Green Production and Structural Evaluation of Maize Starch–Fatty Acid Complexes Through High Speed Homogenization

ORCID Identifiers

0000-0001-7347-1127

Document Type

Article

Source of Publication

Journal of Polymers and the Environment

Publication Date

12-1-2020

Abstract

© 2020, Springer Science+Business Media, LLC, part of Springer Nature. The current study describes the production of maize starch–fatty acid complexes through high speed homogenization, a novel field of research, without heat or any chemical treatment. The starch–fatty acid complexes were produced with three different fatty acids, i.e. stearic acid (T1), palmitic acid (T2) and lauric acid (T3). The complexes were analyzed through various techniques. The results reveal that the complexing index (CI), swelling power (SP) and solubility (S) for T1 were significantly higher compared to T2 and T3. In X-ray diffraction (XRD) studies, relatively lower crystalline (V-type pattern) structures were obtained for the samples T1–T3, where T2 showed the highest crystallinity amongst all. Fourier transformed infrared (FTIR) spectra showed characteristic bands i.e., OH, C=O, C–O and long-chain CH2 functionalities thus confirming the overall incorporation of acids into glycoside moieties. The Scanning electron microscopy (SEM) analysis showed sub-crystalline matrix structures with fewer or no spherulites indicating the overall incorporation of acids in starch. The samples showed relatively low thermal stability in the thermal gravimetric analysis (TGA) in the range of 180 to 280 °C. These results suggest that high speed homogenization had the potential for the development of green and biocompatible maize starch–fatty acid complexes.

ISSN

1566-2543

Publisher

Springer

Volume

28

Issue

12

First Page

3110

Last Page

3115

Disciplines

Life Sciences

Keywords

Characterization, Complex, Fatty acids, High speed homogenization, Starch

Scopus ID

85088363407

Indexed in Scopus

yes

Open Access

no

Share

COinS