
Zayed University Zayed University

ZU Scholars ZU Scholars

All Works

9-10-2024

Evaluating the cost of classifier discrimination choices for IoT Evaluating the cost of classifier discrimination choices for IoT

sensor attack detection sensor attack detection

Mathew Nicho
Rabdan Academy

Brian Cusack
Auckland University of Technology

Shini Girija
Zayed University

Nalin Arachchilage
RMIT University

Follow this and additional works at: https://zuscholars.zu.ac.ae/works

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Nicho, Mathew; Cusack, Brian; Girija, Shini; and Arachchilage, Nalin, "Evaluating the cost of classifier
discrimination choices for IoT sensor attack detection" (2024). All Works. 6793.
https://zuscholars.zu.ac.ae/works/6793

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All
Works by an authorized administrator of ZU Scholars. For more information, please contact scholars@zu.ac.ae.

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F6793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F6793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/6793?utm_source=zuscholars.zu.ac.ae%2Fworks%2F6793&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholars@zu.ac.ae

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjca20

International Journal of Computers and Applications

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tjca20

Evaluating the cost of classifier discrimination
choices for IoT sensor attack detection

Mathew Nicho, Brian Cusack, Shini Girija & Nalin Arachchilage

To cite this article: Mathew Nicho, Brian Cusack, Shini Girija & Nalin Arachchilage (10 Sep
2024): Evaluating the cost of classifier discrimination choices for IoT sensor attack detection,
International Journal of Computers and Applications, DOI: 10.1080/1206212X.2024.2401069

To link to this article: https://doi.org/10.1080/1206212X.2024.2401069

© 2024 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 10 Sep 2024.

Submit your article to this journal

Article views: 124

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tjca20
https://www.tandfonline.com/journals/tjca20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/1206212X.2024.2401069
https://doi.org/10.1080/1206212X.2024.2401069
https://www.tandfonline.com/action/authorSubmission?journalCode=tjca20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tjca20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/1206212X.2024.2401069?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/1206212X.2024.2401069?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/1206212X.2024.2401069&domain=pdf&date_stamp=10 Sep 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/1206212X.2024.2401069&domain=pdf&date_stamp=10 Sep 2024

INTERNATIONAL JOURNAL OF COMPUTERS AND APPLICATIONS
https://doi.org/10.1080/1206212X.2024.2401069

Evaluating the cost of classifier discrimination choices for IoT sensor attack detection

Mathew Nichoa, Brian Cusackb, Shini Girijac and Nalin Arachchilaged

aResearch and Innovation Center, Rabdan Academy, Abu Dhabi, UAE; bCloud Security Research Center, AUT University, Auckland, New Zealand; cCollege
of Technological Innovation, Zayed University, Dubai, UAE; dSchool of Computing Technologies, RMIT University, Melbourne, Australia

ABSTRACT
The intrusion detection of IoT devices through the classification ofmalicious traffic packets have becomemore
complex and resource intensive as algorithm design and the scope of the problems have changed. In this
research, we compare the cost of a traditional supervised pattern recognition algorithm (k-Nearest Neighbor
(KNN)), with the cost of a current deep learning (DL) unsupervised algorithm (Convolutional Neural Network
(CNN)) in their simplest forms. The classifier costs are calculated based on the attributes of design, compu-
tation, scope, training, use, and retirement. We find that the DL algorithm is applicable to a wider range of
problem-solving tasks, but it costs more to implement and operate than a traditional classifier. This research
proposes an economic classifier model for deploying suitable AI-based intrusion detection classifiers in IoT
environments. The model was empirically validated on the IoT-23 dataset using KNN and CNN. This study
closes a gap in prior research that mostly concentrated on technical elements by incorporating economic fac-
tors into the evaluation of AI algorithms for IoT intrusion detection. This research thus evaluated the economic
implications of deployingAI-based intrusion detection systems in IoT environments, considering performance
metrics, implementation costs, and the cost of classifier discrimination choices. Researchers and practitioners
should focus on the cost–benefit trade-offs of any artificial intelligence application for intrusion detection,
recommending an economic evaluation and task fit assessment before adopting automated solutions or
classifiers for IoT intrusion detection, particularly in large-scale industrial settings that involve active attacks.

ARTICLE HISTORY
Received 27 May 2024
Accepted 31 August 2024

KEYWORDS
Internet of things; classifier
costs; cyber security; cost
evaluation; pattern
recognition; threat detection

1. Introduction

The adoption and application of IoT devices is projected to double
from 15.9 billion in 2023–21 billion in 2030, while during the same
period, attacks increased by 41% in 2023 alone [1,2]. IoT devices
have been classified as low-end, medium-end, and high-end devices.
Low-end andmedium-end devices, which use low processing power,
often have weaker security layers [3]. With existing IoT literature
mainly focusing on application domains, services, cloud and business
solutions, IoT technologies, and security [3], the proposed research
focuses on implementation cost, total cost, and algorithm perfor-
mance of classifiers in intrusion detection to optimize detection
processing. This assumes significance since critical industry verticals
namely electricity, gas, steam & A/C, water supply & waste manage-
ment, retail & wholesale, transportation & storage, and government
have currently more than 100 million connected IoT devices [4].

As a computing system, the IoT possesses inherent potential
information security vulnerabilities and associated negative risk
impacts [5]. IoT architectures are susceptible to attacks since they
encompass peripheral sensors, connected devices, and an IoT plat-
form consisting of gateways, servers, applications, and other inter-
network connectivity elements, including satellite systems. Con-
sequently, vulnerabilities can arise during network transmission,
authentication and key exchange, and system command-and-control
processes. IoT networks utilize sensor data for processing, decision-
making, and initiating actions [6]. Sensors, despite their small size
and large data-transmission capabilities, represent the most vul-
nerable components. Although lightweight encryption algorithms
can offer protection, the limited computational resources of sen-
sors restrict the extent of this protection [7,8]. Therefore, automated

CONTACT Shini Girija shini.girija@zu.ac.ae College of Technological Innovation, Zayed University, Dubai, UAE

solutions for detecting malicious IoT traffic have been explored
by various researchers [9–12]. Each solution presents a trade-off
between costs and performance benefits, thereby posing the ongo-
ing challenge of determining the most effective solution for specific
use cases. Effective classification algorithms are necessary because
IoT devices have limited computing capability [13,14]. The Cost of
Classifier Discrimination Choices is important because it establishes
the computational resources required, thereby affecting the choice
of algorithms to balance resource efficiency and accuracy for IoT
applications.

The problem of accurately categorizing observed IoT network
traffic packets as either beneficial or malicious necessitates the devel-
opment of a classification mechanism capable of effectively dis-
tinguishing class membership while maintaining acceptable costs
[15]. Consequently, researchers face the challenge of devising cost-
efficient algorithms that operate within acceptable risk parameters.
Four potential outcomes can result from applying a classifier to a
dataset: correct identification of a packet, incorrect identification of
a packet, false classification of a beneficial packet, or false classifica-
tion of a malicious packet [16]. By employing standardized metrics
(Section 3.2), the performance of a classifier can be assessed, and its
predicted utility determined. There are various aspects of the cost of
implementing an algorithm, including performance as well as other
dimensions of constraints and impacts. In this study, we evaluate and
test each algorithm based on such cost attributes as design, compu-
tation, scope, training, usage, and retirement (Table 1). Furthermore,
additional costs – such as performance failure, access, and assis-
tance – that contribute to algorithm utilization are addressed in the
discussion in Section 5.

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on
which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/1206212X.2024.2401069&domain=pdf&date_stamp=2024-09-06
mailto:shini.girija@zu.ac.ae
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 M. NICHO ET AL.

Table 1. Cost attributes of the tested algorithms.

Cost KNN CNN

Design Simple Complex
Computation Scales on dataset size and

k-value
Scales by layers and design
complexity

Scope Supervised Unsupervised
Training None or little Many runs
Use Requires management No management once trained
Retirement Turn off and erase data Turn off and erase layer contents

The two algorithms selected for this study represent extreme
cases, with one focusing on nearest neighbor similarities and the
other involving multiple layers of relationships. These choices are
intentional, for one algorithm exhibits well-known limitations while
the other is in the developmental stage and the subject of ongoing
research projects. A convolutional neural network (CNN), a deep
learning (DL) network architecture that learns directly from data, is
often employed in contemporary application research [14]. CNNs are
adept at identifying patterns in images to discern objects, classes, and
categories and have proved effective in classifying audio, time-series,
and signal data [17].

The K-nearest neighbor (KNN) algorithm, a traditional statistical
metric approach to classification, performs optimally when data have
been normalized and labeled [18]. As a supervised algorithm, much
of the feature selection and data normalization can be delegated
to supervisor actions, enabling rapid implementation and efficient
discrimination. However, the drawbacks of the algorithm include
efficiency limitations on large unclassified datasets and difficulties in
determining the optimal k constant [19,20]. The sections of this study
are organized into a review of the theoretical context and research
methods. We report and discuss the experimental results to eluci-
date the learning process for making cost-based decisions among
algorithms.

IoT ecosystems have essential and constantly changing features
that may introduce new vulnerabilities and risks [21]. Attacks that
target various levels of IoT architecture are frequently the result of
these vulnerabilities. IoT device attacks can be classified as either
passive or active depending on the attacker’s actions [22]. Passive
attackers can be difficult to identify since they pose as legitimate
users to listen in on communication channels and steal data. In active
attacks, which are readily identifiable, a hacker prevents the net-
work from operating normally. Since active attacks are complicated
and resource-intensive, they demand significantly more processing
power than passive attacks since they manipulate data or inject data
into communication streams [23]. For instance, man-in-the-middle
(MitM) attacks necessitate real-time data interception, decryption,
modification, and re-encryption by attackers, all of which involve
considerable computing power [24]. In a similar vein, distributed
denial-of-service (DDoS) attacks involve the coordination of mul-
tiple infected devices to overwhelm a target system with traffic,
likewise requiring significant computational power [25]. This study
focuses on identifying theways inwhich active attacks use processing
power, thereby highlighting the vital need for strong security mea-
sures and sophisticated processing power to recognize, mitigate, and
respond to the increasingly complex and resource-intensive threats
in large scale IoT ecosystems.

Although techniques based on machine learning (ML) and arti-
ficial intelligence (AI) have excellent detection accuracy, previous
research has revealed the drawback that their assessments do not
consider the social and, in particular, economic consequences of
advances in the field of AI [26–29]. Therefore, the novelty of this
research lies in the inclusion of economic factors in the assessment
of the use of AI algorithms in IoT intrusion detection [27–29]. The

Figure 1. Dimensions of cost.

economic factors, performancemeasures, advantages, and disadvan-
tages of each approach are considered when evaluating the cost of the
classifier discrimination choices for detecting IoT sensor attacks [27].
Researchers have recommended assessing the economic value of AI
algorithms regarding their performance and implementation costs
when adopting intrusion-detection systems in IoT environments to
ensure that they are both effective and affordable for enterprises
[30,31]. Therefore, in this paper, we address the often-overlooked
economic consequences of algorithm selection [27,28], for the pre-
vious research has tended to focus on the technical elements of
intrusion detection systems [27,32–34].

The research presented here sheds light on the intricate relation-
ship between the performance of algorithms, the implementation
costs, and the possible consequences of undetected intrusions on IoT
systems by utilizing a total cost of ownership (TCO) (Figure 1). The
trade-offs involved in algorithm selection are clarified by contrasting
supervised and unsupervised algorithms and examining thoroughly
the design factors and usability costs. Additionally, our examina-
tion of the cost of failure in terms of false negatives emphasizes the
importance of reliable intrusion detection systems for the security
of IoT networks. This study thus provides an innovative perspective
that can guide decision-making for enterprises looking to implement
intrusion detection systems in IoT environments that are both effec-
tive and affordable by highlighting the economic value of AI algo-
rithms in relation to their performance and implementation costs.
Accordingly, this study addresses the research question:

How does the DL unsupervised algorithm for IoT intrusion detection
compare in terms of cost and performance with a typical supervised pat-
tern recognition algorithm, and how do the trade-offs affect the utility and
application of these algorithms in real-world situations?

1.1. Research contributions

The primary objective of this research is to compare and analyse
systematically the costs and performance trade-offs of a traditional
supervised pattern recognition algorithm (KNN) and a DL unsuper-
vised algorithm (CNN) when these algorithms are used to detect IoT
intrusion. This analysis focuses on the cost attributes of design, com-
putation, scope, training, usage, and retirement. Utilizing a dataset of
malicious and benign traffic from IoT devices, we offer insights into
the practical implications of employing each algorithm. Future work
on this topic will involve replicating our research using datasets from
IoT ecosystem and lightweight classifiers. In this way, researchers
can investigate the applicability of the findings presented here to

INTERNATIONAL JOURNAL OF COMPUTERS AND APPLICATIONS 3

other datasets and evaluate the reliability of various classification
algorithms in detecting IoT attacks.

The study thus makes the following contributions to the
literature.

(1) We propose an economic classifier model for deploying suitable
AI-based intrusion detection classifiers in IoT environments,
empirically validated using KNN and CNN on the IoT-23
dataset. This model can be applied to any type of IoT sensor,
for evaluating and deploying the most cost-effective classifiers
across diverse IoT environments, particularly in industrial set-
tings where cost-efficiency is crucial due to the large number of
sensors deployed.

(2) We present a comprehensive comparison of the costs involved in
implementing and maintaining a traditional supervised pattern
recognition algorithm (KNN) with the costs of a DL unsu-
pervised algorithm (CNN) for the purpose of IoT intrusion
detection. The lightweight structure of these algorithms makes
them appropriate for IoT applications with limited resources
and provides unique methods for intrusion detection. The cost
attributes considered include design, computation, scope, train-
ing, usage, and retirement.

(3) We utilize a IoT-23 dataset of malicious and benign traffic col-
lected from IoT devices to evaluate the performance and com-
putational costs of the KNN and CNN classifiers. This practical
assessment clarifies the trade-offs involved in employing each
algorithm. The selection of the IoT-23 dataset for this study was
based on its extensive collection of benign and malicious traffic
from real-world IoT devices as well as its widespread use in the
research community.

(4) We emphasize the importance of economic evaluation and
assessing task fit before adopting automated solutions for IoT
intrusion detection to ensure that the selected method (meth-
ods) is (are) cost-effective and appropriate for the identified
case.

(5) By analysing the cost attributes of the algorithms, we facilitate
informed decision-making in organizations that are consider-
ing the implementation of automated solutions for detecting
intrusions in IoT sensors and associated systems.

(6) The findings presented here serve to alert stakeholders in the
cybersecurity and IoT industries to the trade-off in terms of
costs and benefits when usingAI applications to detect intrusion
and, thus, can inform future research and development efforts in
this field.

1.2. Structure of paper

In what follows, we present in Section 2 an outline of the theoretical
background for the study. In Section 3, we describe the methods and
metrics used in the research. In Section 4, we present the results of
our experiments. In Section 5, we discuss our results in detail, and
we summarize our conclusions in Section 6.

2. Theoretical background

IoT intrusion detection research is characterized by the need to
classify large volumes of data and the drive to develop automated
solutions. As a result, the standard statistical techniques for process-
ing big data and supervised learning approaches often fail to provide
effective solution. Novel capabilities in ML are necessary to ensure
problem adaptation and efficiency in autonomous decision-making.
The recent research on DL has included a proposal to employ neu-
ral network technologies as a solution for automating IoT intrusion
detection and addressing the associated challenges [12,35]. In the fol-
lowing discussion, we present a background literature review on IoT

security attacks, classification algorithms, and the cost considerations
relating to algorithm ownership.

2.1. IoT security attacks

Cybercriminals exploit vulnerabilities in IoT devices to gain remote
access and launch attacks to acquire valuable information. In [10], the
authors distinguished nine broad categories of IoT vulnerabilities:
lack of physical security, constrained energy capacity, weak encryp-
tion, vulnerable authentication, access control violations, obsolescent
software, open ports, programming errors, and inadequate audit-
ing. In [36], the authors classified IoT vulnerabilities based on three
architectural features: internal systems, interfaces, and shared archi-
tecture. Internal system vulnerabilities are targeted by ransomware
and phishing attacks while interfaces are prone to cross-site script-
ing attacks and malicious remote access. Unauthorized access to
user information andmalicious user account generation compromise
both interfaces and internal systems [23,37].

IoT security vulnerabilities can also be categorized according
to their components as platform software/firmware vulnerabilities,
network vulnerabilities, gateway vulnerabilities, and people, policy,
and procedure vulnerabilities [38]. Platform software and firmware
vulnerabilities arise from flaws introduced during the design, devel-
opment, and deployment of IoT software or firmware that allow
cybercriminals to infiltrate the IoT network and make unauthorized
changes [39]. Network vulnerabilities result from policy and pro-
cedure violations, and gateway vulnerabilities result from malicious
modifications to any gateway connected to the IoT. People, policy,
and procedure vulnerabilities are caused by unskilled or inadequately
trained users [40].

IoT device attacks can be categorized based on the IoT archi-
tecture layers of perception, network, and application [41]. The
perception layer encompasses the actuators and sensors responsible
for generating and transmitting data to the network layer. Primary
attacks targeting this layer include physical attacks aimed at dis-
rupting physical devices and impersonation attacks involving fake
identities or connection points [42]. The network layer entails the
interconnection of IoT devices and the transfer of data from the
perception layer to the application layer. Prominent attacks on the
application layer include MitM and routing attacks, such as sinkhole
attacks and selective forward attacks. The application layer hosts ser-
vices for IoT applications and is also susceptible to attacks related to
software changes, which can introduce new vulnerabilities that can
allow for the injection of malicious code or leakage of data [36].

IoT attacks can also be classified as either intrinsic or extrin-
sic. Intrinsic attacks originate internally and can be mitigated
through policy enforcement and intrusion detection systems. Extrin-
sic attacks target a system’s firewall externally, thus posing a challenge
to the security of the entire IoT system and may involve malicious
nodes or compromised sensors [43].

IoT attacks can also be categorized based on whether the
attacker’s activity is passive or active [44]. Passive attackers masquer-
ade as legitimate users and eavesdrop on communication channels
to acquire data, so they are difficult to detect. Various types of pas-
sive attacks are outlined in Table 2, in which IoT entities are denoted
numerically as 1 – IoT device, 2 – IoT device developer, 3 – IoT
platform, 4 – IoT system, 5 – IoT solution, and 6 – IoT ecosystem.

Table 3 summarizes the vulnerabilities of IoT networks to active
attacks across the categories of IoT entities.

2.2. Classification algorithms

Classification algorithms assign observations to classes or categories.
The simplest classifiers distinguish between two categories or a

4 M. NICHO ET AL.

Table 2. Passive IoT attacks.

Attacks IoT Entity Description

Eavesdropping 1,2,4 Gathering of information by tapping network
communication lines [35].

Node Destruction 1,3,4,6 Attempts to damage nodes through an electric
overflow or physical force [42].

Node Malfunctioning 1,2, 3,4 Improper functioning of nodes resulting from
DDoS attacks or overwhelmed sensors [39].

Node Outage 1,3,4,6 Disruption of the functionality of sensor nodes
[44].

Traffic analysis 2,4,6 Gaining network topology information through
traffic pattern analysis. Typically, DDoS attacks
are used to access this information [43].

Table 3. Active IoT attacks.

Attacks IoT Entity Description

Jamming 1,4 An intercepted device can jam a signal by
transmitting at a similar frequency. Jamming
can be performed at random intervals or
continuously to hamper the smooth flow of
data [36].

Tampering 1,4 Tampering with physical devices can help
attackers generate fake queries to confuse
legitimate users with false data [41].

Collision 1,2, 3,4 A transmission is sent on the same channel on
which a legitimate user is finishing a
transmission. The transmissions collide, and
the receiver asks that the data be transmitted
again [43].

Denial of sleep 1,2,4,6 The energy of battery-powered devices can be
drained by collision attacks or recurring
handshakes [45].

Spoofing 1,2,4 An intercepted node spoofs the physical address
of a victim node and then generates fake
identities for it and uses them elsewhere in the
network [46].

Flooding attacks 3,4,6 Intruders broadcast a message throughout the
network and convince other nodes that is in
the vicinity [44].

Wormhole attacks 1,2, 4 A sinkhole attracts all traffic to itself and does
not drop any packets. Sinkholes achieved
through the cooperation of two nodes that use
a different fast channel than the network itself
are termed wormholes [46].

Node Replication 1,2,3,4 An adversary places duplicates of victim nodes in
many places on a network to generate
inconsistencies [47].

Sybil attacks 1,2, 3,4, 6 Compromised nodes present multiple identities
to the other nodes in a network, thereby
contradicting the routing paths and reducing
the effectiveness of fault tolerance schemes
[44].

DDoS attacks 1,3,4 Attempts to shut down the targeted node
partially or completely by flooding it with
traffic, thereby interrupting regular traffic to
the victim network [9].

Phishing attacks 1,2,4 An adversary impersonates a legitimate user to
gain sensitive information such as bank
account details or credit card information.
Usually, these attacks are launched with an
email that, when opened, causes the leakage
of information [47].

binary while the more complex assign observations to multiple
classes [48]. The decision to assign an observation is made based on
predetermined criteria and rules, and performance metrics serve to
assess the algorithm’s success. Researchers choose algorithms based
on their previous successful performance in similar contexts and on
similar problems to ensure that they are suited to their research prob-
lems [49]. In the following discussion, we review six algorithms that

reflect the evolution of the statistical methods used for classification,
from linear modeling to learning and CNNs.

Regression analysis is the fundamental basis for examining vari-
able relationships and constructing predictive models, which involve
the supervised classification of dependent variables in relation to
independent variables. Typically, a regression is not perceived as a
classification algorithm; rather, it underpins the mathematical con-
cepts essential for the processes of discrimination, grouping, and
classification [50]. The certainty of a relationship is often insufficient
to include or exclude a variable definitively from a particular class.
Nevertheless, the application of clustering and grouping method-
ologies to regression data enables the establishment of a model for
differentiating among distinct classes of information. Logistic regres-
sion is a notable example of a technique used to predict a categorical
dependent variable based on a set of independent factors.

Decision trees are widely used to classify and group patterns in
data. A decision tree consists of a hierarchical arrangement of ques-
tions shaped like a tree, with each question representing a condition
and generating a split that leads to other questions [48]. The concept
of a tree is extended with nodes and leaves that represent conditions
and predictions, respectively. In this manner, an investigation pro-
gresses through the tree structure, which conditions a problem for
solving and creates predictions as answers. The decision tree classifi-
cation structure is commonly used in ML problem-solving. The key
challenge is to develop a series of relevant questions that sequentially
lead to a required outcome. The decision trees from one or multiple
learning models can be combined to obtain a generalized outcome
through an average or majority vote.

The naive Bayes classifier is a probabilistic classifier that estimates
the probability of an observation belonging to a particular category
or group [51]. This classifier uses chance or probability scales to
make predictions quickly. The algorithm stores the features of an
object independently so that, when a feature or combination of fea-
tures is detected, it predicts the object’s category. It is based on the
Bayes conditional probability theorem and provides error rates for
each prediction. This supervised learning algorithm thus predicts the
probability of a hypothesis being true without prior knowledge. To
make a classification decision, any dataset can be transformed into
a frequency table and a likelihood table, and the posterior proba-
bility is calculated. This classifier can be applied to both binary and
multi-class classifications. One of its limitations is that it assumes all
features to be independent or unrelated, so it may result in a failure
to learn the relationships between features.

The KNN method references all existing examples in a dataset
(n in size) and categorizes new examples using a similarity metric
(e.g. distance functions). Since the early 1970s, KNN has been used
as a non-parametric approach in statistical estimates and pattern
recognition [48]. The method depends on the similarity comparison
mechanism to drive decision-making and only stores instances of the
training data. Classification is determined by a simple majority vote
of each k closest neighbor, with new examples allocated to the class
with the most members among such neighbors as determined by a
distance function [20]. When k equals 1, the new example is allo-
cated to the nearest neighbor’s class whereas, if k is greater than 1,
the computational load increases linearly until k equals n (the total
entries in the dataset). The challenge in using KNN is to select or
estimate the optimal k that balances the computational cost against
the accuracy of the predictions.

Artificial neural networks (ANNs) are supervised learning net-
works used for classification problems [52]. Clustering, on the other
hand, is an unsupervised ML approach for categorizing data points
based on their traits and characteristics. Clustering is a statistical
technique while ANNs consist of various patterning methodologies
[53]. ANNs are designed to resemble the structure of the brain, with

INTERNATIONAL JOURNAL OF COMPUTERS AND APPLICATIONS 5

each artificial neuron connecting tomany others andmillions of neu-
rons working together to form a complex cognitive structure. The
structure of neural networks is multi-layered, with the neurons in
one layer transferring data to multiple neurons in the next layer and
so on. The data eventually reach the output layer, where the network
decides how to handle a problem, categorize an object, and so on
[54]. The study of neural networks is characterized as DL because
its multi-layer structure is supervised and learns acceptable behav-
iors progressively. A CNN retains the ANN structure of the input,
hidden, and output layers but is a class of ANN that reduces the com-
plexity of the neural connections between layers [15]. The input is
a matrix image representation which can be represented as (number
of inputs)× (input height)× (input width)× (input channels). After
passing through a convolutional layer, an image is transformed into
a feature map or activation map, and the number of required neuron
connections to the next layer decreases. This feature map serves as
the input matrix for the subsequent layers, such as the pooling, fully
connected, and normalization layers [16]. CNNs solve the issues of
overfitting and computational complexity through the reuse of fil-
ters and the use of dilatable receptive input fields between the hidden
layers.

Classification algorithms play a crucial role in assigning obser-
vations to classes or categories, with their suitability depending on
the research problem at hand. Here, we explore six prominent classi-
fication algorithms: regression analysis, decision trees, naive Bayes
classifiers, KNNs, and ANNs, specifically, CNNs. Since each ML
algorithm is unique, with its own strengths andweaknesses, selecting
themost appropriate entails carefully considering the specific context
and requirements.

Because IoT environments have inherent resource limits,
lightweight classification methods are essential for the detection of
IoT intrusions. We selected CNN (an unsupervised deep learning
technique) and KNN (a conventional supervised pattern recogni-
tion algorithm) because they function well in resource-constrained
environments. As IoT devices proliferate, lightweight algorithms are
increasingly necessary to enable effective data processing and accu-
rate intrusion detection capabilities. The intention of the research
described here, then, is to resolve issues specific to IoT environments
and contribute to the development of efficient intrusion detection
systems for IoT devices by utilizing lightweight techniques such as
CNN and KNN.

2.3. Computational costs

The total cost of ownership (TCO) is a comprehensive estimation
of the expenses related to the acquisition, deployment, utilization,
and retirement of a product or piece of equipment [55]. The TCO
is demonstrated by the economic classifier model. This concept is
also applicable to software applications and algorithms implemented
for work purposes. The TCO thus includes the acquisition, opera-
tion, and retirement costs of any asset, with the value of software
and algorithms evaluated and reported with respect to the functional
attributes of the services that they provide or facilitate. Table 4 illus-
trates the TCO for an algorithm. In addition to computational costs,
the dimensions of an algorithm’s TCO include design, scope of use,
challenges for use, and retirement opportunities [56]. The design
influences the ease of use, functionality, and problem-solving scope.

The model illustrated in Table 4 outlines the phases, attributes,
and metrics for evaluating the total cost of ownership (TCO) for
algorithms used in IoT intrusion detection through simulation. It
provides a useful model that can be replicated by industries to select
the optimal classifier for appropriate IoT types as it breaks down
the costs related to the acquisition, operation, and retirement phases
through considering the attributes and metrics. Organizations can

Table 4. Economic classifier model for owning an algorithm.

Phase Attribute Metric

Acquire Procure, Availability, Fit
assessment

Finance, Time, Method execution

Operate Implement, Test, Train, Run Time, Expert knowledge, Computing
resources, Success rates

Retire Data erasure, Decommission,
Reuse market potential
assessment

Time, Expert knowledge

thus make better decisions by using this method to assess and con-
trast the actual costs of implementing various algorithms in their
setting.

The KNN and CNN algorithms chosen for this research have
distinct designs but are applicable to network traffic classification.
KNN features a simple geometric design that enables its application
across various discrimination tasks whereas CNN possesses a com-
plex design, so users must calculate the number of layers and nodes
to achieve the desired outcome [57]. Additionally, CNN requires 3D-
format visual input data for computation. These factors contribute to
or reduce the costs of use. CNN entails training costs unless a pre-
trained CNN is acquired and customized for the required task [58].
Consequently, we select as attributes the design, computation, scope,
training, use, and retirement of the algorithms to provide adequate
scope for comparing the costs between them.

CNN and KNN were chosen for this study because of their com-
plementing advantages in handling the challenges associated with
IoT intrusion detection. CNNs excel at detecting intricate patterns
in unstructured data, which is crucial for identifying small anoma-
lies within the large volumes of diverse network traffic commonly
found in IoT ecosystems [59]. They are useful for recognizing forms
of attacks that have never been seen before because of their capacity
to function in unsupervised learning environments [60]. However,
KNN is an effective benchmark for comparison due to its ease of use,
low computational cost, and interpretability, particularly in resource-
constrained IoT devices where real-time detection is crucial [61].
The study focuses on examining the trade-offs between these two
algorithms, which represent different extremes of the complexity
spectrum, in terms of cost and performance. Other classifiers, like
ensemble approaches or support vector machines, were taken into
consideration but eventually discarded because of their increased
computational overhead, propensity for overfitting, and added com-
plexity – factors that might not be well suited to the dynamic and
limited environments of IoT systems [19]. Thus, CNN and KNN
were selected to offer a thorough, unbiased analysis of how algorith-
mic complexity affects both detection accuracy and operating costs,
which is exactly in line with the study’s goals of creating an intrusion
detection system that is both cost-effective and widely applicable.

2.4. State of the art

Table 5 presents a comparison of the proposed approach with the
existing IDS approaches. The economic factors, performance mea-
sures, advantages, and disadvantages of each approach are considered
when evaluating it. Although ML – and AI-based techniques show
excellent detection accuracy, their assessments lack economic con-
sequences. DL-based algorithms are quite accurate, but they ignore
design considerations and usability costs. Our approach, by con-
trast, provides a thorough evaluation of the performance, design
elements, and usability costs since it takes economic considera-
tions into account and uses a TCO paradigm. This table is useful
for understanding the various IDS approaches and the trade-offs

6 M. NICHO ET AL.

Table 5. Comparison with related research.

IDS Method Economical Performance Strengths Limitations

ML-based algorithms [29] No Precision, recall, F1 score, AUC Good detection accuracy (95%) Economic implications not
considered

DL-based algorithms [30] No Precision, recall, accuracy High detection accuracy (99.75%) Usability cost and design factors
not considered

AI-based detection [31] No Precision, recall, accuracy, time High detection accuracy (99.45%); execution
time also considered

Economic implications not
considered

Our Method Yes Precision, recall, accuracy, F1
score, TOC Model

Takes into account the performance, design
factors, and usability costs of algorithms in
addition to comparing costs (99.0%, 99.9%)

Conducted using a limited number
of PCAP files

Figure 2. Diagram of our methodology.

associated with each in terms of usability, performance, and eco-
nomic sustainability.

Our study thus fills a major gap in the literature by incorporating
economic factors into the assessment of AI algorithms for IoT intru-
sion detection. Our research objective is to offer a comprehensive
understanding of the economic implications of the choice, execution,
and maintenance of algorithms by utilizing a TCOmodel relevant to
large scale industrial settings that deal with active attacks on IoT. Fur-
thermore, we explore the performance, design factors, and usability
costs of various algorithms in addition to comparing the costs of the
algorithms.

3. Methods and cost metrics

Previous research on intrusion detection in IoT devices has focused
on ML/DL models for distinguishing benign and malicious pack-
ets and classifying attacks [7,62,63]. There have been reports of the
performance of various algorithms and classifier designs to demon-
strate the potential advantages and problem-solving capabilities of
DL. Methods for intrusion detection are chosen, designed, and
employed to address the problem context and the research objec-
tives. Many CNN methods are developmental, being selected to
test performance-based hypotheses, expand knowledge, and design
capabilities for autonomous systems [53,64]. The metrics used are
chosen from confusion matrix relationships and statistical meth-
ods [50]. The following discussion describes the choices made to
facilitate this research, as shown in Figure 2. We define the two algo-
rithms selected for testing, elaborate on the choice of the four relevant
metrics, and specify the IoT datasets.

3.1. Algorithms

An algorithm provides a sequence of instructions to achieve a
predicted outcome. For our comparison of the KNN and CNN

algorithms, we specify them here along with the steps for compu-
tation and review the decisions that researchers make regarding the
design and scope of each and identify the cost implications.

3.1.1. KNN
The KNN algorithm, when used for supervised classification, takes
an observation input, computes the relationship to current classifi-
cations, and outputs a classification class for the observation [20].
The algorithm learns to classify through the supervisory labeling of
features and comparison of an observation for similarity to the fea-
tures in the stored dataset. It performs best when the dataset has
consistencies that can be matched to categories. When the data are
inconsistent or diverse, greater supervisory intervention is required,
and higher error rates occur. However, many of the attacks on the
IoT described in section 2 above have consistent features and can be
pre-labeled by the supervisor for automatedKNNclassifications. The
accuracy of KNN is sensitive to the data distribution, so a dominant
class can skew the determination of a new observation. The accu-
racy with which the algorithm appraises a new observation depends
on the abstraction or weighting of the data from a dataset. Hence,
the dataset requires data abstraction or weightings to assure a fair
appraisal of any newobservation. The training phase of the algorithm
is minimal when the distribution of the data is consistent, and the
supervisor accurately identifies feature vectors and class labels. Since
these preconditions may not be satisfied, the performance metrics
require monitoring during the computation process.

The simplest application of KNN to classification problems
involves selecting a binary output class. For the classification of IoT
malware, this selection determines whether the outcome ismalicious
[65]. TheKNNalgorithmcan be scaled tomultiple output classes, but
we focus on the simplest form of it that is relevant to the IoT intru-
sion detection problem. The additional costs of the added features
can be estimated accurately from the simple binary case. The train-
ing data are also simplified, consisting of labeled IoT PCAP files that
are divided equally between the two classes. Based on these training
data, the objective is to predict the classification of new data from
the test dataset. In the simplest computation format, the nearest k
neighbor(s) of the new input is (are) computed, and the new data
are classified by vote as either malicious or not. The KNN classifier
requires supervisory input to function but has a simple design and
minimal computational steps for a small n.

The KNN supervisor must choose the k value and the measure-
ment model [20]. The k value and the n value settings determine
the scope of the costs for the algorithm. Many guides suggest that
k should be the square root of n (

√
n), but, in practice, each dataset

requires test runs with various k values to identify the optimal per-
formance. The k value should be an odd number to break any ties in
vote counting for k > 1. The k value sets the number of computa-
tions to be referenced in order from highest to k for the classification
vote. Low and high values of k impact the accuracy and cost, and
the supervisor must optimize k for each dataset. For this research,
we chose a simplified configuration with the most frequent vote and

INTERNATIONAL JOURNAL OF COMPUTERS AND APPLICATIONS 7

Algorithm 1. KNN Intrusion detection

1: Start
2: Inspect dataset
3: Determine best data abstraction
4: Test for optimal k value
5: Run
6: Rank metric results
7: Use k to select comparison set members
8. Decide by vote classification
8: Stop

Algorithm 2. Simplified CNN intrusion detection

1: Convert PCAP files to grey scale matrixes
2: Input grey scale matrix into convolution function
3: Apply ReLU to reduce output size and repeat step 2 once
4: Send reduced matrix to fully connected layer
5: Compute Softmax output and report classification
6: Compute metrics
7: Repeat steps 2–6 until training complete
8: Run test
9: Compute metrics and report

experimented with values of k around
√
n for the trade-off between

costs and accuracy for the IoT dataset.
The KNN algorithm is.

3.1.2. CNN
A CNN possesses DL and autonomous capabilities. This multi-
layered network can extract complex automated features from IoT
malicious codes [15]. Implementing the model requires structural
determination, the conversion of data to images, and training until
an acceptable error rate is achieved. Once trained, the CNN oper-
ates autonomously and can be utilized for intrusion detection [17].
Its value lies in the lack of supervision required after training and
the ability to process large volumes of data. However, the implemen-
tation and training of the algorithm can be costly. The structural
design determines the constraints, and the process steps contribute
to the substantial computational costs. The PCAP files and labels
need to be pre-processed to reshape the features into grayscale, as
described in section 2.2; the input is a 2D x 1 array. The 2D effect is
obtained by setting one dimension to the value of 1, and zero padding
is inserted to create the required input. In an ANN, each neuron is
directly connected, so each image input has 16× 16× 1 pixels based
on grayscale weightings from 0 to 255 plus 1 for the bias, which
equals 257 connections per neuron. However, the CNN is more
cost-effective, and each convolution layer forward feeds 3× 3× 1
weightings plus 1 bias, resulting in significant computational cost
savings. Each image data array is fed into the convolution func-
tion to reduce the amount of data sent to the neurons in the fully
connected layers. Normalization and pooling decrease the data size,
and the activation layer ReLU function and softmax output function
are cost-effective design choices. We simplified the research CNN
design to include the input array, a convolution function, a pooling
layer with ReLU output activation function (x2 for a DL aspect), the
fully connected layer, the softmax output function set to the mali-
cious or non-malicious classification (0 or 1, respectively), and the
performance metric computation.

Thus, weminimize the cost of theCNNalgorithmby streamlining
the design and selecting cost-effective output functions. In doing so,
we establish a minimal cost baseline for malware detection that can
then serve as the foundation for estimates of the cost of incorporating
additional computational options into the algorithm. The following
is a detailed overview of the general steps.

For our comparison of KNN and CNN, we examine their
respective designs and the steps for computation, discuss the deci-
sions made by researchers regarding the design and scope of each
algorithm with an emphasis on the cost implications, and outline the
four relevant metrics and the IoT datasets utilized. Because the KNN
algorithm, with its simple design, requires supervisory input but
offers minimal computational steps for a small n, it is cost-effective
for certain applications. On the contrary, theCNNalgorithm,with its
DL capabilities and autonomous functioning, provides a more pow-
erful solution for intrusion detection but has higher implementation
and training costs. By comparing these algorithms, we can better
understand the trade-offs among cost, accuracy, and ease of use in the
context of detecting intrusions in the IoT, thereby, ultimately, facil-
itating the selection of appropriate methods and metrics for future
research in this area.

3.2. Metrics and computation

The following metric relationships are based on the classification
confusion outcomes matrix in Equations 1–4 below [20,63]. The
accuracy measure computes the number of correct classifications in
the total number of classifications (1). (TP = true positive correct
malicious classification; TN = true negative correct benign clas-
sification; FP = false positive = incorrect malicious classification;
FN = incorrect benign classification.)

Accuracy = TP + TN
TP + TN + FP + FN

(1)

The precision of the algorithm is computed as the ratio of correct
malicious classifications and the sum of correct malicious classifica-
tions and incorrect malicious classifications.

Precision = TP
TP + FP

(2)

The recall or true positive rate is computed as the ratio of cor-
rect malicious classifications and the sum of the correct malicious
classifications and the incorrect benign classifications (3).

Recall = TP
TP + FN

(3)

The F1 score is the harmonic mean for precision and recall; it is
computed using Equation (4). The purpose of the F1 score is to
acknowledge the extreme values in a dataset and, hence, moderate
excessive theoretical normalization (P = precision; R = recall).

F1 = 2x
PxR
P + R

(4)

3.3. Dataset used

The widely used Aposemat IoT-23 dataset is among the numerous
data sources available to researchers online [66]. This dataset com-
prises both themalicious and the benign IoTnetwork traffic captured
in PCAP files for analysis. It contains 23 scenarios of network traf-
fic ranging in size from 2.1 MB to 21 GB. Of these scenarios, 20 are
malicious, and 3 are benign. Two scenarios were chosen for train-
ing and testing the algorithms based on the closest match in the
packet numbers between a benign and a malicious scenario. One
scenario contains 21,000 packets and the other 23,000 packets. In
[67], the authors suggested that 75% of the data should be allocated
for training and 25% for testing. These scenarios enable the ran-
dom selection of 10,000 packets from each scenario and provide an

8 M. NICHO ET AL.

additional 2,500 randomly selected packets from both scenarios for
testing. The experimental design involves training each algorithm on
10,000 benign and 10,000 malicious labeled PCAP packets and then
testing on 2,500 randomly chosen packets. The size and scope of the
KNN dataset are controlled by the experimental settings to establish
the k-value and maintain manageable computational costs.

Although there were 23 scenarios, several of them shared similar
traits. We selected two scenarios that captured much of the volatil-
ity in the dataset using feature analysis and dimensionality-reduction
approaches. We were able to streamline the training procedure while
maintaining the key components required for precise model perfor-
mance by using only these two situations.

3.4. Experimental setup

The platforms that we used had hardware requirements that included
high-performance servers with multi-core Intel Xeon E5 series pro-
cessors and 64GB of RAM. To improve these servers further, we used
NVIDIA GeForce RTX GPUs to accelerate the training and interfer-
ence procedures of our CNN models. Because of its reliability and
compatibility with DL frameworks, we used the Ubuntu Linux oper-
ating system (version 20.04) for our software environment. To com-
pute the neural network operations efficiently, we made use of the
GPU-accelerated implementation of the TensorFlow library (version
2.5). Furthermore, the major programming language for the model-
building and experimentation was Python (version 3.8). We used
Jupyter Notebook as an interactive computing environment to facili-
tate the experimentation and analysis. This approach allowed for the
seamless integration of code, documentation, and visualizations.

We used a CNN architecture with numerous convolutional layers,
max pooling layers, fully connected layers, and softmax activation
for classification in our investigation. To down-sample the feature
maps, we specifically used a deep CNN architecture with six convo-
lutional layers – each with a distinct number of filters and kernel size
– sprinkled with max-pooling layers. We added nonlinearity to the
network by using rectified linear unit (ReLU) activation functions.
We also added batch normalization layers to increase training stabil-
ity and speed up convergence. To avoid overfitting, we used dropout
layers for regularization following the fully connected layers. The
CNNwas trainedwith a categorical cross-entropy loss function and a
learning rate of 0.001 using the Adam optimization algorithm. Dur-
ing training, data augmentation methods such as random rotation,
horizontal flipping, and scaling served to improve the generaliza-
tion performance further. A high-performance computing platform
using NVIDIA GPUs to speed up calculation was employed for the
training procedure. Additionally, through testing and experimen-
tation, we carefully adjusted certain hyperparameters to maximize
performance, including batch size, the number of epochs, andweight
initialization approaches.

4. Results

Table 1 presents the scope of the algorithm cost attributes and cat-
egorizes the properties of the KNN and CNN algorithms. Table 4
presents definitions of the general parameters for measuring the
total cost of ownership for an algorithm based on a simplified soft-
ware ownership lifecycle. The testing conducted on each classifier
represents the minimum number of runs needed to identify the clas-
sification performance. The aim of the experimental design is to
determine theminimal cost and performance trade-off, which serves
as a baseline for extrapolating the value-added costs and benefits
when other algorithm options are considered.

The first decision to minimize costs involves selecting the binary
classification for malicious and non-malicious IoT traffic, which the

Figure 3. KNN cost per data unit.

dataset labels provide. This choice supports a minimalistic approach
and leaves multiple classification tasks for quantification by extrapo-
lation. It also lays the foundation for setting expectations for more
complex experimental designs. Importantly, this approach estab-
lishes a benchmarking process for measuring the total cost of own-
ership of AI applications and methods for object-oriented measure-
ment.

The second set of decisions entails simplifying the KNN and
CNN algorithms to the bare minimum of steps and performance
features to ensure operation and realistic outcomes. As a result, the
KNN algorithm utilizes Euclidean distances, powers of k iterations
up to

√
n, and vote decision-making. The CNN algorithm features

only two layers after the feature convolution selection and before the
connected output layer. This configuration represents the minimum
required for functionality, necessitating at least 10,000 training runs
to achieve meaningful outcomes.

Inwhat follows, we address the research question and the implica-
tions for further research concerning the potential cost–benefit and
performance trade-offs that may be quantified based on the bench-
marks achieved. The results for each algorithm are discussed in the
following subsections.

4.1. KNN results

The KNN algorithm is often touted for its quick setup and ease of
use. However, we found that configuring the 2D data format and
selecting the best-performing k value proved to be time-consuming
and computationally expensive. Consequently, we reduced the num-
ber of trained data points to 50 normal PCAP files and 50 malicious
PCAP files. These files were randomly and equally selected from the
Malware-capture-8-1 dataset and the Honeypot-capture-4-1 dataset.
For the testing, we adhered closely to the proportions specified in the
literature, selecting 25 data points randomly from each dataset.

The 2D rendering of the data points was achieved by randomly
allocating coordinates to each trained dataset in the binary segre-
gated regions. The test points were then randomly allocated coordi-
nates in a region equidistant from the trained regions and randomly
entered for computation. The number of data points was signifi-
cantly reduced from the planned 10,000 because it proved possible
to address the research question using the smaller dataset and apply
the proposed extrapolation method to predict the results from larger
datasets. These results are sufficiently stable for extrapolation and
prediction of the costs and benefits of larger datasets. Table 6 reports
the total cost of KNNalgorithmownership fromTable 4, and Figure 3
illustrates the trade-off curves of k value, performance, and costs.

The test runs of the KNN algorithm for various k values yielded
100% accuracy on the labeled datasets, with only a minor cost

INTERNATIONAL JOURNAL OF COMPUTERS AND APPLICATIONS 9

Table 6. KNN Total cost of ownership results.

Phase Attribute Observation Metric Measure

Acquire Procure Easy to find Finance Free
Availability Easy to acquire Time 15-20 minutes
Fit Customization

required
Method K step count 2D

data format
Operate Implement Fit format Time 30-40 minutes

Train Structure clusters Expert help Setting data format
and k

Test Easy once set up Resources Higher for larger n
and k

Run Quick for small n
and k

Success rate High for larger k

Retire Data erasure Delete all datasets Time 5 minutes
Decommission Remove data, save

code
Knowledge Tactic functionality

Reuse Code and 2D data
method

Market Value Little. Too common
/ free

Table 7. Metrics for test accuracy of DT algorithm.

Accuracy Execution time CPU Memory

99.99% 33.38 99% (24 threads) 2.84 GB

Table 8. DT total cost of ownership results.

Phase Attribute Observations Metric Measure

Acquire Procure Easy to get Financial
implications

Free

Availability Available through
multiple libraries

Libraries 4

Fit Customization
available

Method Criterion leaf

Operate Implement Time-consuming Time 33.38 sec
Train Tree algorithm Expert help/

resources
Code
customization
memory: 2.84 GB
CPU usage: 99%

Test Easy once set up Resources High
Run Quick for data <

1,000,000
Success rate Always successful

Retire Data erasure Delete all datasets Time 5 minutes
Decommission Remove data and

save code
Knowledge Tactic functionality

Reuse Code and dataset Market Value Little

increase for each k unit resulting from the steps for selecting the least
distance. However, the relationship between k and n is significant.
The selected n was 125 (100+ 25). As n increases, the cost increases
by n+ k, where ideally k = √

n.
Table 7 presents the performance metrics for the DT algorithm.

The 99.99% stated accuracy shows the precision of the DT algorithm
in classifying data. Its execution duration of roughly 33.38 s indi-
cates its effectiveness in processing data. With 24 threads and a CPU
utilization of 99%, these metrics indicate substantial parallelization
to maximize computing resources. Furthermore, the 2.84 GB mem-
ory use is the memory footprint needed to run the method. Table 8
reports the total cost of DT algorithm ownership.

This relationship renders large datasets increasingly expensive to
process in KNN. Computing the distance of any new PCAP file once
and then calculating the votes for the various k values from a static
rank table reduced the costs when optimizing k. Figure 3 illustrates
the experimental relationship and extrapolation of costs.

4.2. CNN results

The CNN algorithm required design and training prior to use. We
intentionally simplified theCNNdesign to aminimal specification to
ensure that the trade-off constraints were satisfied, stable results were

Figure 4. CNN training accuracy rates per PCAP file.

Figure 5. CNN test accuracy rates per PCAP file.

obtained, and the potential for further design additions was revealed
for costing. The 3D data format setup was also simplified by setting
the third dimension to 1 and adopting grayscale values with deci-
mal representations in [0,225] to fit the image format. The resulting
array texture is a unique grayscale image representing each PCAP
file. Consequently, the minimal CNN has a normalized matrix input
to the convolution function that identifies the characteristic features
from each matrix.

The two pooling layers reduce the computational costs, and the
activation ReLU function output is used for cost efficiency, followed
by the second pooling layer input to a directly connected layer. The
final output is obtained using the SoftMax function for classification,
and the result is collected for metric analysis. The planned 10,000
PCAP files were used as outlined in Section 3.3. These results are
sufficiently stable to predict the costs and benefits of CNN with var-
ious designs and larger datasets. Table 9 reports the total cost of
CNN algorithm ownership from Table 4, and Figures 4 and 5 display
the performance of CNN during training and testing, respectively.
Table 10 quantifies the results.

5. Discussion

Adopters of AI applications for IoT intrusion detectionmust address
economic questions and evaluate the costs of the choices made prior
to use. This experiment was deliberately structured to compare sub-
stantially different algorithms in order to calculate the cost differ-
ences in their utilization for IoT intrusion detection. The literature
review established the vulnerability of IoT systems to a wide range
of passive and active attacks and confirmed the volume of data gen-
erated by sensors for information processing. Consequently, current

10 M. NICHO ET AL.

Table 9. CNN total cost of ownership results.

Phase Attribute Observation Metric Measure

Acquire Procure Confusing options Finance Free
Availability Must select

relevant CNN
Time 2-3 hours

Fit Customization
required

Method Design choices 3D
data format

Operate Implement Time-consuming Time 6-8 hours
Train Check blocks work

and metrics
Expert help Code audit data

formatting
Test Easy once set up Resources Higher for larger n

and more layers
Run Requires up to

10,000 training
runs

Success rate Low with < 5,000
runs; expensive

Retire Data erasure Delete each layer Time 30 minutes
Decommission Remove layers and

data
Knowledge Tactical

functionality
Reuse Whole trained CNN Market Value Reuse and sale

possible

Table 10. Metrics for test accuracy for unsupervised algorithm.

Accuracy Precision Recall F1 Score

99.0% 99.0% 99.0% 99.3

research proposals to automate malicious intrusion detection in an
IoT network are relevant and necessary. The performance of an AI
algorithm is economically valuable when the benefits outweigh the
costs. In this research, we employed the TCO as a for assessing AI
algorithm benefits using the economic classifier model (Table 4).

The comparison of the cost of a supervised algorithm with that
of an unsupervised algorithm introduced the cost of a supervisor
and the benefits of autonomous detection systems. For a small num-
ber of PCAP files, the supervised algorithm demonstrated superior
setup, performance, and accuracy benefits. However, there are signif-
icant challenges in IoT intrusion detection associated with the large
datasets of the continuous data feeds. A supervisor can only manage
a portion of the requirement, and the computational costs escalate as
the number of PCAP files increases. Extrapolating the current find-
ings, we speculate that there will be a crossover point at which the
unsupervised algorithm offers computational cost advantages. Once
trained, the unsupervised algorithm provided an accuracy level of
99.0% on the test data and had an F1 score of 99.3 (Table 10). A
perfect result would be 100% accuracy and an F1 score of 1 These
findings suggest that an unsupervised algorithm can approach a
near perfect detection rates, but an expectation is set for a mar-
gin of error. Allowing for a few points of potential failure and the
user’s appetite for risk, the unsupervised algorithm (CNN) offers sig-
nificant economic advantages for IoT intrusion detection in large
datasets.

Design is a critical factor in the selection of a cost-effective
and high-performing AI application for IoT intrusion detection.
The supervised algorithm assigns to the supervisor a range of
data-abstraction judgments, data-conditioning choices, and add-on
options for statistical data treatments. All these design considerations
have cost and benefit trade-offs for task performance. The unsuper-
vised algorithm has significant training costs as well as design costs
depending on the number of layers chosen, the data management
techniques, and the operational scope. Many ANN designs are avail-
able, and we chose a CNN for cost efficiencies and reduced neuron
node loadings.

However, a CNN can become more costly when targeted and
refined for specific detection tasks that require more than two pool-
ing layers. In large datasets from IoT sensor inputs, manymore layers

are feasible for better responsiveness, accuracy, andmulti-class classi-
fication. The scope for IoT intrusion detection scales up the potential
number of elements in a design and the performance expectations for
detection to a full range of attacks. To meet these requirements, the
CNN design may become too complex and costly to use.

The first research question addresses how a deep learning (DL)
unsupervised algorithm for IoT intrusion detection compares in
terms of cost and performance with a typical supervised pattern
recognition algorithm. The use of an algorithm for IoT intrusion
detection entails usability costs and implementation costs that must
be factored in before the expected benefits of deliverables are cal-
culated. The efficiency and effectiveness of the algorithm are the
expected deliverables, but the difficulty or simplicity of implemen-
tation and use are drag factors that create tangible costs. Both tested
AI algorithms required data structuration prior to use, representing a
hidden andongoing cost for computation,memory use, and response
times. In some instances, a CNN pretrained on similar classification
problems may be purchased to avoid the training costs. However,
a pre-trained CNN still requires input data structuration, system
implementation, customization, and monitoring before release to
autonomy. Hence, hidden costs reduce the value of the expected ben-
efits of using a CNN, but the extrapolation from our experiments
suggests that the optimal arrangement can be obtained by reducing
the complexity of the CNN design, specifying the scope of the detec-
tion task, and setting minimal operational controls. Cost efficiencies
can also be gained in the training of a CNN and the export of the
tactical knowledge gained to reduce the implementation time and
operational controls.

The cost of failure when adopting AI algorithms for IoT intrusion
detection is proportional to the impact of an undetected negative
risk. In [64], the authors emphasized that it is critical to reduce
false negatives in an intrusion-detection classification system. In our
experiments, the KNN had no false negatives but exhibited a very
high cost to achieve this result. By contrast, the CNN had 1.0%
false negatives when autonomously classifying malicious and non-
malicious PCAPfiles in the test sets. Although this number is low, the
criticality of failure must be measured against impacts on the system.
A false negative allows a malicious PCAP file into the IoT system,
exposing it to the consequences of an attack. Further work is required
to reduce the false negatives and classify all the malicious PCAP
files by attack type. The IoT attack types are identified in Section 2,
but the mapping of the impacts of the various types of attacks on
IoT systems has not been completed. Improving a CNN offers resid-
ual benefits, and, while the simplicity of a KNN provides intangible
benefits upon retirement, a CNN provides tangible benefits. A CNN
boasts greater capacity for intrusion detection than a KNN, offering
flexibility, adaptability, and retained learning. Consequently, a CNN
can be reused or sold for residual benefits. Prospective users of AI
intrusion detection capabilities must, therefore, evaluate the TCO of
an algorithm across all the TCO dimensions before adoption. The
research demonstrates that while KNN does not perform well for
large datasets due to its highTCO,CNN, on the other hand, performs
better on larger datasets with a more favorable TCO.

The second research question examines the trade-offs between
these algorithms, highlighting their utility and application in real-
world situations. Tables 6 and 8, and Table 9 are based on the model
provided by Table 4, offering a thorough analysis of the financial,
operational, and retirement phases related to the deployment of IoT
algorithms, in addition to a performance score. This analysis includes
the validation of the economic classifiermodel on the IoT-23 dataset.
These statistics offer vital insights into the whole lifecycle costs of
algorithm ownership by dissecting the TCO into individual features,
such as procurement, availability, fit evaluation, implementation,
testing, training, operational success rates, and eventual retirement

INTERNATIONAL JOURNAL OF COMPUTERS AND APPLICATIONS 11

concerns. This method highlights how important it is to compre-
hend the functional and financial implications of implementing
algorithms in IoT ecosystems, where cost-effectiveness and resource
limitations play an essential role. It is a major step forward in direct-
ing decision-making processes for organizations aiming to optimize
their IoT solutions because the thorough examination of these qual-
ities illuminates real-world challenges and potential opportunities in
deploying these algorithms.

6. Conclusions

The costs associated with utilizing AI applications for detecting
IoT sensor attacks can be assessed by identifying each algorithm’s
attributes and the trade-offs of competing risks. Our literature review
highlights the variety and significance of the vulnerabilities within
IoT networks. The deployment of AI applications is pertinent to
the big data context of IoT sensors, potential attack types, and the
vast volumes of data requiring analysis. The research presented here
demonstrates that each algorithm offers substantial benefits in dis-
tinguishing IoT sensor attacks from malicious and non-malicious
PCAP files, but several mitigating factors must be evaluated to select
the optimal solution. The research contribution includes the empha-
sis on the cost and benefit trade-offs of any artificial intelligence
application for intrusion detection and the recommendation of a
comprehensive TCO evaluation before the adoption of automated
solutions for IoT intrusion detection.

This study has limitations that suggest avenues for future research.
First, since the experiment focused on comparing two specific
ML algorithms, KNN and CNN, expanding the scope of the eco-
nomic classifier model to include additional relevant ML classifiers
could provide a more comprehensive understanding of the trade-
offs involved in selecting an appropriate ML technique for detecting
intrusions in IoT sensors and associated systems. Second, the study
was limited to one dataset and specific IoT sensors such as proximity,
image, and motion sensors; future work could extend this research
to include larger and/or multiple datasets and various sensor types
to achieve triangulation and generalization. Third, there is a need
to map different types of Industrial IoT attacks to their correspond-
ing system implications, as these attacks target unique vulnerabilities
in industrial ecosystems, which often involve a vast number of IoT
devices. Further research could focus on developing economic clas-
sifier models that are replicable across various industrial settings,
ensuring a well-balanced trade-off between detection accuracy and
the costs associated with system failures.

Lastly, while the research presented here emphasizes the impor-
tance of TCO evaluation when considering the adoption of ML
applications for detecting intrusions in IoT sensors and associated
systems, it provides a model for conducting such an evaluation.
Additionally, exploring multiple variables that influence the TCO
of intrusion detection of lightweight classifiers in large scale and
complex IoT ecosystems.

Data availability statement
The data that support the findings of this study are available from the correspond-
ing author upon reasonable request.

Disclosure statement
No potential conflict of interest was reported by the author(s).

References
[1] Statista. (2023). Number of Internet of Things (IoT) connections world-

wide from 2022 to 2023, with forecasts from 2024 to 2033. Retrieved from
https://www.statista.com/statistics/1183457/iot-connected-devices-worldw
ide/.

[2] Security Brief. (2023). A sharp increase in cyberattacks on IoT devices:
Check Point. Retrieved from https://securitybrief.co.uk/story/a-sharp-incre
ase-in-cyberattacks-on-iot-devices-check-point.

[3] OjoMO, Giordano S, Procissi G, et al. A review of low-end, middle-end, and
high-end IoT devices. IEEE Access. 2018;6:70528–70554. doi:10.1109/ACC
ESS.2018.2879615

[4] Statista. (2024). Number of Internet of Things (IoT) connections world-
wide from 2023 to 2024, with forecasts from 2024 to 2033. Retrieved from
https://www.statista.com/statistics/1183457/iot-connected-devices-worldw
ide/.

[5] ISO. (2019). Internet of things (IoT)— Interoperability for IoT systems Part
1: Framework https://www.iso.org/standard/71885.html.

[6] Alaba F, Othman M, Hashem I, et al. Internet of things security: A survey.
J Netw Comput Appl. 2017;88:10–28. doi:10.1016/j.jnca.2017.04.002

[7] Surendran S, Nassef A, Beheshti B. A survey of cryptographic algorithms for
IoT devices. In: 2018 IEEE long island systems, applications and technology
conference (LISAT). New York: IEEE; 2018, May. p. 1–8.

[8] Hou KM, Diao X, Shi H, et al. Trends and challenges in AIoT/IIoT/IoT
implementation. Sensors. 2023;23(11):5074), doi:10.3390/s23115074

[9] Qiu J, Zhang W, Lao I, et al. A survey of android malware detec-
tion with deep neural models. ACM Computer Surveys. 2021;53(6):1–36.
doi:10.1145/3417978

[10] Rizvi S, Orr R, Cox A, et al. Identifying the attack surface for IoT network.
Internet of Things. 2020;9:100162–100171. doi:10.1016/j.iot.2020.100162

[11] Hemalatha J, Roseline S, Greetha S, et al. An efficient densenet-based
deep learning model for malware detection. Entropy . 2021;23(3):344–346.
doi:10.3390/e23030344

[12] Lin K, Xu F, Xiao M. MFFusion: A multi-level features fusion model
for malicious traffic detection based on deep learning. Comput Netw.
2022;202:108658–108665. doi:10.1016/j.comnet.2021.108658

[13] Aghapour Z, Sharifian S, Taheri H. Task offloading and resource allo-
cation algorithm based on deep reinforcement learning for distributed
AI execution tasks in IoT edge computing environments. Comput Netw.
2023;223:109577), doi:10.1016/j.comnet.2023.109577

[14] Deng X, Chen B, Chen X, et al. A trusted edge computing system based
on intelligent risk detection for smart IoT. IEEE Trans Ind Inf. 2023;99:
1–10.

[15] Vasan D, Alazab S, Wassan S, et al. IMCFN: image-based malware classifi-
cation using fine-tuned convolutional neural network architecture. Comput
Netw. 2020;171:107138–107148. doi:10.1016/j.comnet.2020.107138

[16] Venkatraman S, Alazab M, Vinayakumar R. A hybrid deep learning
image-based analysis for effective malware detection. J Secur Appl.
2019;47:377–389.

[17] Kumar S. Meft-CNNmalware classification with fine tune convolution neu-
ral networks using traditional transfer learning in the internet of things.
Future Gener Comput Syst. 2019;125:334–351.

[18] Gilbert D, Mateu C, Planes J, et al. Using convolutional neural networks for
classification of malware represented as images. J Comput Virol Hacking
Tech. 2019;15:15–28. doi:10.1007/s11416-018-0323-0

[19] Kumara A, Jaidhar CD. Automated multi-level malware detection system
based on reconstructed semantic view of executables using machine learn-
ing techniques at VMM. Future Gener Comput Syst. 2018;79:431–446.
doi:10.1016/j.future.2017.06.002

[20] Yihua L, Vemun V. Use of K-nearest neighbor classifier for intrusion detec-
tion. Comput Secur. 2002;21(5):439–448. doi:10.1016/S0167-4048(02)005
14-X

[21] Nicho M, Girija S. IoTVT model: A model mapping IoT sensors to IoT vul-
nerabilities and threats. In: 2021 20th international conference on ubiquitous
computing and communications (IUCC/CIT/DSCI/SmartCNS). New York:
IEEE; 2021, December. p. 123–129.

[22] Serror M, Hack S, Henze M, et al. Challenges and opportunities in securing
the industrial internet of things. IEEE Trans Ind Inf. 2021;17(5):2985–2996.
doi:10.1109/TII.2020.3023507

[23] SrivastavaA, Gupta S, QuamaraM, et al. Future IoT-enabled threats and vul-
nerabilities: state of the art, challenges, and future prospects. Int J Commun
Syst. 2020;33(12):e4443), doi:10.1002/dac.4443

[24] Deogirikar J, Vidhate A. Security attacks in IoT: A survey. In: 2017 inter-
national conference on I-SMAC (IoT in social, mobile, analytics and cloud)
(I-SMAC). New York: IEEE; 2017, February. p. 32–37.

[25] AliW,Dustgeer G, AwaisM, et al. Iot based smart home: security challenges,
security requirements and solutions. In: 2017 23rd international conference
on automation and computing (ICAC). New York: IEEE; 2017, September.
p. 1–6.

[26] Ali Abdu NA, Basulaim KO. Machine learning in concept drift detec-
tion using statistical measures. Int J Comput Appl. 2024;46(5):281–291.
doi:10.1080/1206212X.2023.2289706

[27] Bonab AB, Rudko I, Bellini F. (2021). A review and a proposal about socio-
economic impacts of artificial intelligence. In Business Revolution in a

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://securitybrief.co.uk/story/a-sharp-increase-in-cyberattacks-on-iot-devices-check-point
https://doi.org/10.1109/ACCESS.2018.2879615
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.iso.org/standard/71885.html
https://doi.org/10.1016/j.jnca.2017.04.002
https://doi.org/10.3390/s23115074
https://doi.org/10.1145/3417978
https://doi.org/10.1016/j.iot.2020.100162
https://doi.org/10.3390/e23030344
https://doi.org/10.1016/j.comnet.2021.108658
https://doi.org/10.1016/j.comnet.2023.109577
https://doi.org/10.1016/j.comnet.2020.107138
https://doi.org/10.1007/s11416-018-0323-0
https://doi.org/10.1016/j.future.2017.06.002
https://doi.org/10.1016/S0167-4048(02)00514-X
https://doi.org/10.1109/TII.2020.3023507
https://doi.org/10.1002/dac.4443
https://doi.org/10.1080/1206212X.2023.2289706

12 M. NICHO ET AL.

Digital Era: 14th International Conference on Business Excellence, ICBE
2020, Bucharest, Romania (pp. 251–270). Springer International Publishing.

[28] ChenN, Christensen L, Gallagher K, et al. Global econ. Impacts Assoc. Artif.
Intell. 2016;23.

[29] Furman J, Seamans R. AI and the economy. Innov. Policy Econ.
2019;19:161–191. doi:10.1086/699936

[30] Abrardi L, Cambini C, Rondi L. (2019). The economics of artificial intel-
ligence: A survey. Robert Schuman Centre for Advanced Studies Research
Paper No. RSCAS, 58.

[31] Sultana R, Grover J, Meghwal J, et al. Exploiting machine learning and deep
learning models for misbehavior detection in VANET. Int J Comput Appl.
2022;44(11):1024–1038. doi:10.1080/1206212X.2022.2099122

[32] Magán-CarriónR,UrdaD,Díaz-Cano I, et al. Towards a reliable comparison
and evaluation of network intrusion detection systems based on machine
learning approaches. Appl Sci. 2020;10(5):1775), doi:10.3390/app1005
1775

[33] NandanwarH, Katarya R. Deep learning enabled intrusion detection system
for industrial IOT environment. Expert Syst Appl. 2024;123808.

[34] Awotunde JB, Misra S. Feature extraction and artificial intelligence-based
intrusion detection model for a secure internet of things networks. In: Illu-
mination of artificial intelligence in cybersecurity and forensics. Cham:
Springer International Publishing; 2022. p. 21–44.

[35] Saied M, Guirguis S, Madbouly M. Review of artificial intelligence for
enhancing intrusion detection in the internet of things. EngAppl Artif Intell.
2024;127:107231), doi:10.1016/j.engappai.2023.107231

[36] Butun I, Osterberg P, Song H. Security of the internet of things: vul-
nerabilities, attacks, and countermeasures. IEEE Commun Surv Tutorials.
2020;22(1):616–644. doi:10.1109/COMST.2019.2953364

[37] Kizza JM. System intrusion detection and prevention. In: Guide to com-
puter network security. Cham: Springer International Publishing; 2024. p.
295–323.

[38] Omitola T, Wills G. Towards mapping the security challenges of the inter-
net of things (IoT) supply chain. Procedia Comput Sci. 2018;126:441–450.
doi:10.1016/j.procs.2018.07.278

[39] Alladi T, Chamola V, Sikdar B, et al. Consumer IoT: security vulnerability
case studies and solutions. IEEE Consum Electron Mag. 2020;9(2):17–25.
doi:10.1109/MCE.2019.2953740

[40] Frustaci M, Pace P, Aloi G, et al. Evaluating critical security issues of
the IoT world: present and future challenges. IEEE Internet Things J.
2018;5(4):2483–2495. doi:10.1109/JIOT.2017.2767291

[41] Mourtzis D, Angelopoulos K, Zogopoulos V. Mapping vulnerabilities in the
industrial internet of things landscape. Procedia CIRP. 2019;84:265–270.
doi:10.1016/j.procir.2019.04.201

[42] Luo E, Bhuiyan A, Wang G, et al. Privacyprotector: privacy-protected
patient data collection in IoT-based healthcare systems. IEEE Commun
Mag. 2018;56(2):163–168. doi:10.1109/MCOM.2018.1700364

[43] Caminha J, PerkusichA, PerkusichM.A smart trustmanagementmethod to
detect on-off attacks in the internet of things. Security and Communication
Networks. 2018;1:6063456.

[44] Chen K, Zhang S, Li Z, et al. Internet-of-things security and vul-
nerabilities: taxonomy, challenges, and practice. J Hardware Syst Secur.
2018;2(2):97–110. doi:10.1007/s41635-017-0029-7

[45] White G, Nallur V, Clarke S. Quality of service approaches in IoT: A sys-
tematic mapping. J Syst Softw. 2017;132:186–203. doi:10.1016/j.jss.2017.
05.125

[46] Zhang K, Liang X, Lu R, et al. Sybil attacks and their defenses
in the internet of things. IEEE Internet Things J. 2014;1(5):372–383.
doi:10.1109/JIOT.2014.2344013

[47] Kolias C, Kambourakis G, Stavrou A, et al. DDos in the IoT: mirai
and other botnets. Computer (Long Beach Calif). 2017;50(7):80–84.
doi:10.1109/MC.2017.201

[48] Dhanabal L, Shantharajah S. A study onNSL-KDD dataset for intrusion sys-
tem based on classification algorithms. Int J Adv Res Comput CommunEng.
2015;2015(4):446452.

[49] SesmeroM, Ledezma A, Sanchis A. Generating ensembles of heterogeneous
classifiers using stacked generalization. Wiley Interdiscip Res Data Min,
Knowl Discovery. 2015;5:21–34. doi:10.1002/widm.1143

[50] Hossin M, Sulaiman M. A review on evaluation metrics for data classifica-
tion evaluations. Int J Data Min Knowl Manage Process. 2015;5(2):01–11.
doi:10.5121/ijdkp.2015.5201

[51] Sebesto S, Baranov E, Biondi F, et al. Optimizing symbolic execution for
malware behavior classification. Comput Secur. 2020;93:101775–101789.
doi:10.1016/j.cose.2020.101775

[52] Yakura S, Shinozaki R, Nishimura Y, et al. Neural malware analy-
sis with attention mechanism. Comput Secur. 2019;87:101592–101607.
doi:10.1016/j.cose.2019.101592

[53] Jahromi S, Hashemi A, Dehghantanha K, et al. An improved two-hidden-
layer extreme learning machine for malware hunting. Comput Secur.
2019;89:101665101696.

[54] Tahsien S, Karimipour H, Spachos P. Machine learning based solutions
for security of internet of things (IoT): A survey. J Netw Comput Appl.
2020;161:102630), doi:10.1016/j.jnca.2020.102630

[55] Roda I, Macchi M, Albanese S. Building a total cost of ownership model to
support manufacturing asset lifecycle management. J Production Planning
Control: Manage Oper. 2020;31(1):19–37. doi:10.1080/09537287.2019.1625
079

[56] Nicolescu R, Huth M, Radanliev P, et al. Mapping the values of IoT. J Inf
Technol. 2018;33(4):345–360. doi:10.1057/s41265-018-0054-1

[57] Cui Z, Du L, Wang P, et al. Malicious code detection based on CNNs
and multi-objective algorithm. J Parallel Distrib Comput. 2019;129:50–58.
doi:10.1016/j.jpdc.2019.03.010

[58] Bhupendra K, Ankar M, Payan K. Deep CNN-based damage classification
of milled rice grains using a high-magnification image dataset. Comput
Electron Agric. 2022;195:106811–106823. doi:10.1016/j.compag.2022.106
811

[59] AbbasiM, Shahraki A, Taherkordi A.Deep learning for network trafficmon-
itoring and analysis (NTMA): A survey. Comput Commun. 2021;170:19–41.
doi:10.1016/j.comcom.2021.01.021

[60] Wu Y, Wei D, Feng J. Network attacks detection methods based on deep
learning techniques: a survey. Security and Communication Networks.
2020;2020(1):8872923.

[61] Borrego-Carazo J, Castells-Rufas D, Biempica E, et al. Resource-constrained
machine learning for ADAS: A systematic review. IEEE Access. 2020;8:
40573–40598. doi:10.1109/ACCESS.2020.2976513

[62] Al-Yaseen WL, Idrees AK. MuDeLA: multi-level deep learning approach
for intrusion detection systems. Int J Comput Appl. 2023;45(12):755–763.
doi:10.1080/1206212X.2023.2275084

[63] Singh J, Singh J. Assessment of supervised machine learning algorithms
using dynamic API calls for malware detection. Int J Comput Appl.
2022;44(3):270–277. doi:10.1080/1206212X.2020.1732641

[64] Datta P, Rohilla R. An autonomous and intelligent hybrid CNN-RNN-LSTM
based approach for the detection and classification of abnormalities in brain.
Multimed Tools Appl. 2024: 1–27.

[65] Mijalkovvic J, Spognardi A. Reducing the false negative rate in deep learn-
ing based network intrusion detection systems.Algorithms. 2022;15(8):258–
267. doi:10.3390/a15080258

[66] Garcia S, Parmisano A, Erquiaga M. (2020). IoT-23: A labeled dataset with
malicious and benign IoT network traffic (Version 1.0.0) [Data set]. Zenodo.
doi:10.5281/zenodo.4743746

[67] Cui Z, Xue F, Cai X, et al. Detection ofmalicious code variants based on deep
learning. IEEE Trans Ind Inf. 2018;14:3187–3196. doi:10.1109/TII.2018.28
22680

https://doi.org/10.1086/699936
https://doi.org/10.1080/1206212X.2022.2099122
https://doi.org/10.3390/app10051775
https://doi.org/10.1016/j.engappai.2023.107231
https://doi.org/10.1109/COMST.2019.2953364
https://doi.org/10.1016/j.procs.2018.07.278
https://doi.org/10.1109/MCE.2019.2953740
https://doi.org/10.1109/JIOT.2017.2767291
https://doi.org/10.1016/j.procir.2019.04.201
https://doi.org/10.1109/MCOM.2018.1700364
https://doi.org/10.1007/s41635-017-0029-7
https://doi.org/10.1016/j.jss.2017.05.125
https://doi.org/10.1109/JIOT.2014.2344013
https://doi.org/10.1109/MC.2017.201
https://doi.org/10.1002/widm.1143
https://doi.org/10.5121/ijdkp.2015.5201
https://doi.org/10.1016/j.cose.2020.101775
https://doi.org/10.1016/j.cose.2019.101592
https://doi.org/10.1016/j.jnca.2020.102630
https://doi.org/10.1080/09537287.2019.1625079
https://doi.org/10.1057/s41265-018-0054-1
https://doi.org/10.1016/j.jpdc.2019.03.010
https://doi.org/10.1016/j.compag.2022.106811
https://doi.org/10.1016/j.comcom.2021.01.021
https://doi.org/10.1109/ACCESS.2020.2976513
https://doi.org/10.1080/1206212X.2023.2275084
https://doi.org/10.1080/1206212X.2020.1732641
https://doi.org/10.3390/a15080258
https://doi.org/10.5281/zenodo.4743746
https://doi.org/10.1109/TII.2018.2822680

	Evaluating the cost of classifier discrimination choices for IoT sensor attack detection
	Recommended Citation

	1. Introduction
	1.1. Research contributions
	1.2. Structure of paper

	2. Theoretical background
	2.1. IoT security attacks
	2.2. Classification algorithms
	2.3. Computational costs
	2.4. State of the art

	3. Methods and cost metrics
	3.1. Algorithms
	3.1.1. KNN
	3.1.2. CNN

	3.2. Metrics and computation
	3.3. Dataset used
	3.4. Experimental setup

	4. Results
	4.1. KNN results
	4.2. CNN results

	5. Discussion
	6. Conclusions
	Data availability statement
	Disclosure statement
	References

