Document Type

Article

Source of Publication

Computers Materials and Continua

Publication Date

3-26-2025

Abstract

The successful penetration of government, corporate, and organizational IT systems by state and nonstate actors deploying APT vectors continues at an alarming pace. Advanced Persistent Threat (APT) attacks continue to pose significant challenges for organizations despite technological advancements in artificial intelligence (AI)-based defense mechanisms. While AI has enhanced organizational capabilities for deterrence, detection, and mitigation of APTs, the global escalation in reported incidents, particularly those successfully penetrating critical government infrastructure has heightened concerns among information technology (IT) security administrators and decisionmakers. Literature review has identified the stealthy lateral movement (LM) of malware within the initially infected local area network (LAN) as a significant concern. However, current literature has yet to propose a viable approach for resource-efficient, real-time detection of APT malware lateral movement within the initially compromised LAN following perimeter breach. Researchers have suggested the nature of the dataset, optimal feature selection, and the choice of machine learning (ML) techniques as critical factors for detection. Hence, the objective of the research described here was to successfully demonstrate a simplified lightweight ML method for detecting the LM of APT vectors. While the nearest detection rate achieved in the LM domain within LAN was 99.89%, as reported in relevant studies, our approach surpassed it, with a detection rate of 99.95% for the modified random forest (RF) classifier for dataset 1. Additionally, our approach achieved a perfect 100% detection rate for the decision tree (DT) and RF classifiers with dataset 2, a milestone not previously reached in studies within this domain involving two distinct datasets. Using the ML life cycle methodology, we deployed K-nearest neighbor (KNN), support vector machine (SVM), DT, and RF on three relevant datasets to detect the LM of APTs at the affected LAN prior to data exfiltration/destruction. Feature engineering presented four critical APT LM intrusion detection (ID) indicators (features) across the three datasets, namely, the source port number, the destination port number, the packets, and the bytes. This study demonstrates the effectiveness of lightweight ML classifiers in detecting APT lateral movement after network perimeter breach. It contributes to the field by proposing a non-intrusive network detection method capable of identifying APT malware before data exfiltration, thus providing an additional layer of organizational defense.

ISSN

1546-2218

Volume

83

Issue

1

First Page

281

Last Page

308

Disciplines

Computer Sciences

Keywords

advanced persistent threats, Intrusion detection, lateral movement, machine learning

Scopus ID

05001293611

Indexed in Scopus

yes

Open Access

yes

Open Access Type

Gold: This publication is openly available in an open access journal/series

Share

COinS