Title
Construction of dual Z-scheme g-C3N4/Bi4Ti3O12/Bi4O5I2 heterojunction for visible and solar powered coupled photocatalytic antibiotic degradation and hydrogen production: Boosting via I−/I3− and Bi3+/Bi5+ redox mediators
Source of Publication
Applied Catalysis B: Environmental
Abstract
© 2020 Elsevier B.V. Inspired by waste to energy production, we report construction of dual Z-scheme advanced photocatalyst g-C3N4/Bi4Ti3O12/Bi4O5I2 heterojunction for coupled photocatalytic H2 evolution and degradation of antibiotics with high efficiency. The optimal CTBT-30 i.e (40 %g-C3N4/Bi4Ti3O12)/30 % Bi4O5I2 photocatalyst exhibited an excellent rate of H2 production under visible light (56.2 mmol g−1 h−1) along with simultaneous 87.1 % ofloxacin (OFL) removal. The H2 production rate is manifolds higher than in ultrapure water, sulfadiazine, rhodamine B and higher in hole scavenging triethanolamine. The interfacial intimate coupling with well-matched energy bands, foster the charge separation with effective Z-scheme transfer facilitated by I3−/I− and Bi3+/Bi5+ and redox mediators. The scavenging of majority of holes for direct oxidation or via [rad]OH radical formation leaves photogenerated electrons (at CB of g-C3N4 and Bi4O5I2) free for H2 evolution from H2O. Such work is promising for designing high photo-absorbing heterojunction photocatalysts for dual functionalities of clean energy production and environmental detoxification.
Document Type
Article
Publisher
Elsevier BV
Publication Date
5-5-2021
DOI
10.1016/j.apcatb.2020.119808
Scopus ID
85098200110
Recommended Citation
Kumar, Amit; Sharma, Gaurav; Kumari, Anu; Guo, Changsheng; Naushad, Mu; Vo, Dai Viet N.; Iqbal, Jibran; and Stadler, Florian J., "Construction of dual Z-scheme g-C3N4/Bi4Ti3O12/Bi4O5I2 heterojunction for visible and solar powered coupled photocatalytic antibiotic degradation and hydrogen production: Boosting via I−/I3− and Bi3+/Bi5+ redox mediators" (2021). Scopus Indexed Articles. 2665.
https://zuscholars.zu.ac.ae/scopus-indexed-articles/2665