Exploring Cu-oxide and Mn-oxide impregnated biochar nanocomposites for sustainable chromium removal from water: Reusability and kinetic studies

Document Type

Article

Source of Publication

Chemical Engineering Science

Publication Date

4-1-2025

Abstract

The present study aims to evaluate the potential of Sesbania bispinosa biochar (SBBC) and its nanocomposites, SBBC/Mn-oxide, SBBC/Cu-oxide and SBBC/Mn-oxide/Cu-oxide for Cr removal from contaminated water. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and point of zero charge (PZC) were employed. Impact of initial Cr concentration (25–200 mg/L), pH levels (2–8), adsorbent dose (1–3 g/L), contact time (15–180 min), and coexisting ions in water were investigated. The highest Cr adsorption (75 mg/g) was achieved with triple nanocomposite (SBBC/Mn-oxide/Cu-oxide), followed by dual SBBC/Cu-oxide (59.65 mg/g), SBBC/Mn-oxide (44.9 mg/g) composites, and SBBC alone (37.4 mg/g). The coexisting ions showed a decline in Cr removal. Reusability results revealed a slightly lower Cr removal (8 %) with SBBC/Mn-oxide/Cu-oxide nanocomposite in the fifth cycle. The experimental adsorption data were well-explained through Freundlich and pseudo-second-order kinetic models. It is concluded that nanoparticle-biochar composites are effective for remediating Cr-contaminated water.

ISSN

0009-2509

Publisher

Elsevier BV

Volume

308

Disciplines

Life Sciences

Keywords

Adsorption, Biomass, Modeling, Nanocomposites, Reusability, Upscaling

Scopus ID

85218857507

Indexed in Scopus

yes

Open Access

no

Share

COinS