Title
Mean Square Consistency on Numerical Solutions of Stochastic Wave Equation with Cubic Nonlinearities on 2D Rectangles
Source of Publication
MATEC Web of Conferences
Abstract
© The Authors, published by EDP Sciences, 2017. In this article we study the mean square consistency on numerical solutions of stochastic wave equations with cubic nonlinearities on two dimensional rectangles. In [8], we proved that the strong Fourier solution of these semi-linear wave equations exists and is unique on an appropriate Hilbert space. A linear-implicit Euler method is used to discretize the related Fourier coefficients. We prove that the linear-implicit Euler method applied to a solution of nonlinear stochastic wave equations in two dimensions is mean square consistency under the geometric condition.
Document Type
Conference Proceeding
Publication Date
10-4-2017
DOI
10.1051/matecconf/201712505020
Recommended Citation
Hazaimeh, Haziem M., "Mean Square Consistency on Numerical Solutions of Stochastic Wave Equation with Cubic Nonlinearities on 2D Rectangles" (2017). Scopus Indexed Articles. 1256.
https://zuscholars.zu.ac.ae/scopus-indexed-articles/1256