Title

Joint workload scheduling and BBU allocation in cloud-RAN for 5G networks

Source of Publication

Proceedings of the ACM Symposium on Applied Computing

Abstract

Copyright 2017 ACM. Cloud-radio access network (C-RAN) emerges as a solution to satisfy the demand for a diverse range of applications, massive connectivity, and network heterogeneity. C-RAN uses central cloud network for processing user requests. Efficient management of cloud resources (e.g., computation and transmission resources) is one of the important challenges in C-RAN. In this paper, we investigate a joint workload scheduling and baseband unit (BBU) allocation in Cloud-RAN for 5G networks. First, we establish a queueing model in C-RAN. We then formulate an optimization problem for joint workload scheduling and BBU allocation with the aim to minimize mean response time and aggregate power. Queueing stability and workload conservation constraints are considered in the optimization problem. To solve this problem, we propose an energy efficient joint workload scheduling and BBU allocation (EE-JWSBA) algorithm using the concept of queueing theory. The EE-JWSBA algorithm is evaluated via simulations by considering three different scheduling weights (e.g., random, normalized, and upper limit). Simulation results demonstrate the effectiveness of proposed scheme using different scheduling weights.

Document Type

Conference Proceeding

ISBN

['9781450344869']

First Page

621

Last Page

627

Publication Date

4-3-2017

DOI

10.1145/3019612.3019770

Share

COinS