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Abstract: Investigating dependence structures across various fields holds paramount importance.
Consequently, the creation of new copula families plays a crucial role in developing more flexible
stochastic models that address the limitations of traditional and sometimes impractical assumptions.
The present article derives some reasonable conditions for validating a copula of the ratio-type form
uv/(1− θ f (u)g(v)). It includes numerous examples and discusses the admissible range of parameter
θ, showcasing the diversity of copulas generated through this framework, such as Archimedean,
non-Archimedean, positive dependent, and negative dependent copulas. The exploration extends
to the upper bound of a general family of copulas, uv/(1 − θϕ(u, v)), and important properties
of the copula are discussed, including singularity, measures of association, tail dependence, and
monotonicity. Furthermore, an extensive simulation study is presented, comparing the perfor-
mance of three different estimators based on maximum likelihood, ρ-inversion, and the moment
copula method.

Keywords: bivariate copula; ratio copula; Fréchet–Hoeffding limit; singularity; maximum likelihood;
ρ-inversion; copula moments

MSC: 60E05; 62H05; 62H20

1. Introduction

The copula industry has been thriving in the last decades, leading to the development
of numerous methods to expand existing families or create new copulas. These efforts
are motivated by the desire to introduce more flexible stochastic models that surpass the
limitation of traditional and sometimes impractical assumptions about the distribution
of multivariate random vectors. Various methods have been employed to introduce new
parameters into or transformations of existing families of copulas, resulting in a versatile
tool for understanding dependence among random variables (e.g., see [1–6]). For a compre-
hensive overview of historical developments, current findings, and future perspectives in
this field, Durante and Sempi [7] and Hofert et al. [8] offer in-depth analyses incorporating
the latest theories and insights.

The emergence of many copula families in recent times reflects the need to explore the
structural dependencies across various domains such as finance, actuarial sciences, relia-
bility engineering, life sciences, environmental sciences, hydrology, and survival analysis
(e.g., see [9–14]).

The significance of copulas stems from the Sklar theorem [15], which asserts that for
every random vector (X, Y) with a joint distribution function H and marginals F and G,
there exists a copula C (uniquely determined when the random variables X and Y are
continuous) linking the joint distribution function to F and G through the representation

H(x, y) = C(F(x), G(y)) for all x, y in R.
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This statement divides the task of identifying a two-dimensional distribution function into
two parts: identifying the marginal one-dimensional distribution functions F and G and
selecting a suitable copula C that captures the dependence between the random variables.
Hence, access to a diverse range of copulas is essential.

In the current paper, we examine ratio-type copulas of the form of

Bθ(u, v) =
uv

1 − θϕ(u, v)
0 ≤ u, v ≤ 1, (1)

where θ is a real-valued parameter and ϕ : [0, 1]× [0, 1] → R.
For a brief overview of works related to ratio-type copulas, one may refer

to [1,3,16–19] and the citations therein. B0 coincides with the independence copula,
Π(u, v) = uv, whereas, for ϕ(u, v) = (1 − u)(1 − v) and θ ∈ [−1, 1], Bθ corresponds to
the Ali–Mikhail–Haq family of copula with parameter θ.

The mathematical complexity of Equation (1) makes a comprehensive study challeng-
ing and nearly unfeasible. Therefore, in Section 2, we definitely focus on scenario

Dθ(u, v) =
uv

1 − θ f (u)g(v)
0 ≤ u, v ≤ 1, (2)

where f , g : [0, 1] → R. Specifically, we examine the conditions on f and g under which
Dθ is a valid copula and provide several examples along with the permissible range of
parameter θ. Section 3 is devoted to the analysis of the upper bound of family Bθ including
singularity, measures of association, tail dependence, and monotonicity. We conclude this
section by estimating dependence parameter θ using three distinct methods: maximum
likelihood, ρ-inversion, and the copula moment method. Finally, we provide concluding
remarks and outline potential avenues for future research directions.
Throughout this paper, notations ∂uK, ∂vK, and ∂u∂vK stand for the respective partial
derivatives and mixed partial derivative of function K with respect to u and v.

2. Generalized Family of Copulas

In this section, we study the family of functions defined in (2), where θ is a real-valued
parameter and f and g are two non-zero differentiable functions defined over the unit
interval.

Our objective is to identify the sufficient conditions for functions f and g so that
Dθ is a valid copula. The following definition establishes the mathematical foundation
of a bivariate copula within an absolutely continuous framework. We recall that a two-
dimensional copula is function C : [0, 1]2 → [0, 1] satisfying the following properties:

1. For every u, v in [0, 1],
C(u, 0) = C(0, v) = 0,

and
C(u, 1) = u and C(1, v) = v.

2. For every u, v in [0, 1],
∂u∂vC(u, v) ≥ 0,

where the mixed partial derivative is supposed to exist almost everywhere.

In the sequel, we proceed under the following assumptions.

Assumption 1.

1. f (1) = g(1) = 0.
2. f and g are strictly monotone functions.

3.
f (u)g(v)
f (0)g(0)

≤ 1 − uv for all u and v in [0, 1].
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Remark 1.

1. It is readily seen that Dθ(u, 1) = u and Dθ(1, v) = v by the virtue of Assumption 1.1.
2. Assumptions 1.1 and 1.2 imply that, for f and g sharing the same monotonicity, f (u)g(v) ≥ 0,

f ′(u)g′(v) > 0 and ( f (u)− u f ′(u))(g(v)− vg′(v)) ≥ 0, for all u and v in [0, 1]. Con-
trarily, if f and g do not have the same monotonicity, all the preceding expressions become
nonpositive.

Proposition 1. We assume that Assumption 1 hold. Then,

0 ≤ Dθ(u, v) ≤ 1 ∀(u, v) ∈ [0, 1]2 ⇐⇒





θ ≤ 1
f (0)g(0)

for f g ≥ 0

(⋆)
1

f (0)g(0)
≤ θ for f g ≤ 0

Proof. In order for Dθ(u, v) ≥ 0 for all u, v in [0, 1], it is easy to show that θ must satisfy (⋆).
Combining now (⋆) and Assumption 1.3 leads to 0 ≤ Dθ(u, v) ≤ 1, thereby concluding the
proof of Proposition 1.

We now wish to prove a sufficient condition for Dθ to be a two-dimensional copula.
To that end, we make use of the methodology used in [20]. First, we establish a formula for
mixed partial derivative ∂u∂vDθ via copula Dθ . An elementary calculation shows that

∂uDθ(u, v) =
v

1 − θ f (u)g(v)
+

θuv f ′(u)g(v)
(1 − θ f (u)g(v))2 .

Hence,

∂v∂uDθ(u, v) =
1 − θ f (u)g(v) + θv f (u)g′(v)

(1 − θ f (u)g(v))2 +
(1 − θ f (u)g(v))2(θu f ′(u)g(v) + θuv f ′(u)g′(v))

(1 − θ f (u)g(v))4

+
2θ2uv(1 − θ f (u)g(v)) f (u)g(v) f ′(u)g′(v)

(1 − θ f (u)g(v))4

=
1 − θ f (u)g(v) + θv f (u)g′(v) + θu f ′(u)g(v) + θuv f ′(u)g′(v)

(1 − θ f (u)g(v))2 +
2θ2uv f (u)g(v) f ′(u)g′(v)

(1 − θ f (u)g(v))3

=
1 − θ[( f (u)− u f ′(u))(g(v)− vg′(v))− 2Dθ(u, v) f ′(u)g′(v)]

(1 − θ f (u)g(v))2 .

We define, for the functions f and g,

α1 = min
0≤u,v≤1

[( f (u)− u f ′(u))(g(v)− vg′(v))− 2uv f ′(u)g′(v)],

α2 = max
0≤u,v≤1

[( f (u)− u f ′(u))(g(v)− vg′(v))− 2uv f ′(u)g′(v)].

We let f ′−(1) and g′−(1) be the left derivatives of f and g at 1, respectively. We observe that
α1 ≤ min( f (0)g(0),− f ′−(1)g′−(1)) and α2 ≥ max( f (0)g(0),− f ′−(1)g′−(1)), which implies
that α1 < 0 < α2.

Theorem 1. We assume that f and g satisfy Assumption 1. Then, Dθ is a valid copula provided
that 1/α1 ≤ θ ≤ 1/α2.

Proof. It is onerous but straightforward to show that Dθ(u, 0) = Dθ(0, v) = 0 for the ad-
missible range of θ, [1/α1, 1/α2]. We observe that if 1/α1 ≤ θ ≤ 1/α2, as per Proposition 1,
0 ≤ Dθ(u, v) ≤ 1 for all (u, v) ∈ [0, 1]2.
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It will be shown later that

θDθ(u, v) f ′(u)g′(v) ≥ θuv f ′(u)g′(v) ∀(u, v) ∈ [0, 1]2. (3)

Let us now prove that

min
0≤u,v≤1

{1 − θ[( f (u)− u f ′(u))(g(v)− vg′(v))− 2Dθ(u, v) f ′(u)g′(v)]} ≥ 0.

There are two cases to consider depending on the sign of θ. First, for θ ≥ 0, we have

min
0≤u,v≤1

{1 − θ[( f (u)− u f ′(u))(g(v)− vg′(v))− 2Dθ(u, v) f ′(u)g′(v)]}

≥ min
0≤u,v≤1

{1 − θ[( f (u)− u f ′(u))(g(v)− vg′(v))− 2uv f ′(u)g′(v)]}

= 1 − θα2.

On the other hand, we observe that for θ ≤ 0,

min
0≤u,v≤1

{1 − θ[( f (u)− u f ′(u))(g(v)− vg′(v))− 2Dθ(u, v) f ′(u)g′(v)]}

≥ min
0≤u,v≤1

{1 − θ[( f (u)− u f ′(u))(g(v)− vg′(v))− 2uv f ′(u)g′(v)]}

= 1 − θα1.

To complete the proof of the theorem, we verify Inequality (3). We note that Dθ(u, v) ≤ uv
for all u and v satisfying θ f (u)g(v) ≤ 0. Further, and since Dθ(u, v) ≥ 0, it is easily seen
that Dθ(u, v) ≥ uv for all u and v satisfying θ f (u)g(v) ≥ 0. By Remark 1.2, f g and f ′g′

share the same sign. This completes the proof of Inequality (3) and that of Theorem 1.

Let us now revisit some fundamental definitions regarding the concordance ordering of
copulas, quadrant dependence, and tail monotonicity (e.g., see [21,22]).

Definition 1. We let C1 and C2 be two copulas. We say that C2 is more concordant than C1,
denoted C1 ≺ C2, if C1(u, v) ≤ C2(u, v) for all 0 ≤ u, v ≤ 1.

Definition 2. A family of copulas, Cα, is positively ordered if Cα1 ≺ Cα2 whenever α1 ≤ α2, and
negatively ordered if Cα1 ≻ Cα2 whenever α1 ≤ α2.

For any (u, v) ∈ [0, 1]2, we have

∂θ Dθ(u, v) =
uv f (u)g(v)

(1 − θ f (u)g(v))2 .

If f and g exhibit identical monotonicity, then Dθ is positively ordered with respect to θ.

Definition 3. A family of copulas, Cα, is positively quadrant dependent (PQD) if Cα ≻ Π.
Negative quadrant dependence (NQD) is defined analogously by reversing the sense of the concor-
dance ordering.

Since D0 = Π, copula Dθ is PQD (NQD) if θ f (u)g(v) ≥ 0 (θ f (u)g(v) ≤ 0) for all
0 ≤ u, v ≤ 1.

Definition 4. We let (X, Y) be a pair of continuous random variables whose copula is C. Then, Y
is said to be left tail decreasing in X [LTD(Y|X)] if and only if for any 0 ≤ v ≤ 1, C(u, v)/u is a
nonincreasing function of u.

Proposition 2. We let (X, Y) be a continuous random pair with copula Dθ . Then, both LTD(Y|X)
and LTD(X|Y) are in force if and only if one of the following conditions hold:
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1. f and g share the same monotonicity and θ is positive.
2. f and g do not share the same monotonicity and θ is negative.

Proof. For 0 ≤ v ≤ 1, we obtain

∂C(u, v)
∂u

− C(u, v)
u

=
θuv f ′g

(1 − θ f (u)g(v))2 .

Also, for 0 ≤ u ≤ 1, we have

∂C(u, v)
∂v

− C(u, v)
v

=
θuv f g′

(1 − θ f (u)g(v))2 .

The proof of the proposition concludes by noting that f ′g and f g′ have the same sign, along
with Corollary 5.2.6 of [22].

Let us now investigate another concept of dependence known as tail dependence.
As pointed out in [21,22], the lower/upper tail dependence coefficients for copula Dθ are
given by

λL = lim
u→0+

Dθ(u, u)
u

= lim
u→0+

u
1 − θ f (u)g(u)

=

{
− ( f g)(0)

( f g)′(0) if θ = 1
( f g)(0)

0 elsewhere,

and

λU = lim
u→1−

1 − 2u + Dθ(u, u)
1 − u

= lim
u→1−

1 +
u2 − u(1 − θ f (u)g(u))
(1 − u)(1 − θ f (u)g(u))

= 0.

To conclude, Dθ exhibits lower tail dependence for θ = 1/( f g)(0).

Example 1. In the following, we present some examples of copulas in accordance to Equation (2)
and Assumption 1.

To conclude this section, we illustrate the range of values of well-known measures of
association for the copulas listed in Table 1 through numerical methods.

Table 1. Example of ratio-type copulas based on the new construction.

f (u) g(u) Parameters θ

D(1)
θ 1 − u 1 − v α1 = −1, α2 = 1 [−1, 1]

D(2)
θ ln(2 − u) ln(2 − v) α1 = −1, α2 = ln(2)

[
−1,

1
ln(2)

]

D(3)
θ − 2

π
cos

(πu
2

)
− 2

π
cos

(πv
2

)
α1 = −1, α2 =

2
π

[
−1,

π

2

]

D(4)
θ 1 − u − ln(2 − v) α1 = −1, α2 = 1 [−1, 1]

D(5)
θ − 2

π
cos

(πu
2

)
1 − v α1 = −1, α2 = 1 [−1, 1]

D(6)
θ

ln(2 − u)
ln(2)

− 2
π

cos
(πv

2

)
α1 = −1, α2 =

1
ln(2)

[−1, ln(2)]

D(7)
θ (1 − u)e−u (1 − v)e−v α1 = −e−2, α2 = 1 [−e2, 1]

D(8)
θ 1 − u

3
2 1 − v

3
2 α1 = −2.25, α2 = 1.5 [−0.44, 0.67]

The generalized family of copulas described in (2) contains a wide range of copulas,
including symmetric and non-symmetric ones. Notably, all copulas listed in Table 1 except
for the Ali–Mikhail–Haq copula are non-Archimedean. Additionally, this generalized
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family of copulas accommodates both negative and positive dependence by expanding the
scope of association measures related to the AMH copula. For example, as shown in Table 2,
we observe that ρmin(D(7)

θ ) is less than ρmin(D(1)
θ ), while ρmax(D(3)

θ ) exceeds ρmax(D(1)
θ ).

However, the family of copulas Dθ is not comprehensive and lacks completeness in the
sense that it does not cover the Fréchet–Hoeffding lower and upper bounds.

Table 2. Numerical analysis of Spearman’s ρ, Kendall’s τ, Gini’s γ, and Blomqvist’s β.

ρθ τθ γθ βθ

D(1)
θ [−0.2711, 0.4784] [−0.1817, 0.3333] [−0.0540, 0.0955] [−0.2000, 0.3333]

D(2)
θ [−0.1956, 0.4191] [−0.1307, 0.2834] [−0.0387, 0.0837] [−0.1412, 0.3109]

D(3)
θ [−0.2243, 0.5801] [−0.1500, 0.3964] [−0.0448, 0.1188] [−0.1685, 0.4669]

D(4)
θ [−0.2311, 0.3457] [−0.1546, 0.332] [−0.0458, 0.0689] [−0.1686, 0.2543]

D(5)
θ [−0.2470, 0.3811] [−0.1654, 0.2575] [−0.0493, 0.0766] [−0.1837, 0.2905]

D(6)
θ [−0.2096, 0.4630] [−0.1401, 0.3138] [−0.0417, 0.0935] [−0.1544, 0.3575]

D(7)
θ [−0.5311, 0.1578] [−0.3666, 0.1069] [−0.1072, 0.0310] [−0.4046, 0.1013]

D(8)
θ [−0.2124, 0.5025] [−0.1420, 0.3418] [−0.0423, 0.1015] [−0.1566, 0.3862]

3. Upper Bound of Family Bθ

The following section is consecrated on investigating the properties of a new copula,
the upper bound of family Bθ defined in (1). We begin by establishing the acceptable range
of θ to ensure a valid copula and then derive its corresponding absolutely continuous and
singular components. Subsequently, we address the concordance measures of the novel cop-
ula, including Spearman’s ρ, Kendall’s τ, Gini’s γ, and Blomqvist’s β, and present them in
closed forms. This is then followed by a brief investigation of monotonicity and tail depen-
dency properties. Finally, we conclude by estimating dependence parameter θ with three
different methods: maximum likelihood, ρ-inversion, and the copula moment approach.

Remark 2. It is easily verified that the family {Bθ , θ ∈ [−1, 1]}, defined in (1), is positively ordered
for nonnegative ϕ and negatively ordered for nonpositive ϕ since

∂θ Bθ(u, v) =
uvϕ(u, v)

(1 − θϕ(u, v))2 .

We let Bθ be a member of the family expressed in (1). Since B0 = Π, we remark that
Bθ is PQD for θ ≥ 0 and NQD for θ ≤ 0, provided that ϕ is a nonnegative function. In the
contrary case, for nonpositive ϕ, Bθ is NQD for θ ≥ 0 and PQD for θ ≤ 0.

3.1. Upper Bound Copula

In the following, we show that the family of copulas Bθ includes the Fréchet–Hoeffding
upper bound, M(u, v) = min(u, v). It is readily checked that the upper bound of family Bθ

is reached when (θ = 1, ϕ ≥ 0) or (θ = −1, ϕ ≤ 0). We write

uv
1 − ϕ1(u, v)

= min(u, v) ⇐⇒ ϕ1(u, v) =
min(u, v)− uv

min(u, v)
= min(1 − u, 1 − v),

or

uv
1 + ϕ2(u, v)

= min(u, v) ⇐⇒ ϕ2(u, v) =
uv − min(u, v)

min(u, v)
= −min(1 − u, 1 − v).
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Proposition 3. The bivariate function

Cθ(u, v) =
uv

1 − |θ|min(1 − u, 1 − v)
, (u, v) ∈ [0, 1]2

is a copula if and only if |θ| ≤ 1.

Copula Cθ has been previously introduced in the literature, particularly derived from
the family of symmetric bivariate copulas studied in [23],

Ch(u, v) = min(u, v)h(max(u, v)),

with a generator h(x) = x/(1 − |θ|(1 − x)) in our case. Furthermore, Example 3.2 in [24]
refers to Cθ , 0 ≤ θ ≤ 1, as a generalized Ali–Mikhail–Haq copula. Making use now of
Theorem 2.1 of the same reference [23], we establish that Cθ is a copula if and only if |θ| ≤ 1.

It is also worth mentioning that the copula, Cθ , can be written as

Cθ(u, v) =
Π(u, v)M(u, v)

F(u, v)
,

where M(u, v) = min(u, v) is the Fréchet–Hoeffding upper bound and F(u, v) = (1 −
|θ|)M(u, v) + |θ|Π(u, v) is a member of the Fréchet copula family.

Without loss of generality, we focus our discussion on the properties of Cθ for posi-
tive θ.

3.2. Simulation from the Copula Cθ

The following presents an algorithm for simulating data from copula Cθ using the
inverse method. To this end, we let (U, V) be a pair of uniform random variables with
copula Dθ . Note that for fixed u ∈ [0, 1],

cu(v) = ∂uC(u, v) =





v(1−θ)
(1−θ+θu)2 if v < u,

v
1−θ+θv if v > u.

(4)

We define a0(u) = 0, a1(u) =
u(1 − θ)

(1 − θ + θu)2 , a2(u) =
u

1 − θ + θu
, a3(u) = 1 and let A1 =

{t : a0(u) ≤ t < a1(u)}, A2 = {t : a1(u) ≤ t ≤ a2(u)} and A3 = {t : a2(u) < t ≤ a3(u)}.
Note that function v 7→ cu(v) is discontinuous in v = u. Thus, the generalized inverse

of cu is given by

c−1
u (t) = inf{v : cu(v) ≥ t}

=
t(1 − θ + θu)2

1 − θ
IA1(t) + u IA2(t) +

t(1 − θ)

1 − θt
IA3(t),

where IA(·) stands for the indicator function of A.
The algorithm below generates random numbers from copula Cθ :

• Generate uniform aleas u and t.
• Set v = c−1

u (t).
• The desired pair is (u, v).
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If U and T are independent uniform [0,1] random variables as in the preceding
algorithm, we remark that

P(U = V) = P(a1(U) ≤ T ≤ a2(U)) =
∫ 1

0
P(a1(u) ≤ T ≤ a2(u)) du

=
∫ 1

0

[
u

1 − θ + θu
− u(1 − θ)

(1 − θ + θu)2

]
du

=
2 − θ

θ
+

2(1 − θ)

θ2 ln(1 − θ). (5)

Figure 1 showcases scatterplots depicting simulations of the proposed family of copulas Cθ .
Each scatterplot comprises 100 pairs of points generated by the aforementioned algorithm,
varying across different values of θ.
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Figure 1. Scatterplots of 100 points from copula Cθ .

For illustrative purposes and visual validation, Figure 2 displays the plots of copula
Cθ for different choices of parameter θ.
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Figure 3.2: Intensity contours for Cθ where θ = 0.05 (upper left), θ = 0.5 (upper right),
θ = 0.75 (lower left) and θ = 0.99 (lower right).

3.3 Singularity

It is important to note that the proposed copula is not absolutely continuous. It possesses a
probability mass concentrated on the line u = v in [0, 1]2. The next result presents explicit
forms for both continuous and singular components Aθ and Sθ, respectively.

Proposition 3.7. The absolutely continuous and singular components of the copula Cθ are
given by for all 0 ≤ u 6= v ≤ 1

Aθ(u, v) =
2(1− θ)

θ2
ln

(
1− θ + θmin(u, v)

1− θ

)
−(1− θ) min(u, v)

θ

(
1

1− θ + θu
+

1

1− θ + θv

)
,

and
Sθ(u, v) = Cθ(u, v)− Aθ(u, v).

Proof. Standard calculations show that, for all 0 ≤ x 6= y ≤ 1,

∂x∂yCθ(x, y) =
1− θ

(1− θ + θmax(x, y))2
(3.2)

9

Figure 2. Intensity contours for Cθ where θ = 0.05 (upper left), θ = 0.5 (upper right), θ = 0.75 (lower
left) and θ = 0.99 (lower right).
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3.3. Singularity

It is important to note that the proposed copula is not absolutely continuous. It
possesses a probability mass concentrated on line u = v in [0, 1]2. The next result presents
explicit forms for both continuous and singular components Aθ and Sθ , respectively.

Proposition 4. For all 0 ≤ u ̸= v ≤ 1, the absolutely continuous and singular components of
copula Cθ are defined by

Aθ(u, v) =
2(1 − θ)

θ2 ln
(

1 − θ + θ min(u, v)
1 − θ

)
− (1 − θ)min(u, v)

θ

(
1

1 − θ + θu
+

1
1 − θ + θv

)
,

and
Sθ(u, v) = Cθ(u, v)− Aθ(u, v).

Proof. Standard calculations show that, for all 0 ≤ x ̸= y ≤ 1,

∂x∂yCθ(x, y) =
1 − θ

(1 − θ + θ max(x, y))2 (6)

Hence, the continuous part is calculated, for all 0 ≤ u < v ≤ 1, by

Aθ(u, v) =
∫ u

0

∫ v

0
∂x∂yCθ(x, y) dydx

=
∫ u

0

[∫ x

0

1 − θ

(1 − θ + θ max(x, y))2 dy +
∫ v

x

1 − θ

(1 − θ + θ max(x, y))2 dy
]

dx

= (1 − θ)
∫ u

0

[∫ x

0

1
(1 − θ + θx)2 dy +

∫ v

x

1
(1 − θ + θy)2 dy

]
dx

= (1 − θ)
∫ u

0

[
x

(1 − θ + θx)2 +
1
θ

(
1

1 − θ + θx
− 1

1 − θ + θv

)]
dx

=
2(1 − θ)

θ2 ln
(

1 − θ + θu
1 − θ

)
− (1 − θ)u

θ

(
1

1 − θ + θu
+

1
1 − θ + θv

)
.

Similarly, one obtains, for 0 ≤ v < u ≤ 1,

Aθ(u, v) =
2(1 − θ)

θ2 ln
(

1 − θ + θv
1 − θ

)
− (1 − θ)v

θ

(
1

1 − θ + θu
+

1
1 − θ + θv

)
.

This completes the proof of the proposition.

The Cθ-measure of the singular component of copula Cθ is given by

Sθ(1, 1) = 1 − Aθ(1, 1) =
2 − θ

θ
+

2(1 − θ)

θ2 ln(1 − θ).

As discussed earlier in (5), quantity Sθ(1, 1) represents the probability of [U = V] where
(U, V) is the vector of uniform random variables whose distribution is Cθ . Furthermore,
standard calculations show that Sθ(1, 1) is an increasing function of θ such that

lim
θ→0+

Sθ(1, 1) = 0 and lim
θ→1−

Sθ(1, 1) = 1.

Proposition 5. The copula density of Cθ is obtained by

cθ(u, v) =
1 − θ

(1 − θ + θ max(u, v))2 I[u ̸=v] +
θu2

(1 − θ + θu)2 I[u=v]. (7)
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Proof. In light of Equation (4), we remark that conditional copula Cθ(·|u) has a jump
discontinuity at u totaling a mass of a(u), where

a(u) = lim
v→u+

∂uCθ(u, v)− lim
v→u−

∂uCθ(u, v) =
θu2

(1 − θ + θu)2 .

Making use of Equation (6) and Theorem 1.1 of [21] completes the proof of the proposi-
tion.

To illustrate, copula density cθ for θ = 0.05, 0.5, 0.75 and 0.99 appears in Figure 3.

Figure 3.3: Copula density plots for θ = 0.05 (upper left), θ = 0.5 (upper right), θ = 0.75
(lower left) and θ = 0.99 (lower right).

3.4 Measures of association

To explore the extent of positive dependence characterized by the proposed copula, we
provide an overview of the commonly employed measures of association for bivariate copulas
(see [24]).

Proposition 3.9. Let Cθ be a member of the family of copulas defined in Proposition 3.5.
Spearman’s ρ, Kendall’s τ , Gini’s γ and Blomqvist’s β can be expressed as

ρθ =
12(1− θ)3 ln(1− θ)− 3θ4 + 22θ3 − 30θ2 + 12θ

θ4
,

τθ =
−12(1− θ)2 ln(1− θ)− θ4 − 4θ3 + 18θ2 − 12θ

θ4
,

γθ =
4(1− θ)

[
2 ln

(
1− θ

2

)
− (1− θ) ln(1− θ)

]
− 2θ3 + 3θ2

θ3
,

βθ =
θ

2− θ .

Proof. Let U and V be uniformly distributed random variables over [0, 1] whose copula is

11

Figure 3. Copula density plots for θ = 0.05 (upper left), θ = 0.5 (upper right), θ = 0.75 (lower left)
and θ = 0.99 (lower right).

3.4. Measures of Association

To explore the extent of positive dependence characterized by copula Cθ , we provide
an overview of the commonly employed measures of association for bivariate copulas
(see [22]).

Proposition 6. We let Cθ be a member of the family of copulas defined in Proposition 3. Spearman’s
ρ, Kendall’s τ, Gini’s γ, and Blomqvist’s β can be expressed as

ρθ =
12(1 − θ)3 ln(1 − θ)− 3θ4 + 22θ3 − 30θ2 + 12θ

θ4 ,

τθ =
−12(1 − θ)2 ln(1 − θ)− θ4 − 4θ3 + 18θ2 − 12θ

θ4 ,

γθ =
4(1 − θ)

[
2 ln

(
1 − θ

2

)
− (1 − θ) ln(1 − θ)

]
− 2θ3 + 3θ2

θ3 ,

βθ =
θ

2 − θ
.

Proof. The above expressions can be derived directly from Proposition 3.4 in [23], using
the generator function h(x) = x/(1 − θ + θx).
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It is guaranteed by means of Remark 2 that the measures of dependence ρθ , τθ , γθ , and
βθ are nondecreasing functions with respect to dependence parameter θ. Moreover, the
aforementioned measures satisfy the following properties, as depicted in Figure 4:

lim
θ→0+

ρθ = lim
θ→0+

τθ = lim
θ→0+

γθ = lim
θ→0

βθ = 0,

lim
θ→1−

ρθ = lim
θ→1−

τθ = lim
θ→1−

γθ = lim
θ→1

βθ = 1,

τθ < βθ < γθ < ρθ for 0 < θ < θ0,

τθ < γθ < βθ < ρθ for θ0 < θ < 1,

where θ0 = 0.6445832 is the unique solution of equation γθ = βθ . Furthermore, it should be
noted, as illustrated in the figure below, that the measures of dependence γθ and βθ almost
coincide, while ρθ and τθ are linearly connected through the following equation:

ρθ + (1 − θ)τθ = θ.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

θ

ρ
τ
γ
β

Figure 4. Graph of Spearman’s ρ, Kendall’s τ, Gini’s γ, and Blomqvist’s β.

3.5. Tail Dependence and Monotonicity

The concept of tail dependence relates to the amount of dependence in the upper-
quadrant tail (lower-quadrant tail) of a bivariate distribution. It measures the probability of
one variable being extreme given that other is extreme. In numerous financial contexts, tail
dependence assumes pivotal importance when examining the impact of extremal events.

As a consequence of Proposition 3.3 from [23], we obtain

λL(Cθ) =

{
1 if θ = 1,
0 elsewhere,

and λU(Cθ) = θ.

Consequently, Cθ is lower tail dependent for θ = 1 and upper tail dependent for any θ ̸= 0.
Let us now recall some definitions concerning tail monotonicity, stochastic monotonic-

ity, and corner set monotonicity (see [22] for a complete study).

Definition 5. We let (X, Y) be a pair of random variables whose copula is D. Then,

1. Y is said to be right-tail increasing in X [RTI(Y|X)] if and only if for any 0 ≤ v ≤ 1,
[v − D(u, v)]/(1 − u) is a nonincreasing function of u;

2. Y is stochastically increasing in X [SI(Y|X)] if and only if for any 0 ≤ v ≤ 1 and for all most
u, ∂D(u, v)/∂u is a nonincreasing function of u.
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Definition 6.

1. X and Y are left-corner set decreasing [LCSD(X, Y)] if P(X ≤ x, Y ≤ y|X ≤ x′, Y ≤ y′) is
nonincreasing in x′ and y′ for all x and y.

2. Function f defined from R2
to R is totally positive of order two [TP2], if f (x, y) ≥ 0 on

R2
and ∣∣∣∣

f (x, y) f (x, y′)
f (x′, y) f (x′, y′)

∣∣∣∣ ≥ 0,

for all x ≤ x′ and y ≤ y′.

As a direct result of Proposition 3.2 from [23], we deduce the following properties.

Proposition 7. We let (X, Y) be a pair of continuous random variables whose copula is Cθ . Then,

1. Y is stochastically increasing in X;
2. Y is left-tail decreasing in X;
3. X and Y are left-corner set decreasing.

Based on Corollary 5.2.17 of [22], it follows that Cθ is TP2. It is also immediate from
Proposition 7 that inequality 0 ≤ τ ≤ ρ holds, as evidenced by Capéraà and Genest [25].
This finding aligns with our earlier observation.

3.6. Parameter Estimation via Maximum Likelihood

In the following, we address the problem of computing the maximum likelihood
estimator, θ̂ML, of the unknown parameter of dependence θ. To achieve this, we consider
a bivariate random sample w := (w1, . . . , wn)t from copula Cθ with wi = (ui, vi) for
i = 1, . . . , n, and we define E ⊂ {1, 2, · · · , n}, the set of indexes of points in the sample
lying on curve {(u, v)|u = v}.

From expression (7), we obtain the likelihood function for θ ∈ [0, 1]

L(w, θ) = ∏
i/∈E

1 − θ

(1 − θ + θ max(ui, vi))2 ∏
i∈E

θu2
i

(1 − θ + θui)2

= θm(1 − θ)n−m
n

∏
i=1

1
(1 − θ + θ max(ui, vi))2 ∏

i∈E
u2

i ,

where m is the cardinal of E.
Hence, θ̂ML can be obtained by maximizing the log-likelihood function, ℓ(w, θ), with

respect to parameter θ:

∂θℓ(w, θ) =
m − nθ

θ(1 − θ)
+ 2

n

∑
i=1

1 − max(ui, vi)

1 − θ + θ max(ui, vi)
. (8)

Clearly, the solution of the likelihood equation cannot be obtained in a simple closed form
and numerical techniques are required consequently.

The maximum likelihood estimator θ̂MLE is asymptotically normal:
√

n
(
θ̂ML − θ

)
→ N (0, I−1(θ)) as n → ∞.

The fisher information, I(θ), can be written as

I(θ) = −E
[
∂2

θℓ(w, θ)
]
, (9)

where

∂2
θℓ(w, θ) =

−nθ2 + 2mθ − m
θ2(1 − θ)2 + 2

n

∑
i=1

(1 − max(ui, vi))
2

(1 − θ + θ max(ui, vi))2 . (10)
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Making use again of Equation (7), we start by computing the following integral:
∫∫

[0,1]2

(1 − max(u, v))2

(1 − θ + θ max(u, v))2 cθ(u, v) dudv

= (1 − θ)
∫∫

[0,1]2

(1 − max(u, v))2

(1 − θ + θ max(u, v))4 dudv + θ
∫ 1

0

u2(1 − u)2

(1 − θ + θu)4 du

= (1 − θ)
∫ 1

0

[∫ u

0

(1 − u)2

(1 − θ + θu)4 dv +
∫ 1

u

(1 − v)2

(1 − θ + θv)4 dv
]

du + θ
∫ 1

0

u2(1 − u)2

(1 − θ + θu)4 du

=
∫ 1

0

[
(1 − θ)u(1 − u)2

(1 − θ + θu)4 +
(1 − θ)(1 − u)3

3(1 − θ + θu)3 +
θu2(1 − u)2

(1 − θ + θu)4

]
du

=
6(1 − θ) ln(1 − θ)− θ3 − 3θ2 + 6θ

3θ4(1 − θ)
. (11)

Combining now (9), (10), and (11) leads to

I(θ) =
−12n(1 − θ)2 ln(1 − θ) + nθ4 − (6m + 4n)θ3 + (3m + 18n)θ2 − 12nθ

3θ4(1 − θ)2 .

3.7. Simulation Study

To evaluate the performance of the maximum likelihood estimator in small samples,
we considered n mutually independent copies, W1, . . . , Wn, of the vector comprising
unit uniform random variables U and V with associated copula Cθ . The estimator of
dependence parameter θ was derived using routine function optim in the R 4.2.1 software.
Various sample sizes were examined with 500 replications for each scenario.

Our results, as detailed in Table 3, encompass estimator θ̂ML, its bias, mean squared
error (MSE), and a 95% asymptotic confidence interval for θ. Across the different scenarios
investigated, simulations consistently demonstrated the efficacy of θ̂ML as an estimator for
dependence parameter θ. We observed that the performance of the estimator improved
with larger n as the confidence intervals became narrower. Furthermore, the bias and MSE
of θ̂ML shrank with the number of observations n, indicating that the greater the number
of observations, the more reliable the estimate. This trend was particularly evident when
analyzing the behavior of the MSE, as outlined in Figure 5.
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Figure 5. Mean Squared Error (MSE) of the Maximum Likelihood Estimator for θ = 0.1, 0.3, 0.7 and
0.9 (ordered from left to right).

Following the classical method of moments approach, we considered two estimators for
parameter of dependance θ, namely the ρ-inversion and the copula moment estimators.
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Table 3. Maximum likelihood estimation for θ.

n θ̂ML Bias MSE 95% CI

θ = 0.1

50 0.1019 0.0019 0.0044 (0,0.2363)
100 0.0992 −0.0008 0.0021 (0.0050,0.1933)
150 0.1004 0.0004 0.0016 (0.0232,0.1776)
200 0.1004 0.0004 0.0011 (0.0335,0.1672)
250 0.0993 −0.0003 0.0009 (0.0400,0.1593)

θ = 0.3

50 0.2962 −0.0038 0.0075 (0.1220,0.4703)
100 0.2976 −0.0024 0.0039 (0.1744,0.4207)
150 0.3014 0.0014 0.0026 (0.2008,0.4020)
200 0.3012 0.0012 0.0021 (0.2141,0.3884)
250 0.2999 −0.0001 0.0015 (0.2220,0.3778)

θ = 0.5

50 0.4937 −0.0063 0.0062 (0.3335,0.6539)
100 0.4964 −0.0036 0.0031 (0.3834,0.6094)
150 0.4984 −0.0016 0.0023 (0.4063,0.5905)
200 0.4991 −0.0009 0.0017 (0.4193,0.5788)
250 0.5006 0.0006 0.0014 (0.4294,0.5718)

θ = 0.7

50 0.7012 0.0012 0.0034 (0.5844,0.8180)
100 0.6987 −0.0013 0.0016 (0.6156,0.7817)
150 0.7008 0.0008 0.0012 (0.6333,0.7683)
200 0.7003 0.0003 0.0009 (0.6418,0.7588)
250 0.6999 −0.0001 0.0007 (0.6476,0.7523)

θ = 0.9

50 0.8972 −0.0027 0.0008 (0.8442,0.9527)
100 0.8984 −0.0016 0.0004 (0.8601,0.9368)
150 0.9010 0.0010 0.0002 (0.8703,0.9318)
200 0.9001 0.0001 0.0002 (0.8733,0.9269)
250 0.8998 −0.0002 0.0001 (0.8758,0.9238)

The ρ-inversion estimator, θ̂ρ, can be deduced by solving equation

θ̂ρ = h−1(ρ̂),

where the increasing function h can be derived from Proposition 6,

h(θ) =
12(1 − θ)3 ln(1 − θ)− 3θ4 + 22θ3 − 30θ2 + 12θ

θ4

and ρ̂ denotes the sample Spearman’s rho expressed, in terms of (U1, V1), . . . , (Un, Vn),
as follows:

ρ̂ =
12
n

n

∑
i=1

UiVi − 3.

We let w = (u, v) and recall basic definitions of the joint and marginal empirical distribu-
tion functions,

Fn(w) =
1
n

n

∑
i=1

I{U≤u,V≤v}, Fn1(u) =
1
n

n

∑
i=1

I{U≤u}, Fn2(v) =
1
n

n

∑
i=1

I{V≤v}.

Following Deheuvels [26], we define the empirical copula by

Cn(w) = Fn(F−1
n1 (u), F−1

n2 (v)), for (u, v) ∈ [0, 1]2,

where F−1
ni (y) = inf{x : Fni(x) ≥ y} for i = 1, 2.
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We define now the kth copula moment Mk(θ) as the expectation of (C(W))k, i.e.,

Mk(θ) := E[(C(W))k] =
∫

[0,1]2
(C(w))kdC(w), k = 1, 2, . . .

It is conspicuous that case k = 1 corresponds to M1(θ) = (τθ + 1)/4. The copula moment
estimator adapted to our case, θ̂CM, is obtained by solving equation

M1(θ) =
1
n

n

∑
i=1

Cn(Fn1(u), Fn2(v)).

For more details on the consistency and asymptotic normality of estimators θ̂ρ and θ̂CM, we
refer to [27–29] and the references therein.

To compare the performance of the three estimates mentioned earlier, a simulation
study was carried out for some combinations of parameter θ and sample size n. The
selection of the true values for parameter θ should be meaningful, ensuring that each value
corresponds to a level of dependence: weak, moderate, or strong. If we regard Spearman’s
ρ as a measure of dependence, we should choose a copula parameter value that aligns with
specific ρ values by means of Proposition 6,

ρθ =
12(1 − θ)3 ln(1 − θ)− 3θ4 + 22θ3 − 30θ2 + 12θ

θ4 .

For each considered value of θ, we generated 500 samples from the underlying copula and
computed three estimates, θ̂ML, θ̂ρ, and θ̂CM. Furthermore, the simulation procedure was
repeated for different sample sizes n with n = 50, 100, 150, 200, 250.

Table 4 summarizes the results of the Monte Carlo simulations by showing the values
of the estimated bias and MSE. The maximum likelihood estimator performed better than
the other two estimators; it had the smallest bias and the smallest MSE. For medium and
strong dependance, it is worth mentioning that MSE(θ̂CM) was smaller than MSE(θ̂ρ). All
estimators became more stable since their estimated bias and MSE became smaller as the
size of the sample increased.

Table 4. Bias and MSE of ML, CM, and ρ− inversion estimators of θ.

ρ = 0.1 ρ = 0.5 ρ = 0.9

θ = 0.1576 θ = 0.6401 θ = 0.9456

Bias MSE Bias MSE Bias MSE

n = 50
θ̂ML −0.0083 0.0059 −0.0033 0.0041 0.0006 0.0003
θ̂ρ 0.0187 0.0237 −0.0100 0.0146 −0.0043 0.0013
θ̂CM 0.1067 0.0376 0.0378 0.0104 0.0123 0.0008

n = 100
θ̂ML −0.0036 0.0030 −0.0024 0.0021 −0.0005 0.0002
θ̂ρ −0.0069 0.0145 −0.0059 0.0075 −0.0016 0.0006
θ̂CM 0.0423 0.0165 0.0210 0.0052 0.0061 0.0004

n = 150
θ̂ML 0.0012 0.0020 0.0017 0.0014 −0.0004 0.0001
θ̂ρ −0.0041 0.0117 −0.0012 0.0049 −0.0012 0.0004
θ̂CM 0.0284 0.0118 0.0156 0.0036 0.0042 0.0002

n = 200
θ̂ML −0.0011 0.0014 −0.0013 0.0011 0.0004 0.0001
θ̂ρ −0.0028 0.0089 −0.0013 0.0035 −0.0006 0.0003
θ̂CM 0.0235 0.0096 0.0106 0.0026 0.0034 0.0002

n = 250
θ̂ML −0.0001 0.0012 0.0013 0.0008 −0.0003 0.0001
θ̂ρ 0.0014 0.0077 −0.0010 0.0028 −0.0004 0.0003
θ̂CM 0.0121 0.0075 0.0083 0.0022 0.0023 0.0001
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4. Conclusions

We introduced an innovative method for constructing copulas following well-defined
conditions outlined in Assumption 1. Additionally, we explored the upper limit of the
generalized family defined in (1), analyzing its properties such as singularity, monotonicity,
tail dependence, and association measures. Through a comparative analysis, we showed
that the maximum likelihood estimator of dependence parameter θ outperforms both
the ρ-inversion and copula moment estimators. Investigating the lower bound of the
generalized family remains a direction for future research. Expanding function ϕ in (1)
beyond product f g could enhance flexibility and broaden the scope of analysis. This avenue
will be addressed in an upcoming paper.
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