Cerebrovascular segmentation from MRA images

Fatma Taher, Zayed University
Ayman S. El-Baz, University of Louisville


There is provided a method of processing a cerebrovascular medical image, the method comprising receiving magnetic resonance angiography (MRA) image associated with a cerebrovascular tissue comprising blood vessels and brain tissues other than blood vessels; segmenting MRA image using a prior appearance model for generating first prior appearance features representing a first-order prior appearance model and second appearance features representing a second-order prior appearance model of the cerebrovascular tissue, wherein current appearance model comprises a 3D Markov-Gibbs Random Field (MGRF) having a 2D rotational and translational symmetry such that MGRF model is 2D rotation and translation invariant; segmenting MRA image using current appearance model for generating current appearance features distinguishing blood vessels from other brain tissues; adjusting MRA image using first and second prior appearance features and current appearance futures; and generating an enhanced MRA image based on said adjustment. There is also provided a system for doing the same.