Title

Mean Square Consistency on Numerical Solutions of Stochastic Wave Equation with Cubic Nonlinearities on 2D Rectangles

Source of Publication

MATEC Web of Conferences

Abstract

© The Authors, published by EDP Sciences, 2017. In this article we study the mean square consistency on numerical solutions of stochastic wave equations with cubic nonlinearities on two dimensional rectangles. In [8], we proved that the strong Fourier solution of these semi-linear wave equations exists and is unique on an appropriate Hilbert space. A linear-implicit Euler method is used to discretize the related Fourier coefficients. We prove that the linear-implicit Euler method applied to a solution of nonlinear stochastic wave equations in two dimensions is mean square consistency under the geometric condition.

Document Type

Conference Proceeding

Publication Date

10-4-2017

DOI

10.1051/matecconf/201712505020

Author First name, Last name, Institution

Haziem M. Hazaimeh, Zayed University

Share

COinS