2021. When function signature recovery meets compiler optimization.
In: 2021 IEEE Symposium on Security and Privacy (SP). IEEE, pp. 36–52.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B., 2021. Swin
transformer: hierarchical vision transformer using shifted windows. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022.

Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S., 2011. Malware images:
visualization and automatic classification. In: Proceedings of the 8th International
Symposium on Visualization for Cyber Security, pp. 1–7.

Otsubo, Y., Otsuka, A., Mimura, M., Sakaki, T., 2020a. o-glasses: Visualizing x86 code
from binary using a 1d-cnn. IEEE Access 8, 31753–31763.

Otsubo, Y., Otsuka, A., Mimura, M., Sakaki, T., Ukegawa, H., o-glassesx, 2020b. Compiler
provenance recovery with attention mechanism from a short code fragment. In:
Proceedings of the 3nd Workshop on Binary Analysis Research.

Otsubo, Y., Otsuka, A., Mimura, M., 2022. Compiler Provenance Recovery for Multi-Cpu
Architectures Using a Centrifuge Mechanism arXiv preprint arXiv:2211.13110.

Pei, K., Guan, J., Broughton, M., Chen, Z., Yao, S., Williams-King, D., Ummadisetty, V.,
Yang, J., Ray, B., Jana, S., 2021. Stateformer: fine-grained type recovery from
binaries using generative state modeling. In: Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 690–702.

Pizzolotto, D., Inoue, K., 2020. Identifying compiler and optimization options from
binary code using deep learning approaches. In: 2020 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, pp. 232–242.

Rahimian, A., Shirani, P., Alrbaee, S., Wang, L., Debbabi, M., 2015. Bincomp: a stratified
approach to compiler provenance attribution. Digit. Invest. 14, S146–S155.

Rosenblum, N.E., Miller, B.P., Zhu, X., 2010. Extracting compiler provenance from
program binaries. In: Proceedings of the 9th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, pp. 21–28.

Rosenblum, N., Miller, B.P., Zhu, X., 2011. Recovering the toolchain provenance of
binary code. In: Proceedings of the 2011 International Symposium on Software
Testing and Analysis, pp. 100–110.

Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale
Image Recognition arXiv preprint arXiv:1409.1556.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1–9.

Tian, Z., Huang, Y., Xie, B., Chen, Y., Chen, L., Wu, D., 2021. Fine-grained compiler
identification with sequence-oriented neural modeling. IEEE Access 9,
49160–49175.

Fig. 4. t-SNE visualization in obfuscated binaries. (a): AlexNet, (b): ResNet, (c): VGG16, (d): GoogleNet, (e): DenseNet, (f): MobileNet, (g): ViT, (h): SViT

W. Khan et al.

http://refhub.elsevier.com/S2666-2817(24)00083-0/sref1
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref1
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref1
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref3
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref3
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref3
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref4
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref4
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref4
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref5
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref5
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref5
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref6
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref6
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref6
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref6
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref7
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref7
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref7
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref8
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref8
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref8
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref9
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref9
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref9
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref9
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref10
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref10
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref10
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref11
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref11
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref11
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref12
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref12
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref13
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref13
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref14
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref15
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref15
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref15
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref16
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref16
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref17
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref17
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref17
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref18
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref18
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref18
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref19
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref19
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref20
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref20
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref20
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref21
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref21
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref22
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref22
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref22
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref22
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref22
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref23
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref23
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref23
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref24
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref24
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref25
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref25
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref25
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref26
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref26
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref26
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref27
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref27
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref28
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref28
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref28
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref28
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref29
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref29
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref29

Forensic Science International: Digital Investigation 49 (2024) 301764

10

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I., 2017. Attention is all you need. Adv. Neural Inf. Process. Syst. 30.

Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E., et al., 2018. Deep
learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018.

Zhao, Z.-Q., Zheng, P., Xu, S.-t., Wu, X., 2019. Object detection with deep learning: a
review. IEEE Transact. Neural Networks Learn. Syst. 30 (11), 3212–3232.

W. Khan et al.

http://refhub.elsevier.com/S2666-2817(24)00083-0/sref30
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref30
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref31
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref31
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref32
http://refhub.elsevier.com/S2666-2817(24)00083-0/sref32

	Compiler-provenance identification in obfuscated binaries using vision transformers
	Recommended Citation

	Compiler-provenance identification in obfuscated binaries using vision transformers
	1 Introduction
	2 Related approaches
	3 Proposed methodology
	3.1 Program binaries dataset
	3.2 Obfuscated binaries dataset
	3.3 Problem formulation and image dataset
	3.4 DL models
	3.4.1 CNNs
	3.4.1.1 Convolutional layers
	3.4.1.2 Activation function
	3.4.1.3 Pooling layers
	3.4.1.4 Fully connected layers
	3.4.1.5 Softmax layer
	3.4.1.6 Dropout regularization

	3.4.2 AlexNet
	3.4.3 VGG16
	3.4.4 ResNet
	3.4.5 GoogleNet

	3.5 Transformers
	3.5.1 ViTs
	3.5.2 Swin transformer

	4 Experimental setup and results
	4.1 Image dataset
	4.2 Compiler identification
	4.3 Optimizations
	4.3.1 Clang
	4.3.1.1 Low and high optimization (O0 and O3)
	4.3.1.2 Low and high optimization (O3 and Os)
	4.3.1.3 Low and high optimization (O0 and Os)
	4.3.1.4 Multi-level optimization (O0, O1, and O2)
	4.3.1.5 Multi-level optimization for all cases (O0, O1, O2, O3, and Os)

	4.3.2 GCC
	4.3.2.1 Low and high optimization (O0 and O3)
	4.3.2.2 Low and high optimization (O3 and Os)
	4.3.2.3 Multi-level optimization (O0 and Os)
	4.3.2.4 Multi-level optimization (O0, O1, and O2)
	4.3.2.5 Multi-level optimization for all cases (O0, O1, O2, O3, and Os)

	4.3.3 Obfuscated binaries
	4.3.3.1 Low and high optimization (O0 and O3)
	4.3.3.2 Low and high optimization (O0 and Os)
	4.3.3.3 Low and high optimization (O3 and Os)

	4.3.4 Model convergence and t-SNE visualization for obfuscated binaries

	5 Discussion
	6 Conclusions and future work
	Data availability
	Declaration of competing interest
	Acknowledgments
	References

