Relevance-based entity selection for ad hoc retrieval

Source of Publication

Information Processing and Management


© 2019 Recent developments have shown that entity-based models that rely on information from the knowledge graph can improve document retrieval performance. However, given the non-transitive nature of relatedness between entities on the knowledge graph, the use of semantic relatedness measures can lead to topic drift. To address this issue, we propose a relevance-based model for entity selection based on pseudo-relevance feedback, which is then used to systematically expand the input query leading to improved retrieval performance. We perform our experiments on the widely used TREC Web corpora and empirically show that our proposed approach to entity selection significantly improves ad hoc document retrieval compared to strong baselines. More concretely, the contributions of this work are as follows: (1) We introduce a graphical probability model that captures dependencies between entities within the query and documents. (2) We propose an unsupervised entity selection method based on the graphical model for query entity expansion and then for ad hoc retrieval. (3) We thoroughly evaluate our method and compare it with the state-of-the-art keyword and entity based retrieval methods. We demonstrate that the proposed retrieval model shows improved performance over all the other baselines on ClueWeb09B and ClueWeb12B, two widely used Web corpora, on the NDCG@20, and ERR@20 metrics. We also show that the proposed method is most effective on the difficult queries. In addition, We compare our proposed entity selection with a state-of-the-art entity selection technique within the context of ad hoc retrieval using a basic query expansion method and illustrate that it provides more effective retrieval for all expansion weights and different number of expansion entities.

Document Type


First Page


Last Page


Publication Date