Title

Count- and Similarity-Aware R-CNN for Pedestrian Detection

Source of Publication

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract

© 2020, Springer Nature Switzerland AG. Recent pedestrian detection methods generally rely on additional supervision, such as visible bounding-box annotations, to handle heavy occlusions. We propose an approach that leverages pedestrian count and proposal similarity information within a two-stage pedestrian detection framework. Both pedestrian count and proposal similarity are derived from standard full-body annotations commonly used to train pedestrian detectors. We introduce a count-weighted detection loss function that assigns higher weights to the detection errors occurring at highly overlapping pedestrians. The proposed loss function is utilized at both stages of the two-stage detector. We further introduce a count-and-similarity branch within the two-stage detection framework, which predicts pedestrian count as well as proposal similarity. Lastly, we introduce a count and similarity-aware NMS strategy to identify distinct proposals. Our approach requires neither part information nor visible bounding-box annotations. Experiments are performed on the CityPersons and CrowdHuman datasets. Our method sets a new state-of-the-art on both datasets. Further, it achieves an absolute gain of 2.4% over the current state-of-the-art, in terms of log-average miss rate, on the heavily occluded (HO) set of CityPersons test set. Finally, we demonstrate the applicability of our approach for the problem of human instance segmentation. Code and models are available at: https://github.com/Leotju/CaSe.

Document Type

Conference Proceeding

ISBN

9783030585198

First Page

88

Last Page

104

Publication Date

1-1-2020

DOI

10.1007/978-3-030-58520-4_6

Scopus ID

85097049373

This document is currently not available here.

Share

COinS