Title

Identifying Major Tasks from On-line Reviews

Source of Publication

Procedia Computer Science

Abstract

© 2017 The Authors. Published by Elsevier B.V. Many e-commerce websites allow customers to provide reviews that reflect their experiences and opinions about the business's products or services. Such published reviews potentially benefit the business's reputation, improve both current and future customers' trust in the business, and accordingly improve the business. Negative reviews can inform the merchant of issues that, when addressed, also improve the business. However, when reviews reflect negative experiences and the merchant fails to respond, the business faces potential loss of reputation, trust, and damage. We present the Sentiminder system that identifies reviews with negative sentiment, organizes them, and helps the merchant develop a plan with an end date by which issues will be addressed. In this paper we address the problem of quickly finding subtasks in a large set of reviews, which may help the merchant to identify, from the set of reviews, subtasks that need to be addressed. We do this by identify nouns that frequently occur only in the reviews with negative sentiment.

Document Type

Conference Proceeding

First Page

217

Last Page

222

Publication Date

1-1-2017

DOI

10.1016/j.procs.2017.08.348

Share

COinS